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Abstract. Let f be an integral homogeneous polynomial of degree d, and let
Vm = {X : f(X) = m} be the level set for each m ∈ N. For a compact subset Ω in
V1(R), set

Nm(f, Ω) = #Vm(Z) ∩ m1/dΩ.

We define the notion of Hardy-Littlewood system for the sequence {Vm}, according
as the asymptotic of Nm(f, Ω) as m → ∞ coincides with the one predicted by
Hardy-Littlewood circle method. Using a recent work of Eskin and Oh [EO], we
then show for a large family of invariant polynomials f , the level sets {Vm} are
Hardy-Littlewood. In particular, our results yield a new proof of Siegel mass formula
for quadratic forms.

1. Introduction

Let f be an integral homogeneous polynomial in n-variables with degree d. A basic
Diophantine problem is to understand the asymptotic number of integer representa-
tions of m by f as m → ∞.

For each m ∈ N, set

Vm := {x ∈ Cn : f(x) = m},
and for any compact subset Ω ⊂ V1(R), set

Nm(f, Ω) := #Vm(Z) ∩ m1/dΩ.

For instance, if

Ω = {X ∈ Rn : f(X) = 1, ‖X‖ ≤ R}
for a fixed R > 0 and for the Euclidean norm ‖ ·‖, the number Nm(f, Ω) is simply the
cardinality of the set of integer representations X of m by f , subject to the condition
that the norm of X is at most m1/dR, i.e.,

#{X ∈ Zn : f(X) = m, ‖X‖ ≤ m1/dR}.

When the varieties Vm(R) are not compact, #Vm(Z) may be infinite. For this
reason, it is natural to consider the asymptotic, as m → ∞, of Nm(f, Ω) for a fixed
compact subset Ω ⊂ V1(R). This set up was first considered by Linnik ([Li1],[Li2],
see also [Sa]).
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When the Hardy-Littlewood circle method can be successfully used to obtain the
asymptotic of Nm(f, Ω), as m → ∞, which usually requires that the number of
variables is much larger than the degree of f (cf. [Sc], [Va]), the counting function
Nm(f, Ω) behaves as

(1.1) Nm(f, Ω) ∼m→∞ Jm(m1/dΩ) · Sm

for any nice compact subset Ω ⊂ V1(R). Here Sm and Jm, classically called singular
series and singular integral respectively, are defined as follows:

Sm :=
∏

p

lim
k→∞

#Vm(Z/pkZ)

pk·dim(Vm)
,

and for any nice compact subset K ⊂ Rn,

Jm(K ∩ Vm) := lim
ε→0

|{X ∈ K : |f(X) − m| ≤ ε}|
2ε

where | · | denotes the usual Lebesgue measure on Rn.

While it is easy to check that Jm(m1/dΩ) = m(n−d)/dJ1(Ω), the behavior of the
singular series Sm reflects certain arithmetic complexity of the polynomial f . However
when the circle method works, it is usually the case that Sm absolutely converges
and Sm � 1 (or at least Sm � m−ε) as m → ∞, (cf. [Va]). In particular,

Jm(m1/dΩ) · Sm → ∞ as m → ∞
(assuming n > d), which will certainly be the case if the circle method applies.

Even when the Hardy-Littlewood circle method does not directly apply, it is still
hoped that for many polynomials f , the asymptotic of Nm(f, Ω) would be given
by (1.1). This is the question we address in this paper, namely, for what kind of
polynomial f , the counting function Nm(f, Ω) as m → ∞ behaves as the Hardy-
Littlewood circle method predicts.

Our approach here is to analyze the properties of the level sets {Vm}, rather than
that of a polynomial f . Following the terminology introduced by Schmidt [Sc] and
more refined by Borovoi and Rudnick [BR] in the study of integer points of a fixed
variety in the sequence of balls of radius going to infinity, we define an analogous
notion of Hardy-Littlewood system for a sequence of varieties {Vm}.

Let V be an affine space with a given Z-structure, and {Vm ⊂ V : m ∈ N} be a
sequence of non-singular subvarieties defined over Q such that

Vm = λmV1

for a strictly increasing sequence {λm} of positive real numbers (with λ1 = 1).

For any ring J containing Z, we set Vm(J) = Vm ∩V (J). We denote by A the adele
ring over Q and Af its finite adeles.
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A natural substitute for Jm ·Sm in this generality is given by a Tamagawa measure
on Vm(A). For that, we assume that there exists a gauge form, a nowhere zero regular
differential form of maximal degree, on each variety Vm, which defines a Tamagawa
measure µm on Vm(A) (with respect to some convergence factors if needed) [We2].

A compact subset Ω ⊂ V1(R) is said to be nice if Ω has non-empty interior with
piecewise smooth boundary.

Definition 1.2. Let O be a connected component of V1(R). We call a sequence
{(Vm : O)} strongly Hardy-Littlewood if for any nice compact subset Ω in O,

lim
m→∞

µm(λmΩ ×
∏

p

Vm(Zp)) = ∞; and

#Vm(Z) ∩ R+Ω ∼m→∞ µm(λmΩ ×
∏

p

Vm(Zp)).

Definition 1.3. We call a sequence {(Vm : O)} is (relatively) Hardy-Littlewood
if there exist locally constant functions δm : Vm(A) → R+∪{0} constant on connected
components of Vm(R), such that for any nice compact subset Ω in O,

#Vm(Z) ∩ R+Ω ∼m→∞

∫

λmΩ×
∏

p Vm(Zp)

δm(x) dµm

with both sides tending to ∞ as m → ∞.

We call δm the density function of Vm(A).

Definition 1.4. A sequence {Vm} is called strongly (resp. relatively) Hardy-Littlewood
if {(Vm : O)} is so for each connected component O of V1(R).

For a sequence of arbitrary varieties Vm, it is of course very hard (almost hopeless)
to check whether {Vm} is Hardy-Littlewood or not. However when Vm are given as
the homogeneous spaces of a semisimple algebraic group G, we are able to formulate
certain sufficient conditions for {(Vm : O)} to be (relatively or strongly) Hardy-
Littlewood. Based on a recent work of Eskin and the author [EO], we then show that
a large family of homogeneous spaces {(Vm : O)} are Hardy-Littlewood and compute
their density functions as well. In particular, there are examples of relatively Hardy-
Littlewood sequences but not strongly Hardy-Littlewood (see Example (4.3)).

Let V be a linear space with a Z-structure and {Vm = λmV1} a sequence of sub-
varieties of V defined over Q. Let O denote a connected component in V1(R). We
consider the following hypothesis for (G, {(Vm : O)}, H):

(A) Let a Q-rational representation ρ : G → GL(V ) be given where G is a connected
simply connected semisimple algebraic group defined over Q such that G(R) has no
compact factor defined over Q. We assume that for each m, Vm(Q) ∩ λmO 6= ∅.
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Suppose that V1 is a homogeneous space of G, so that V1 := v0G for some v0 ∈ V1(Q),
and that the stabilizer H of v0 in G is connected and semisimple.

Under the hypothesis (A), there exists a G-invariant gauge form on each Vm, unique
up to a scalar multiple of Q∗, which induces local invariant measures µm,p on Vm(Qp)
for primes p and µm,∞ on Vm(R). By [BR, 1.7], the product

∏

p µm,p(Vm(Zp)) con-

verges absolutely. Hence the Tamagawa measure µm on Vm(A) is well defined with
respect to the convergence factors {1}p, and moreover unique by the product formula
[We2, 2.3].

Though Definitions 1.2 and 1.3 might depend on the choice of Tamagawa measure
in general, they depend only on {Vm} under the hypothesis (A).

Remark Since the group G is simply connected, the group G(R) is connected. On
the other hand, each G(R)-orbit on Vm(R) is open and closed. Hence the G(R)-orbits
on Vm(R) are precisely connected components of Vm(R). In particular, if G(R) acts
transitively on V1(R), V1(R) is connected.

Fix any invariant measure µG(R) on G(R). For any v ∈ Vm(Z), denoting by Hv the
stabilizer of v in G, we choose the measure µv on Hv(R) in the following way. Since
the orbit vG(R) is open in Vm(R), via the isomorphism of vG(R) to Hv(R)\G(R)
defined by vg 7→ ḡ = Hv(R)g, we first get an invariant measure on Hv(R)\G(R) from
the restriction of µm,∞ to vG(R). Denote this measure again by µm,∞.

Then the Haar measure µv on Hv(R) is defined so that (dµG(R), dµm,∞, dµv) match
together topologically in the sense of [We2, P. 27], that is, for any f ∈ L1(G(R), dµG(R)),
the integral formula

(1.5)

∫

Hv(R)\G(R)

dµm,∞(ḡ)

∫

Hv(R)

f(hg) dµv(h) =

∫

G(R)

f(g) dµG(R)(g)

holds. For simplicity, we write dµG(R) = dµm,∞ · dµv if (dµG(R), dµm,∞, dµv) match
together topologically.

In fact, for any invariant measure µv on Hv(R), the left hand side of (1.5) defines
an invariant measure on G(R). It follows that for given µm,∞ and µG(R), there exists
the unique Haar measure µv on Hv(R) such that dµG(R) = dµm,∞ · dµv.

Define for each m ∈ N and for each G(R)-orbit Om in Vm(R)

(1.6) ωm(Om) :=
∑

ξmΓ⊂Vm(Z)∩Om

vol(Γ ∩ Hξm\Hξm(R))

vol(Γ\G(R))

where Γ ⊂ G(Q) is an arithmetic subgroup such that V (Z)Γ ⊂ V (Z), the sum is
taken over all the Γ-orbits ξmΓ in Vm(Z) ∩ Om, and the volumes are computed with
respect to µG(R) and µξm.

Since the groups G and Hξm are semisimple defined over Q, and Γ ⊂ G(Q) is an
arithmetic subgroup, the volumes involved above are finite and the sum is taken over
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a finite set by theorems of Borel and Harish-Chandra [BH]. Note that ωm(Om) = 0 if
and only if Vm(Z) ∩ Om = ∅.

In fact the definition of ωm(Om) is independent of the choice of an arithmetic
subgroup Γ(see Proposition 2.3).

We now consider the following hypothesis for (G, {(Vm : O)}, H):

(B) For any nice compact subset Ω in O,

lim
m→∞

ωm(λmO) ·vol(λmΩ) = ∞ and #Vm(Z)∩R+Ω ∼m→∞ ωm(λmO) ·vol(λmΩ).

This hypothesis in particular implies that Vm(Z)∩λmO 6= ∅ for all sufficiently big m.

Theorem 1.7. Let G, {(Vm : O)} and H satisfy the conditions (A) and (B). Then
{(Vm : O)} is Hardy-Littlewood where the density function δm is constant on each
G(A)-orbit Om

A
in Vm(A) and defined by

δm(Om
A

) =

{

#C(H) if κ(Om
A

) = 0

0 otherwise
for each m ∈ N.

Here C(H) denotes (the torsion subgroup of) the group of coinvariants of Gal(Q̄/Q)
in π1(H) and κ(Om

A
) ∈ C(H) denotes the Kottwitz invariant of Om

A
.

Remark

• Note that for any m ∈ N, the density function δm takes values in the set
{0, #C(H)} of exactly two numbers.

• For a G(A)-orbit Om
A

, we have κ(Om
A

) = 0 if and only if Om
A

contains a
Q-rational point [BR, Theorem 0.4]. We refer to [BR] for a more detailed
definition of κ(Om

A
) as well as of C(H) and π1(H).

If H is simply connected then π1(H) = 0; hence κ is identically 0 on each Vm(A)
and #C(H) = 1. Therefore we deduce:

Corollary 1.8. If H is simply connected in addition, then {(Vm : O)} is strongly
Hardy-Littlewood.

In [EO], the condition (B) is proven under certain hypothesis on {(Vm : O)}. For
instance, we deduce the following:

Theorem 1.9. Let G, {(Vm : O)} and H satisfy the condition (A). Suppose that for
some v ∈ O, the identity component Hv(R)0 has no compact factors and is a proper
maximal connected closed subgroup of G(R)0. Let I ⊂ N be such that Vm(Z)∩λmO 6= ∅
for all m ∈ I and for any m0 ∈ I,

(1.10) #{m ∈ I : O ∩ λ−1
m Vm(Z) = O ∩ λ−1

m0
Vm0

(Z)} < ∞.



6 HEE OH

Then the sequence {(Vm : O) : m ∈ I} is Hardy-Littlewood with density function
δm defined as in Theorem 1.7.

In particular, if H is simply connected, then {(Vm : O) : m ∈ I} is strongly Hardy-
Littlewood.

If for every connected component O in V1(R), all the assumptions of the above
theorem hold except for (1.10), then it follows from [BR, Theorem 0.6] and [EMS,
Theorem 1.11] that each variety Vm is also Hardy-Littlewood in the sense of Borovoi-
Rudnick [BR].

In general, without the maximality assumption on Hv, we may replace the assump-
tion (1.10) by the non-focusing condition in the sense of [EO]. However it seems very
hard to check the non-focusing condition for a general group Hv.

Still Theorem 1.9 includes a large family of homogeneous spaces, for example,
the cases when G is a connected, Q-simple, simply connected algebraic group and
V1 = G/H is an affine symmetric space of G where H is connected semisimple without
any R-anisotropic factors. It is so, since H(R)0 is then a maximal connected closed
subgroup of G(R)0 (see [Bo2, Lemma 8.0]).

When the varieties Vm are indeed given as the level sets of a fixed invariant poly-
nomial, it is not hard to see that our expectation for a strongly Hardy Littlewood
sequence {Vm} in terms of the Tamagawa measures µm on Vm(A) does coincide with
the classical Hardy Littlewood expectation discussed in the beginning of this paper
in view of the uniqueness of the Tamagawa measure (see Lemma 3.8).

Hence we obtain the following from Theorem 1.9 and Lemma 3.8:

Theorem 1.11. Suppose that f is an invariant homogeneous integral polynomial of
ρ, i.e.,

f(vg) = f(v) for all v ∈ V and g ∈ G.

If {(Vm : O)} satisfies the assumptions in Theorem 1.9 and H is simply connected,
then for any nice compact subset Ω in O,

Nm(f, Ω) ∼m→∞ Jm(m1/dΩ) · Sm

with both sides going to ∞ as m → ∞.

In the special cases when V1(R) is a homogeneous space of G(R) and H is simply
connected, Theorem 1.7 is basically a consequence of the following identity:

(1.12) ωm(Vm(R)) =
∏

p

µm,p(Vm(Zp)) = Sm

Once we set up what arithmetic subgroup Γ is to be used in the definition of ωm(Vm(R)),
this is essentially proved in [BR, Theorem 4.2], which is in turn based on the meth-
ods of Weil [We1] combined with the calculation of Tamagawa number of connected
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groups due to Ono, Sansuc, and Kottwitz. The identity (1.12) for a quadratic form
is precisely Siegel’s mass formula for Vm [Si]. In section 5, we discuss yet another
proof of the mass formula using the work in [EO], in the light of the work of Eskin,
Rudnick and Sarnak [ERS].

In section 4, we discuss several explicit examples of Hardy-Littlewood sequence of
level sets.

Lastly we mention that it is heuristically expected that the order of magnitude of
Nm(f, Ω) would be m(n−d)/d for n being the number of variables of f and d being
the degree of f . The reason is that for a fixed R > 0, the values of f in the ball
Bm1/dR of radius m1/dR lie in the interval [−c1m, c2m] where constants c1, c2 > 0
are independent of m. Since the number of integral points in the ball Bm1/dR is of
order mn/d and it is expected that each value between [−c1m, c2m] is assumed roughly
equally often, this gives that f takes value m in Bm1/dR roughly m(n−d)/d times, or
equivalently the cardinality Nm(f, BR ∩ V1) has order m(n−d)/d.

This indicates that for a strongly Hardy-Littlewood sequence {Vm}, the archimedean
part of the asymptotic Nm(f, Ω), as m → ∞, given by the singular integral Jm(m1/dΩ)
does coincide with the heuristic expectation in its order of magnitude. However even
when each singular series Sm absolutely converges, it may make a non-trivial contri-
bution to the order of magnitude of Nm(f, Ω) as m → ∞ as well, for instance, see
the determinant example in section 4.

Acknowledgements I would like to thank the referee for helpful remarks.

2. The weighted class number ωm(Om)

In this section, we fix a connected component O in V1(R) and assume that (G, {(Vm :
O)}, H) is given as in the hypothesis (A). However we do not need the full strength of
the hypothesis (A) but only assume that G and H are connected algebraic Q-groups
with no non-trivial Q-characters, so that G ∩ Γ and H ∩ Γ have finite co-volumes in
G(R) and H(R) respectively for any arithmetic subgroup Γ of G contained in G(Q).

Let Γ ⊂ G(Q) be an arithmetic subgroup such that V (Z)Γ ⊂ V (Z). Fix a nice
compact subset Ω in O. For each ξm ∈ Vm(Z) ∩ λmO, we define the function fξm on
G(R) by

(2.1) fξm(g) :=
∑

γ∈Hξm∩Γ\Γ

χλmΩ(ξmγg)

where χλmΩ denotes the characteristic function of the set λmΩ. Note that fξm is left
Γ-invariant and hence can be considered as a function on Γ\G(R).
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Lemma 2.2. We have
∫

Γ\G(R)

fξm dµG(R) = µm,∞(λmΩ) · µξm(Hξm ∩ Γ\Hξm(R)).

Proof. From the assumption that dµG(R) = dµm,∞ · dµξm, we have
∫

Γ\G(R)

fξm dµG(R) =

∫

Γ\G(R)

∑

γ∈Hξm∩Γ\Γ

χλmΩ(ξmγg) dµG(R)(g)

=

∫

Hξm∩Γ\G(R)

χλmΩ(ξmg) dµG(R)(g)

=

∫

Hξm (R)\G(R)

χλmΩ(ξmg)

∫

Hξm∩Γ\Hξm (R)

dµξmdµm,∞(ḡ)

= µm,∞(λmΩ) · µξm(Hξm ∩ Γ\Hξm(R)).

�

Proposition 2.3. Let X be the set of all arithmetic subgroups Γ ⊂ G(Q) preserving
V (Z). For any G(R)-orbit Om in Vm(R), the number ωm(Om) defined in (1.6) is
independent of the choice of Γ ∈ X.

Proof. First O := λ−1
m Om is a connected component of V1(R). If Om∩Vm(Z) is empty,

then ω(Om) = 0. Hence we may assume that Om contains an integer point. Set

hm(Γ,Om) :=
∑

ξmΓ⊂Om∩Vm(Z)

vol(Hξm ∩ Γ\Hξm(R))

where the volume is computed with respect to µξm. Fixing a nice compact subset Ω
in O, we define a function Fm on G(R) by

Fm(g) =
∑

x∈Om∩Vm(Z)

χλmΩ(xg) for any g ∈ G(R).

For any Γ ∈ X, since (Om ∩ Vm(Z))Γ ⊂ (Om ∩ Vm(Z)), the function Fm can be
considered as a function on Γ\G(R), and hence we may write

Fm(g) =
∑

ξmΓ⊂Om∩Vm(Z)

fξm(g)

where fξm is defined as in (2.1). Then by Lemma 2.2, we have for any Γ ∈ X,
∫

Γ\G(R)

Fm dµG(R) =
∑

ξmΓ⊂Om∩Vm(Z)

vol(Hξm ∩ Γ\Hξm(R)) · µm,∞(λmΩ)

= hm(Γ,Om) · a
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(here we put a := µm,∞(λmΩ) for the sake of simplicity). Since any two arithmetic
subgroups of G contained in G(Q) are commensurable with each other (cf. [Bo1]), it
is clear that for any Γ1, Γ2 ∈ X, Γ1 ∩ Γ2 ∈ X and hence

∫

Γ1∩Γ2\G(R)

Fm dµG(R) = hm(Γ1 ∩ Γ2,Om) · a

which is, for each i = 1, 2, again equal to

[Γi : Γ1 ∩ Γ2] ·
∫

Γi\G(R)

Fm dµG(R) = [Γi : Γ1 ∩ Γ2] · hm(Γi,Om) · a.

For both i = 1, 2, it yields

hm(Γ1 ∩ Γ2,Om) = [Γi : Γ1 ∩ Γ2] · hm(Γi,Om).

Since vol(Γ1 ∩ Γ2\G(R)) = [Γi : Γ1 ∩ Γ2] · vol(Γi\G(R)), we have

hm(Γi,Om)

vol(Γi\G(R))
=

hm(Γ1 ∩ Γ2,Om)

vol(Γ1 ∩ Γ2\G(R))
.

This proves the claim. �

Lemma 2.4. Fix any v ∈ O ∩ V1(Z). For any nice compact subset Ω in O and any
ξm ∈ λmO ∩ Vm(Z), we have

µξm(Hξm ∩ Γ\Hξm(R)) · µm,∞(λmΩ) = µv(g
−1
ξm

Γgξm ∩ Hv\Hv(R)) · µ1,∞(Ω)

where gξm ∈ G(R) is such that λmv = ξmgξm .
In particular,

(2.5) ωm(λmO) · µm,∞(λmΩ) =
∑

ξmΓ⊂Vm(Z)∩λmO

µv(g
−1
ξm

Γgξm ∩ Hv\Hv(R))

µG(R)(Γ\G(R))
· µ1,∞(Ω).

Proof. Observe that the function fξm defined in (2.1) can also be written as

fξm(g) =
∑

γ∈Hξm∩Γ\Γ

χΩ(λ−1
m ξmγg).

Since dµG(R) = dµv · dµ1,∞, we have
∫

Γ\G(R)

fξm dµG(R) =

∫

Hξm∩Γ\G(R)

χΩ(λ−1
m ξmg) dµG(R)(g)

=

∫

Hv∩g−1

ξm
Γgξm\G(R)

χΩ(λ−1
m ξmgξmg) dµG(R)(g)

=

∫

Hv(R)\G(R)

χΩ(vg)

∫

Hv∩g−1

ξm
Γgξm\Hv(R)

dµvdµ1,∞(ḡ)

= µ1,∞(Ω) · µv(g
−1
ξm

Γgξm ∩ Hv\Hv(R))(2.6)
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The claim follows by comparing (2.6) and Lemma 2.2. �

3. Hardy-Littlewood systems: Proof of Theorems 1.7 and 1.9

In this section, we assume that G, {(Vm : O)} and H satisfy the hypothesis (A).
Set Om = λmO.

Fix a gauge form µG on G and for each ξm ∈ Vm(Z)∩λmO, consider the gauge form
µHξm

on Hξm so that the gauge forms (µG, µHξm
, µm) match together algebraically in

the sense of [We2, P. 26]. If µG,∞ and µHξm ,∞ denote the invariant measures on G(R)
and Hξm(R) induced from µG and µHξm

respectively, then dµm,∞ · dµHξm ,∞ = dµG,∞.

For a G(A)-orbit Om
A

in Vm(A), the notation Vm(Z) ∩ Om
A

is to be understood as
the set {x ∈ Vm(Z) : (x) ∈ Om

A
} where (x) denotes the diagonal embedding of x into

Vm(A). In particular, the set Vm(Z)∩Om
A

lies in Vm(R), rather than in Vm(A). Notice
that Vm(Z) ∩ Om

A
is contained in a single G(R)-orbit of Vm(R).

For a G(A)-orbit Om
A

, we denote by Om
A∞

its infinite component and by Om
Af

its
finite component so that Om

A
can be written as Om

A∞

×Om
Af

.

Theorem 3.1. We have

ωm(Om) = #C(H)
∑

{Om
A

:(Vm(Z)∩Om
A

)∩Om 6=∅}

µm,f(
∏

p

Vm(Zp) ∩ Om
Af

)

where the sum is taken over all G(A)-orbits Om
A

in Vm(A) such that (Vm(Z) ∩Om
A

) ∩
Om 6= ∅ and µm,f =

∏

p µm,p.

Proof. Letting Kf be an open compact subgroup of G(Af) such that
∏

p V (Zp) Kf =
∏

p V (Zp), set Γ to be the congruence subgroup defined by

Γ := G(Q) ∩ (G(R) × Kf).

Since V (Z) = V (Q) ∩ (V (R) × ∏

p V (Zp)), we have V (Z)Γ = V (Z). By Proposition

2.3, we may use this Γ in our definition of ωm(Om). Hence if we set

ωOm
A

=
∑

ξmΓ⊂Vm(Z)∩Om
A

µHξm ,∞(Γ ∩ Hξm\Hξm(R))

µG,∞(Γ\G(R))
,

we may write

(3.2) wm(Om) =
∑

{Om
A

:(Vm(Z)∩Om
A

)∩Om 6=∅}

ωOm
A
.

On the other hand, for each G(A)-orbit Om
A

with (Vm(Z)∩Om
A

)∩Om 6= ∅, we have
κ(Om

A
) = 0 [BR, Theorem 0.4], and hence we may apply [BR, Theorem 4.2] to obtain

ωOm
A

= #C(Hξm) · µm,f(
∏

p

Vm(Zp) ∩ Om
Af

).
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Since C(H) is computed in terms of the Galois module π1(H), it is invariant under
inner twisting. Since λ−1

m ξm ∈ V1 and G acts transitively on V1, each Hξm is an inner
form of H and hence C(Hξm) = C(H). This proves the claim. �

Lemma 3.3. For any G(A)-orbit Om
A

in Vm(A), the following two are equivalent:

(1) (Om
A
∩ Vm(Z)) ∩ Om 6= ∅;

(2) κ(Om
A

) = 0, Om
A∞

= Om and
∏

p Vm(Zp) ∩ Om
Af

6= ∅.
Proof. The direction that (1) implies (2) is easy to check. Now assume (2). Since
κ(Om

A
) = 0, there exists a vector x0 ∈ Vm(Q) ∩ Om

A
. Since G is semisimple and

simply connected with no R-anisotropic factor defined over Q, G satisfies the strong
approximation property (cf. [PR, Theorem 7.12]). Hence if Mf is a compact open
subgroup of G(Af) preserving

∏

p Vm(Zp), then G(Q)(G(R) × Mf ) = G(A); and

x0G(Q)(G(R) × Mf ) = Om
A

. Pick a vector x ∈ ∏

p Vm(Zp) ∩ Om
Af

, which exists by

the assumption and write x = x0gk where g ∈ G(Q) and k ∈ Mf . Since x0g ∈
Vm(Q) ∩ x0G(R), xk−1 ∈ ∏

p Vm(Zp) ∩ x0G(Af), and the each p-adic component of

xk−1 is equal to x0g, we have x0g ∈ Vm(Z) as well as the diagonal embedding of x0g
into Vm(A) is contained in Om

A
= x0G(A), proving the claim. �

Proposition 3.4. Let δm be the function on Vm(A) defined in Theorem 1.7. Then
for any nice compact subset Ω in O, we have

(3.5)

∫

λmΩ×
∏

p Vm(Zp)

δm(x) dµm = ωm(Om) · µm,∞(λmΩ).

Proof. By the definition of δm,
∫

λmΩ×
∏

p Vm(Zp)

δm(x) dµm = #C(H) ·
∑

κ(Om
A

)=0

µm((λmΩ ×
∏

p

Vm(Zp)) ∩ Om
A

).

In order that µm((λmΩ×∏

p Vm(Zp))∩Om
A

) be non-zero, it is necessary that Om
A∞

=

Om and
∏

p Vm(Zp) ∩ Om
Af

6= ∅. Hence the above is equal to

#C(H) ·
∑

µm,∞(λmΩ) · µm,f(
∏

p

Vm(Zp) ∩ Om
Af

)

where the sum is taken over the G(A)-orbits Om
A

such that κ(Om
A

) = 0, Om
A∞

= Om

and
∏

p Vm(Zp) ∩ Om
Af

6= ∅. By Lemma 3.3, we may equivalently take the last sum

over the G(A)-orbits Om
A

such that (Om
A
∩ Vm(Z)) ∩ Om 6= ∅. It remains to apply

Theorem 3.1 to finish the proof. �

Proof of Theorem 1.7 Consider the function δm defined as in the statement of the
theorem. Since the orbits of G(A) in Vm(A) are open (see [BR, Lemma 1.6.4]), δm is
certainly a locally constant function on Vm(A).
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Since the hypothesis (A) and (B) give that for any nice compact subset Ω ⊂ O,

#Vm(Z) ∩ R+Ω ∼ ωm(Om) · µm,∞(λmΩ),

with both sides tending to ∞ as m → ∞, it remains to apply the identity (3.5).

In order to prove Theorem 1.9, we recall the following result (here we are assuming
that (G, {Vm : O), H) satisfies the hypothesis (A)):

Theorem 3.6 (EO, Theorem 1.2). Assume that Vm(Z) ∩ λmO 6= ∅ and that H0
v (R)

is a proper maximal connected closed subgroup of G0(R) for some v ∈ O ∩ V1(Z).
Suppose that one of the following equivalent condition holds:

• For each m0 ∈ N,

#{m ∈ N : O ∩ λ−1
m0

Vm0
(Z) = O ∩ λ−1

m Vm(Z)} < ∞; or

•
lim

m→∞

∑

ξmΓ⊂Om∩Vm(Z) µv(g
−1
ξm

Γgξm ∩ Hv\Hv(R))

µG(R)(Γ\G(R))
= ∞

where gξm ∈ G(R) is such that ξmgξm = λmv.

Then for any nice compact subset Ω in O,

(3.7) #Vm(Z) ∩ R+Ω ∼m→∞

∑

ξmΓ⊂Vm(Z)∩Om

vol(g−1
ξm

Γgξm ∩ Hv\Hv(R))

vol(Γ\G(R))
· vol(Ω).

Remark In fact Theorem 1.2 in [EO] is stated under the assumption that Hv(R)
is a proper maximal real algebraic subgroup of G(R). However in the proof, this
assumption was used only to ensure that Hv is not contained in any proper parabolic
subgroup of G and that Hv(R) has a finite index in the normalizer of Hv(R) in G(R).
These two conditions are clearly satisfied under the assumption of Theorem 3.6.

Proof of Theorem 1.9 By (2.5), the right hand side of (3.7) is equal to ωm(Om) ·
vol(λmΩ). Hence Theorem 3.6 yields that the hypothesis (B) is satisfied for (G, {(Vm :
O)}, H) under the assumptions of Theorem 1.9. Hence Theorem 1.9 follows from
Theorem 1.7.

Suppose that f : V = Cn → C and {Vm} are as in Theorem 1.11. There exists
a differential form η on Cn of degree n − 1 such that η ∧ f ∗(dx) = dx1 ∧ · · · ∧ dxn.
Then the restriction of η to Vm defines a gauge form, say µm, on Vm. Using this
construction, we have (cf. [BR, Lemmas 1.8.1-2]):

Lemma 3.8. Then for any nice compact subset Ω ⊂ V1(R),

µm,∞(m1/dΩ) = Jm(m1/dΩ);
∏

p

µm,p(Vm(Zp)) = Sm

for d = deg(f).
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Since the Tamagawa measure on Vm(A) is unique, Theorem 1.11 follows from the
above lemma and Theorem 1.9.

If H is simply connected, G(Af ) is known to act transitively on Vm(Af) (cf. [BR,
Proof of Theorem 3.2]). Hence Lemma 3.3 implies the following:

Lemma 3.9. Assume that G(R) acts transitively on V1(R). Suppose that the hypoth-
esis (A) holds and that H is simply connected. If κ(Om

A
) = 0, then

Vm(Z) ∩ Om
A
6= ∅.

In particular, if Vm(Q) 6= ∅, then Vm(Z) 6= ∅.

4. Examples

4.1. Determinant. Let Mn denote the space of n by n matrices (n ≥ 2), and set

Vm = {X ∈ Mn : det(X) = m}.
Then the group G = SLn × SLn acts on Mn by

X 7→ A−1XB for (A, B) ∈ G.

Clearly we have V1 = InG (here In denotes the n×n identity matrix), V1(R) = InG(R)
and Vm = m1/nV1 for each m ∈ N.

The stabilizer H of In in G is given by H = {(A, A) : A ∈ SLn}.
Note that both G and H are connected semisimple simply connected algebraic

groups whose group of real points have no compact factors. Moreover H(R) is a
maximal connected closed subgroup of G(R).

Since diag(m, In−1) ∈ Vm(Z), we have Vm(Z) 6= ∅ for each m ∈ N.

We now claim that for a fixed m0 ∈ N,

#{m ∈ N : m
−1/n
0 Vm0

(Z) = m−1/nVm(Z)} < ∞.

Suppose that m
−1/n
0 Vm0

(Z) = m−1/nVm(Z). Since diag(m, In−1) ∈ Vm(Z), we must

have m−1/n = m
−1/n
0 k for some positive integer k. Hence m = m0k

−n ≤ m0, yielding
that

#{m ∈ N : m
−1/n
0 Vm0

(Z) = m−1/nVm(Z)} ≤ m0 < ∞.

Therefore by Theorem 1.9, {Vm : m ∈ N} is strongly Hardy-Littlewood and by
Theorem 1.11, for any nice compact subset Ω ⊂ V1(R),

Nm(det, Ω) ∼m→∞ mn−1
SmJ1(Ω)

where Jm and Sm are defined as in the introduction for f = det.

This was shown by Linnik and Skubenko (see [Li1, Lemma V. 11.1], [LS] and [Sk,
Theorem 1]).
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On the other hand, ωm · vol(m1/nΩ) in Condition (B) can be computed explicitly
in this case, using Hecke operators ([Sa, (3.6)], also see [COU, (5.1)] and [GO, (1.5)]
for details):

ωm(Vm(R)) · vol(m1/nΩ) =
∏

i

(pki+1
i − 1) · · · (pki+n−1

i − 1)

(pi − 1) · · · (pn−1
i − 1)

J1(Ω)

when m =
∏

i p
ki
i is the prime factorization of m.

Since it follows from Proposition 3.4 and Lemma 3.8 that

mn−1J1(Ω)Sm = ωm(Vm(R)) · vol(m1/nΩ)

we deduce that

Sm = m−n+1
∏

i

(pki+1
i − 1) · · · (pki+n−1

i − 1)

(pi − 1) · · · (pn−1
i − 1)

.

Hence

lim sup
m∈N

Sm ≥ lim sup
∏

i

pn
i − 1

pi(pi − 1)
≥ lim sup

∏

i

(1 + p−1
i ) = ∞.

4.2. Pfaffian. Let V = {X ∈ M2n : X t = −X} (n ≥ 2) and for each m ∈ N, set

Vm := {X ∈ V : Pff(X) = m}
where Pff(X) denotes the Pfaffian of a skew symmetric matrix X so that Pff(X)2 =
det(X) and Pff(v0) = 1 where

v0 =

(

0 In

−In 0

)

.

Note that dimV = n(2n − 1) and Pff is an integral homogeneous polynomial of
degree n. Then the group G = SL2n acts on V by

X 7→ gtXg for g ∈ G.

It is easy to check that G acts transitively on V1, V1(R) = v0G(R) and Vm = m1/nV1

for each m ∈ N.
Now the stabilizer H of v0 is the symplectic group Sp2n, and hence it satisfies the

assumption for H in Theorem 1.9 and is simply connected. Since








m 0
0 In−1

−m 0
0 −In−1









∈ Vm(Z)
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Vm(Z) 6= ∅ for each m ∈ N. The finiteness condition (1.10) can be checked similarly
to the previous example. Therefore by Theorem 1.11, for any nice compact subset
Ω ⊂ V1(R), as m → ∞,

Nm(Pff, Ω) ∼ Jm(m1/nΩ) · Sm = m2n−2
SmJ1(Ω).

4.3. Determinant of symmetric matrices. Let V = {X ∈ Mn : X t = X} (n ≥ 2)
and

Vm := {X ∈ V : det(X) = −m} for each m ∈ N.

The group G = SLn acts on V by

X 7→ gtXg for g ∈ G.

Fix a positive odd integer k < n and set v0 = diag(−Ik, In−k) and O = v0G(R). The
stabilizer H of v0 is equal to SO(k, n − k). Provided n ≥ 3, the identity component
of H is a non-compact simple maximal connected closed group of SLn(R).

We also have π1(H) = Z/2Z, and hence #C(H) = 2. The same argument as in the
first example shows that the sequence {(Vm : O) : m ∈ N} satisfies the assumption
(1.10) and for all m ∈ N, Vm(Z)∩m1/nO 6= ∅ since it contains diag(−m,−Ik−1, In−k).

Therefore by Theorem 1.9, the sequence {(Vm : O) : m ∈ N} is Hardy-Littlewood,
but not strongly Hardy-Littlewood, with the density function taking exactly two
values 0 and 2.

4.4. Quadratic forms of signature (p, q). Let Q be an integral quadratic form in
n variables with signature (p, q) with p + q = n ≥ 4, p ≥ 2 and q ≥ 1. For each
m ∈ N, set

Vm = {X ∈ Cn : Q(X) = m}.
Let G = Spin(p, q). Then G acts on Cn via the projection G → SO(p, q) and the
standard action of SO(p, q) on Cn. Each Vm(R) is a symmetric homogeneous space
of G(R) and Vm =

√
mV1. The stabilizer H of a vector of V1 is isomorphic over R

to Spin(p− 1, q). Hence H is simply connected and H(R) is a non-compact maximal
closed subgroup of G(R).

Recall that an integer m is called a fundamental discriminant if and only if m is
either a square-free integer congruent to 1 mod 4 or 4 times of a square-free integer
which is 2 or 3 mod 4.

Note that any indefinite integral quadratic form in at least 4 variables represents any
fundamental discriminant over Q by Hasse-Minkowski theorem (cf. [Se, Theorem 8
in IV.3.2]) and [Se, Corollary in IV. 2.2], since an indefinite quadratic form represents
any real number over R. That is, for any fundamental discriminant m, Vm(Q) 6= ∅ and
hence by Lemma 3.9, we have Vm(Z) 6= ∅. Moreover it can be easily seen that the sets
m−1/2Vm(Q) are mutually disjoint among the fundamental discriminants m ∈ N (cf.
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[EO, Remark preceding Theorem 7.1]). Hence applying Theorem 1.11, as m → ∞
along fundamental discriminants,

Nm(Q, Ω) ∼ m(n−2)/2
SmJ1(Ω)

for any nice compact subset Ω ⊂ V1(R). It is known to experts that this can be
shown by the Hardy-Littlewood circle method for n ≥ 5 and by the Kloosterman sum
method for n = 4.

5. Remark on Siegel’s mass formula

Let Q and Vm be as in the last subsection 4.4.
Fix an integer m with Vm(Z) 6= ∅. Eskin, Rudnick and Sarnak [ERS] gave a new

proof of Siegel’s mass formula for the quadric Vm [Si]:

(5.1)
∑

ξmΓ⊂Vm(Z)

vol(Γ ∩ Hξm\Hξm(R))

vol(Γ\G(R))
=

∏

p

lim
k→∞

#Vm(Z/pkZ)

pk·dim(Vm)
,

or in our notation,

ωm(Vm(R)) = Sm.

In the following, we set ωm = ωm(Vm(R)) for simplicity.
They deduced this formula from two different ways of computing the limit

lim
T→∞

#Vm(Z) ∩ BT

vol(BT )

where BT is a ball of radius T with respect to the Euclidean norm, the right hand side
of (5.1) given by Hardy-Littlewood circle method for p + q ≥ 5 and Kloosterman’s
method of levelling for p + q = 4 [Es], and the left hand side given by the orbit
counting method of [DRS] (or [EM], [EMS]).

They also explained how to show the Tamagawa number τ(G) is 2 for any special
orthogonal group G.

We discuss a different way of deducing this fact. As we mentioned in the previous
section, Hardy-Littlewood method together with Kloosterman’s method (needed for
p + q = 4) yields that

(5.2) Nm(Q, Ω) ∼ SmJm(
√

mΩ)

with both sides tending to ∞ as m → ∞.
On the other hand, by [EO, Theorem 1.2] (see Theorem 3.6) and (2.5), we have

(5.3) Nm(Q, Ω) ∼ ωm · Jm(
√

mΩ)

as m → ∞ along fundamental discriminants (noting that Vm(Z) 6= ∅, by the discussion
in section 4.4).
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Hence from (5.2) and (5.3), we deduce that there exists an infinite subsequence mi

such that

(5.4) lim
mi→∞

ωmi

Smi

= 1.

On the other hand, Weil [We1] (see [ERS]) showed that

(5.5)
τ(SO(Q))

2
· ωm = Sm

for any m ∈ N with Vm(Z) 6= ∅.
Hence comparing (5.4) and (5.5), we deduce

τ(SO(Q)) = 2.

Now the argument in section 3 of [ERS] shows that this is sufficient to prove that the
Tamagawa measure of any special orthogonal group is equal to 2, or equivalently to
show the general mass formula by [We1].

References

[Bo1] A. Borel Introduction aux Groupes Arithmétiques, Publ. de. l’Inst. Math. del l’Univ. de Stras-
bourg XV, Hermann, Paris, 1969

[Bo2] A. Borel Values of indefinite quadratic forms at integral points and flows on spaces of lattices,
Bull. AMS, Vol 32, 1995, pp. 184–204.

[BH] A. Borel and Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. Math., Vol 75,
1962, pp. 485–535.

[BR] M. Borovoi and Z. Rudnick Hardy-Littlewood varieties and semisimple groups, Invent. Math.,
Vol 119, 1995, pp. 37–66.

[COU] L. Clozel, H. Oh and E. Ullmo Hecke operators and equidistribution of Hecke points, Invent.
Math., Vol 144, 2001, pp. 327–351.

[Da] H. Davenport Analytic methods for Diophantine Equations and Diophantine Inequalities, Ann
Arbor Publishers, Ann Arbor, Mich. 1962

[DRS] W. Duke, Z. Rudnick and P. Sarnak Density of integer points on affine homogeneous varieties,
Duke Math. J. Vol 71, 1993, 143-179

[EM] A. Eskin and C. McMullen Mixing, counting and equidistribution in Lie groups, Duke Math.
J. Vol 71, 1993, 181–209.

[EMS] A. Eskin, S. Mozes and N. Shah Unipotent flows and counting lattice points on homogeneous

varieties, Ann. Math, Vol 143, 1996, pp. 149–159.
[EO] A. Eskin and H. Oh Integer points on a family of homogeneous varieties and unipotent flows,

Preprint (2002, Feb)
[ERS] A. Eskin, Z. Rudnick and P. Sarnak A proof of Siegel’s weight formula, Int. Math. Res.

Notices, Vol 5, 1991, pp. 65–69
[Es] T. Estermann A new applications of the Hardy-Littlewood-Kloosterman method, Proc. London.

Math. Soc. Vol 12, 1962, pp. 425–444
[GO] W. T. Gan and H. Oh Equi-distribution of integer points on a family of homogeneous varieties:

a problem of Linnik, Compositio Math. Vol 136, 2003, pp. 323–352
[Li1] Y. V. Linnik Ergodic properties of algebraic fields, Ergebnisse der Mathematik und Grenzge-

biete, Band 45, Springer-Verlag New York, 1968



18 HEE OH

[Li2] Y. V. Linnik Additive problems and eigenvalues of the modular operators, Proc. Int. Cong.
Math. Stockholm, 1962, pp. 270–284.

[LS] Y. V. Linnik and B. F. Skubenko Asymptotic distribution of integral matrices of third order,
Vestnik Leningrad. Univ. Ser. Mat. Mekh. Astron., Vol. 19, 1964, pp. 25–36 (Russian)

[PR] V. Platonov and A. Rapinchuk Algebraic groups and Number theory, Academic Press, New
York, 1994

[Sa] P. Sarnak Diophantine problems and linear groups, Proc. Int. Cong. Math. 1990, Vol 1, pp.
459–471.

[Sc] W. M. Schmidt The density of integer points on homogeneous varieties, Acta. Math. 1985, Vol
154, pp. 243–296.

[Se] J. P. Serre A course in arithmetic, Springer 1973, GTM 7.
[Si] C. L. Siegel On the theory of indefinite quadratic forms, Ann. of Math. 1944, Vol 45, pp. 577-622.
[Sk] B. F. Skubenko The distribution of integer matrices and calculation of the volume of a funda-

mental domain of a unimodular group of matrices, Trudy Math. Inst. Steklov. 1965, Vol 80,
pp. 129-144 (Russian). English Translation: Algebraic number theory and representations, (D.
K. Faddeev ed.), Proc. Inst. Steklov of Math. No 80 (1965) Amer. Math. Soc. Providence, RI,
1968, pp. 147-163

[Va] R. C. Vaughan The Hardy-Littlewood method, 2nd ed. Cambridge Tracts in Math. 1997, Vol
125, Cambridge-New York
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