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Abstract. A homogeneous space G/H is said to have a compact Clifford-Klein form if there
exists a discrete subgroup Γ of G that acts properly on G/H such that the quotient space Γ\G/H
is compact. When n is even, we find every closed connected subgroup H of G = SO(2, n), such that
G/H has a compact Clifford-Klein form, but our classification is not quite complete when n is odd.
The work reveals new examples of homogeneous spaces of SO(2, n) that have compact Clifford-Klein
forms, if n is even. Furthermore, we show that if H is a closed, connected subgroup of G = SL(3, R),
and neither H nor G/H is compact, then G/H does not have a compact Clifford-Klein form, and
we also study non-compact Clifford-Klein forms of finite volume.

1. Introduction

Let G be a Zariski-connected semisimple linear Lie group.

1.1. Definition. Let H be a closed connected subgroup of G. We say that the homogeneous space
G/H has a compact Clifford-Klein form if there is a discrete subgroup Γ of G such that

• Γ acts properly on G/H; and
• Γ\G/H is compact.

A basic question in geometry is to determine which homogeneous spaces of G admit compact
Clifford-Klein forms. If H is compact, then G/H has a compact Clifford-Klein form by a result
of Borel [Bor]. When H is non-compact, the situation is far from being well understood. Some
examples of such homogeneous spaces admitting a compact Clifford-Klein forms have been con-
structed by Kulkarni [Kul], Goldman [Gol], and T. Kobayashi [Kb6]. Their constructions are quite
special as they concern specific groups. More generally one suspects that most non-Riemannian
homogeneous spaces do not admit a compact Clifford-Klein forms (see [Kb5] and [Lab] for a survey
on the general problem).

If R-rankG = 0, or equivalently if G is compact, it is obvious that there is no interesting example.
The same is true for the case of R-rankG = 1 even though it is not as obvious.

1.2. Proposition (see 2.7 and 2.3). If R-rankG = 1, then G/H does not have a compact Clifford-
Klein form, unless either H or G/H is compact.

So the first interesting case is when R-rankG = 2. For G = SL(3, R), there are again no
interesting examples unless H is compact. This was proved by Y. Benoist when H is reductive.
Generalizing the same method to other subgroups leads to the following:

1.3. Theorem (Benoist [Ben], Oh-Witte [OW2]). If G = SL(3, R), then G/H does not have a
compact Clifford-Klein form, unless either H or G/H is compact.

We now consider G = SO(2, n). We determine exactly which homogeneous spaces of SO(2, n)
have a compact Clifford-Klein form in the case where n is even (see 1.7), and we have almost com-
plete results in the case where n is odd (see 1.9). The work leads to new examples of homogeneous
spaces of SO(2, n), (n even), that have compact Clifford-Klein forms (see 1.5).

In the following we realize SO(2, n) as isometries of the indefinite form 〈v | v〉 = v1vn+2+v2vn+1+
∑n

i=3 v2
i on R

n+2 (for v = (v1, v2, . . . , vn+2) ∈ R
n+2).
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1.4. Notation. Let A be the subgroup consisting of the diagonal matrices in SO(2, n) whose
diagonal entries are all positive, and let N be the subgroup consisting of the upper-triangular
matrices in SO(2, n) with only 1’s on the diagonal. Thus the Lie algebra of AN is

a + n =



































t1 φ x η 0
t2 y 0 −η

0 −yT −xT

−t2 −φ
−t1













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1, t2, φ, η ∈ R, x, y ∈ R
n−2























.

Note that the first two rows of any element of a + n are sufficient to determine the entire matrix.

Before we describe our new examples of homogeneous spaces of SO(2, 2m) having compact
Clifford-Klein forms, let us first recall the construction of compact Clifford-Klein forms found
by Kulkarni [Kul, Thm. 6.1] (see also [Kb1, Prop. 4.9]). Consider the subgroup SU(1,m) as a
subgroup of SO(2, 2m) embedded in a standard way. Then SU(1,m) acts properly and transitively
on the homogeneous space SO(2, 2m)/SO(1, 2m). Therefore any co-compact lattice Γ in SO(1, 2m)
acts properly on SO(2, 2m)/SU(1,m), and the quotient Γ\SO(2, 2m)/SU(1,m) is compact. Now
let HSU = SU(1,m) ∩ (AN). Since HSU is a connected co-compact subgroup of SU(1,m), it is
not difficult to see that Γ\SO(2, 2m)/HSU is a compact Clifford-Klein form as well. (Similarly,
Kulkarni also constructed compact Clifford-Klein forms Λ\SO(2, 2m)/SO(1, 2m), by letting Λ be
a co-compact lattice in SU(1,m).)

The following theorem demonstrates how to construct new examples of compact Clifford-Klein
forms Γ\SO(2, 2m)/HB . The subgroup HB of SO(2, 2m) is obtained by deforming HSU, but HB

is almost never contained in any conjugate of SU(1,m).

1.5. Theorem (cf. Thm. 4.1). Let G = SO(2, 2m) with m ≥ 2. Let B : R
2m−2 → R

2m−2 be a linear
transformation. Set

(1.6) hB =











t 0 x η 0
t B(x) 0 −η

. . .





∣

∣

∣

∣

∣

∣

x ∈ R
2m−2, t, η ∈ R







and let HB be the corresponding closed, connected subgroup of G. Suppose that B has no real
eigenvalue. Then for any co-compact lattice Γ in SO(1, 2m), the quotient Γ\SO(2, 2m)/HB is a
compact Clifford-Klein form.

Furthermore HB is conjugate via O(2, 2m) to a subgroup of SU(1,m) if and only if for some
a, b ∈ R (with b 6= 0), the matrix of B with respect to some orthonormal basis of R

2m−2 is a block

diagonal matrix each of whose blocks is

(

a b
−b a

)

.

In fact one can obtain uncountably many pairwise non-conjugate subgroups of the form HB

by varying B (cf.[OW2]) We also obtain similar new examples of compact Clifford Klein forms of
homogeneous spaces of SU(2, 2m) and SO(4, 4m) (see section 4).

We recall that extending work of Goldman [Gol], Kobayashi [Kb6, Thm. B] showed that a co-
compact lattice in SU(1,m) can be deformed to a discrete subgroup Λ such that Λ acts properly
on SO(2, 2m)/SO(1, 2m) and the quotient space Λ\SO(2, 2m)/SO(1, 2m) is compact, but Λ is not
contained in any conjugate of SU(1,m). Note that Kobayashi created new compact Clifford-Klein
forms by deforming the discrete group while keeping the homogeneous space SO(2, 2m)/SO(1, 2m)
fixed. In contrast, we deform the homogeneous space SO(2, 2m)/HSU to another homogeneous
space SO(2, 2m)/HB while keeping the discrete group Γ in SO(1, 2m) fixed.

For even n, we show that the Kulkarni examples and our deformations are essentially the only
interesting homogeneous spaces of SO(2, n) that have compact Clifford-Klein forms when H is
non-compact. We assume that H ⊂ AN as the general case reduces to this (see 3.5).

1.7. Theorem (cf. Thm. 5.1). Let G = SO(2, 2m) with m ≥ 2 and H a connected closed subgroup
of AN such that neither H nor G/H is compact. The homogeneous space G/H has a compact
Clifford-Klein form if and only if either

1) H is conjugate to a co-compact subgroup of SO(1, 2m); or
2) H is conjugate to HB for some B as described in Theorem 1.5.
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It is conjectured [Kb6, 1.4] that if H is reductive and G/H has a compact Clifford-Klein form,
then there exists a reductive subgroup L of G such that L acts properly on G/H and the double-coset
space L\G/H is compact. Because there is no such subgroup L in the case where G = SO(2, 2m+1)
and H = SU(1,m), the following is a special case of the general conjecture.

1.8. Conjecture. For m ≥ 1, the homogeneous space SO(2, 2m + 1)/SU(1,m) does not have a
compact Clifford-Klein form.

If this conjecture is true, then there is no interesting example of a homogeneous space of
SO(2, 2m + 1) admitting a compact Clifford-Klein form unless H is compact.

1.9. Theorem (cf. Thm. 5.1). Let G = SO(2, 2m + 1) with m ≥ 1. Assume that G/SU(1,m) does
not have a compact Clifford-Klein form. If H is a connected closed subgroup of G such that neither
H nor G/H is compact, then G/H does not have a compact Clifford-Klein form.

Here is a summary of the paper. In section 2, we define the notion of “Cartan-decomposition
subgroup” and note that if H is such, then no non-compact subgroup of G acts properly on G/H.
We also discuss some of the main results of [OW1] which list all the subgroups of SO(2, n) and
SL(3, R) that are not Cartan-decomposition subgroups, and hence all the homogeneous spaces
admitting a proper action by a non-compact subgroup. Our proofs of Theorems 1.7 and 1.9 then
reduce to determining whether each of these homogeneous spaces has a compact Clifford-Klein
form. In section 3, we state some results of Kobayashi (Theorem 3.1(1)) and of Margulis (Theorem
3.2) which imply that certain of these homogeneous spaces do not have compact Clifford-Klein
forms. Theorem 3.1(3) provides a method to determine whether a double-coset space Γ\G/H is
compact or not. In section 4, we describe our new examples of compact Clifford-Klein forms of
SO(2, 2m), SU(2, 2m) and SO(4, 4m), and sketch the proof of Theorem 1.6. In section 5, we outline
the proof of our classification results (Theorems 1.7 and 1.9). Finally in section 6, we state similar
results for finite volume-Clifford-Klein forms of SO(2, n).

1.10. Acknowledgment. This research was partially supported by the NSF (DMS-9623256 and DMS-
9801136) and the German-Israeli Foundation for Research and Development. We would like to
thank the University of Bielefeld; this announcement was written during a very pleasant visit
there.

2. Cartan-decomposition subgroups

Let G be a Zariski-connected semisimple linear Lie group as in the introduction. We fix an
Iwasawa decomposition G = KAN and a corresponding Cartan decomposition G = KA+K, where
A+ is the (closed) positive Weyl chamber of A in which the roots occurring in the Lie algebra of N
are positive. Thus K is a maximal compact subgroup, A is the identity component of a maximal
split torus and N is a maximal unipotent subgroup.

The terminology introduced in the following definition is new, but the underlying concept is well
known.

2.1. Definition. A connected closed subgroup H of G is said to be a Cartan-decomposition subgroup
of G if G = CHC for some compact subset C of G.

Note that C is only assumed to be a subset of G; it need not be a subgroup. Some examples
of Cartan-decomposition subgroups are the maximal split torus A (due to the Cartan decom-
position G = KAK) and the maximal unipotent subgroup N (by a result of Kostant assert-
ing that G = KNK [Kos, Thm. 5.1]). If G is compact, then all subgroups of G are Cartan-
decomposition subgroups. On the other hand, if G is non-compact then not all subgroups are
Cartan-decomposition subgroups, because it is obvious that every Cartan-decomposition subgroup
of G must be non-compact. It is a somewhat less obvious fact that if H is a Cartan-decomposition
subgroup of G, then dim H ≥ R-rankG.

Our interest in Cartan-decomposition subgroups is largely motivated by the following basic ob-
servation that, to construct nicely behaved actions on homogeneous spaces, one must find subgroups
that are not Cartan-decomposition subgroups. (See [Kb5, §3] for some historical background on
this result.)
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2.2. Proposition (Calabi-Markus phenomenon, cf. [Kul, pf. of Thm. A.1.2]). If H is a Cartan-
decomposition subgroup of G, then no closed non-compact subgroup of G acts properly on G/H.

Proof. Suppose that G = CHC for some compact subset C. We may assume C = C−1 without loss
of generality. If L acts properly on G/H, then the set {g ∈ L|gCH ∩ CH 6= ∅} must be compact
by the definition of proper action. But this set is L itself since L ⊂ G = CHC. Therefore L must
be compact. �

2.3. Corollary. If H is a Cartan-decomposition subgroup of G, then G/H does not have a compact
Clifford-Klein form, unless either H or G/H is compact.

This leads to the following outline for our proof of Theorems 1.7 and 1.9:

1) Find all closed, connected subgroups H that are not Cartan-decomposition subgroups.
2) For each such H, determine whether there is a discrete subgroup Γ of G such that Γ\G/H

is a compact Clifford-Klein form.

To classify the Cartan-decomposition subgroups of G, our main tool is the Cartan projection.

2.4. Definition (Cartan projection). For each element g of G, the Cartan decomposition G =
KA+K implies that there is a unique element a of A+ with g ∈ KaK. So there is a well-defined
function µ : G → A+ given by g ∈ K µ(g)K.

It is easy to see that the function µ is continuous and proper. We now recall a fundamental result
of Benoist and Kobayashi that enables one to use the Cartan projection to determine whether an
action is proper or not.

2.5. Theorem (Benoist [Ben, Prop. 1.5], Kobayashi [Kb4, Cor. 3.5]). Let H1 and H2 be closed
subgroups of G. The subgroup H1 acts properly on G/H2 if and only if

(

µ(H1)C
)

∩ µ(H2) is
compact for any compact subset C of A.

As an immediate corollary we obtain:

2.6. Corollary (Benoist [Ben, Prop. 5.1], Kobayashi [Kb4, Thm. 1.1]). A closed connected sub-
group H of G is a Cartan-decomposition subgroup if and only if A+ ⊂ µ(H)C for some compact
subset C of A, or equivalently µ(H) comes within a bounded distance of every point in A+.

We noted above that every subgroup is a Cartan-decomposition subgroup if R-rankG = 0. The
following simple proposition shows that the characterization is again very easy if R-rankG = 1.

2.7. Proposition (cf. [Kb3, Lem. 3.2]). Let R-rankG = 1. A closed connected subgroup H of G is
a Cartan-decomposition subgroup if and only if H is non-compact.

Proof. (⇐) We have µ(e) = e and because µ is a proper map, we have µ(h) → ∞ as h → ∞ in H.
Because R-rankG = 1, we know that A+ is homeomorphic to the half-line [0,∞) (with the point e
in A+ corresponding to the endpoint 0 of the half-line). Hence, by continuity, it must be the case
that µ(H) = A+. Therefore KHK = G, so H is a Cartan-decomposition subgroup. �

It seems to be much more difficult to characterize the Cartan-decomposition subgroups when
R-rankG = 2, so these are the first interesting cases. In [OW1], using Corollary 2.6, we study two
examples in detail. When G = SL(3, R) or SO(2, n), we give an approximate calculation of the
image of each subgroup of G under the Cartan projection. This yields an explicit description of all
the Cartan-decomposition subgroups of G.

Obviously any connected closed subgroup that contains a Cartan-decomposition subgroup is
itself a Cartan-decomposition subgroup. Therefore the minimal Cartan-decomposition subgroups
are the most interesting ones. As a simple example of our results, we state the following theorem.

2.8. Theorem. Let G = SL(3, R). Up to conjugation by automorphisms of G, the only minimal
Cartan-decomposition subgroups of G are:

A,











1 r s
0 1 r
0 0 1





∣

∣

∣

∣

∣

∣

r, s ∈ R







,











et tet s
0 et r
0 0 e−2t





∣

∣

∣

∣

∣

∣

r, s, t ∈ R







,
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and subgroups of the form










ept r 0
0 eqt 0

0 0 e−(p+q)t





∣

∣

∣

∣

∣

∣

r, t ∈ R







,

where p and q are fixed real numbers with max{p, q} = 1 and min{p, q} ≥ −1/2, or of the form










et cos pt et sin pt s
−et sin pt et cos pt r

0 0 e−2t





∣

∣

∣

∣

∣

∣

r, s, t ∈ R







,

where p is a fixed nonzero real number.

Note that AN contains uncountably many non-conjugate minimal Cartan-decomposition sub-
groups of G since the minimum of the two parameters p and q in the above theorem can be
varied continuously. However, up to conjugacy under AutG, there is only one minimal Cartan-
decomposition subgroup contained in A (namely, A itself) and only one contained in N .

Theorem 2.9 is a sample of our results on Cartan-decomposition subgroups of SO(2, n).

2.9. Theorem. Let G = SO(2, 5). Then there are exactly 6 non-conjugate minimal Cartan-
decomposition subgroups of G contained in N . The Lie algebra of each such subgroup is conjugate
to one of the following:

1)











0 φ 0 0 0 η 0
0 ǫ1φ 0 0 0 −η

· · ·





∣

∣

∣

∣

∣

∣

φ, η ∈ R







where ǫ1 ∈ {0, 1}

2)











0 φ x 0 0 0 0
0 0 ǫ2φ 0 0 0

· · ·





∣

∣

∣

∣

∣

∣

φ, x ∈ R







where ǫ2 ∈ {0, 1}

3)











0 0 x 0 ǫ3y 0 0
0 0 y 0 0 0

· · ·





∣

∣

∣

∣

∣

∣

x, y ∈ R







where ǫ3 ∈ {0, 1}.

In [OW1], we describe all the Cartan-decomposition subgroups of SO(2, n).

3. General results on compact Clifford-Klein forms

In this section we state some general results on compact Clifford-Klein forms. Recall that G is
a Zariski-connected semisimple linear Lie group.

For a connected Lie group H, we use the notation d(H) = dim H − dimKH , where KH is a
maximal compact subgroup of H (cf. [Kb1, (2.5), §5]). Since all the maximal compact subgroups
of H are conjugate [Hoc, Thm. XV.3.1, p. 180–181], this is well defined. Note that if H ⊂ AN then
d(H) = dimH because AN has no non-trivial compact subgroups.

The following theorem is a very useful generalization of Corollary 2.3.

3.1. Theorem (Kobayashi, cf. [Kb1, Cor. 5.5] and [Kb2, Thm. 1.5]). Let H be a closed connected
subgroup of G. Assume that there exists a closed connected subgroup L such that L ⊂ CHC for
some compact subset C of G.

1) If d(L) > d(H), then G/H does not have a compact Clifford-Klein form.
2) If d(L) = d(H) and G/H has a compact Clifford-Klein form, then G/L also has a compact

Clifford-Klein form.
3) If there is a closed subgroup L′ of G such that L′ acts properly on G/H, d(H)+d(L′) = d(G)

and there is a co-compact lattice Γ in L′, then the quotient Γ\G/H is compact.

Kobayashi assumed that H is reductive, but the same proof works with only minor changes. Let
us give an elementary proof of 3.1(1) under the simplifying assumption that H ⊂ L. Let Γ be a
discrete group that acts properly on G/H. Because L ⊂ CHC, we know that Γ also acts properly
on G/L, so Γ\ΓL/H is closed in Γ\G/H. By replacing Γ with a finite-index subgroup, we may
assume that Γ ∩ L = e. Then Γ\ΓL/H is homeomorphic to L/H, which is non-compact (because
d(L) > d(H)). Thus Γ\G/H has a closed non-compact subset and hence Γ\G/H is not compact.

Recall the following notion introduced by Margulis (cf. [Mar, Defn. 2.2]): A closed subgroup H
of G is said to be (G,K)-tempered if there exists a function q ∈ L1(H) such that for every non-trivial
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irreducible unitary representation π of G with a K-fixed unit vector v, we have |〈π(h)v, v〉| ≤ q(h)
for all h ∈ H.

3.2. Theorem (Margulis [Mar, Thm. 3.1]). If H is a closed non-compact (G,K)-tempered subgroup
of G, then G/H does not have a compact Clifford-Klein form.

We refer to [Oh] for a method to determine when H is (G,K)-tempered as well as for examples
of (G,K)-tempered subgroups.

Using Theorems 3.1 and 3.2, we prove the following:

3.3. Proposition. Let G be a connected simple linear Lie group. If H is a closed connected non-
compact one-parameter subgroup of G, then G/H does not have a compact Clifford-Klein form.

Sketch of proof. By Proposition 1.2, we may assume that R-rankG is at least 2. If H is unipotent,
there exists a connected closed subgroup L locally isomorphic to SL(2, R) which contains H. Then
H is a Cartan-decomposition subgroup of L by Proposition 2.7 and d(L) = 2 > 1 = d(H). So
Theorem 3.1(1) applies. If H is diagonalizable, then H is (G,K)-tempered subgroup (cf. [Mar]).
Hence Theorem 3.2 applies. The remaining case is when H = {atut|t ∈ R} where at is semisimple
and ut is unipotent such that at commutes with ut. It can be seen that H is a (G,K)-tempered
subgroup in this case as well. �

3.4. Remark. Benoist and Labourie [BL] proved that if H is unimodular and the center of H
contains a non-trivial connected subgroup of A, then G/H does not have a compact Clifford-Klein
form. This provides an alternate proof of Proposition 3.3 in the special case when H is conjugate
to a subgroup of A.

We use the following well-known lemma to reduce the study of compact Clifford-Klein forms of
G/H to the case where H ⊂ AN . We remark that the proof is constructive.

3.5. Lemma. Let H be a closed connected subgroup of G. Then there is a closed connected sub-
group H ′ of G such that

1) H ′ is conjugate to a subgroup of AN ;
2) dim H ′ = d(H) ; and
3) CH = CH ′ for some compact connected subgroup C of G.

Moreover G/H has a compact Clifford-Klein form if and only if G/H ′ has a compact Clifford-Klein
form.

Sketch of proof. Replace H by a conjugate so that H ∩ AN is co-compact in H where H is the
Zariski closure of H, and choose a maximal connected compact subgroup C of H. Then write
C = C1C2, where C1 is a maximal compact subgroup of H and C2 is contained in the Zariski
closure of Rad H. Finally, let H ′ = (HC2) ∩ (AN). �

4. New examples of compact Clifford-Klein forms

The first half of this section is devoted to a proof of the following theorem, and in the other
half, we describe analogous examples of homogeneous spaces SU(2, 2m) and SO(4, 4m) admitting
compact Clifford-Klein forms.

4.1. Theorem. Let G = SO(2, 2m) with m ≥ 2 and HB be as in Theorem 1.5. Suppose that B has
no real eigen-value. Then Γ\SO(2, 2m)/HB is a compact Clifford-Klein for any co-compact lattice
Γ in SO(1, 2m).

To establish the above theorem, we will first show that SO(1, 2m) and hence Γ acts properly on
SO(2, 2m)/HB . By Theorem 2.5, it suffices to show that µ(SO(1, 2m)) and µ(HB) diverge from
each other.

To calculate the approximate image of any subgroup of SO(2, 2m) under the Cartan projection,
we use a method of Benoist [Ben] that approximates µ(h) by using the norms of the image of h
under the (two) fundamental representations of SO(2, 2m). Consider the representation

ρ : SO(2, 2m) → SL
(

R
2m+2 ∧ R

2m+2
)

given by ρ(g) = g ∧ g.

Then the two representations g 7→ g and g 7→ ρ(g) form a set of fundamental representations of G.
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4.2. Notation. For subsets X,Y ⊂ A+, we write X ≈ Y if there is a compact subset C of A with
X ⊂ Y C and Y ⊂ XC.

4.3. Notation. For a subgroup H of G and for i, j ∈ {1, 2}, we write µ(H) ≈
[

‖h‖i, ‖h‖j
]

if, for
every sufficiently large C > 1, we have

µ(H) ≈
{

a ∈ A+
∣

∣ C−1‖a‖i ≤ ‖ρ(a)‖ ≤ C‖a‖j
}

,

where ‖h‖ denotes the norm of the linear transformation h.

If we denote the two walls of A+ by W1 and W2, then ‖h‖i = ‖ρ(h)‖ for h ∈ Wi (possibly
after interchanging W1 and W2). Because SO(1, 2m) and SU(1,m) are reductive, their Cartan
projections are easy to calculate; we have µ(SO(1, 2m)) = W1 and µ(SU(1,m)) = W2. In the
following proposition, we show that µ(HB) stays within a bounded distance of W2 as long as B has
no real eigen-value.

4.4. Proposition. If B has no real eigen-value, then µ(HB) ≈ [‖h‖2, ‖h‖2] ≈ µ(SU(1,m)) (hence
SO(1, 2m) acts properly on G/HB).

Proof. Given h ∈ HB, write h = au with a ∈ A ∩HB and u ∈ N ∩HB. There is some t ∈ R
+ with

a = diag(t, t, 1, 1, . . . , 1, 1, t−1, t−1).

In the following we use the notation f1 ≍ f2 if f1 = O(f2) and f2 = O(f1). Because h ≍ h−1 and
ρ(h−1) ≍ ρ(h), we may assume that t ≥ 1.

There is some Z ∈ hB ∩ n with u = exp Z. From (1.6), we know that there exist x ∈ R
2m−2 and

η ∈ R with

Z =





0 0 x η 0
0 B(x) 0 −η

. . .



 .

Calculating exp Z, we obtain

u =













1 0 x η − 1
2(x · Bx) −1

2‖x‖2

1 Bx −1
2‖Bx‖2 −η − 1

2(x · Bx)
Id −(Bx)T −xT

1 0
1













.

Then it is clear that ‖h‖ = ‖au‖ ≍ max{t, t|η|, t‖x‖2}. To calculate ‖ρ(h) = h∧ h‖ approximately,
we use the norm ‖ρ(h)‖ that is the maximum absolute value among the determinants of all the
2 × 2 submatrices of h.

We have det

(

h1,1 h1,2

h2,1 h2,2

)

= t2 and

4

∣

∣

∣

∣

det

(

h1,2m+1 h1,2m+2

h2,2m+1 h2,2m+2

)∣

∣

∣

∣

= 4t2
∣

∣

∣

∣

det

(

u1,2m+1 u1,2m+2

u2,2m+1 u2,2m+2

)∣

∣

∣

∣

= t2
(

4η2 +
(

‖x‖2 ‖Bx‖2 − (x · Bx)2
)

)

.

Since B has no real eigen-value, x and Bx are linearly independent for all non-trivial x ∈ R
2m−2.

Hence we have

‖x‖2 ‖Bx‖2 − (x · Bx)2 ≍ ‖x‖2 ‖Bx‖2 ≍ ‖x‖4.

Therefore ‖ρ(h)‖ ≍ max(t2, t2η2, t2‖x‖4) ≍ ‖h‖2, that is, µ(HB) ≈ [‖h‖2, ‖h‖2]. It now follows
from Theorem 2.5 that SO(1, 2m) acts properly on G/HB . �

Now note that d
(

SO(2, 2m)
)

= 4m, d
(

SO(1, 2m)
)

= 2m and d(HB) = dim(HB) = 2m; hence

d
(

SO(2, 2m)
)

= d
(

SO(1, 2m)
)

+d(HB). Therefore the quotient space Γ\SO(2, 2m)/HB is compact
for any co-compact lattice Γ in SO(1, 2m), by Theorem 3.1(3). This finish the proof of Theorem
4.1.
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4.5. Remark. The subgroups HB of Theorem 1.5 are not all isomorphic (unless m = 2). For
example, let m = 3 and let

B =









0 1 0 1
−1 0 1 0
0 1 0 0
1 0 0 0









.

The characteristic polynomial of B is det(λ − B) = λ4 − λ2 + 1, which has no real zeros, so B
has no real eigenvalues. Let v = (0, 0, 0, 1). We have BTv = Bv, so, for every x ∈ R

4, we have
x ·Bv− v ·Bx = 0. Thus if h is any element of hB ∩n with xh = v, then h is in the center of hB ∩n.
Therefore the center of hB ∩ n contains 〈h, uα+2β〉, so the dimension of the center is at least 2. (In
fact, the center is 3-dimensional.) Because the center of hSU ∩n is uα+2β , which is one-dimensional,
we conclude that hB is not isomorphic to hSU.

We now describe how to construct examples analogous to those of the above theorem for
SU(2, 2m) and SO(4, 4m). Let us recall that Γ1\SU(2, 2m)/Sp(1,m) and Γ2\SO(4, 4m)/Sp(1,m)
are compact Clifford-Klein forms where Γ1 and Γ2 are co-compact lattices of SU(1, 2m) and

SO(3, 4m) respectively (see [Kb5]). We shall define a subgroup ĤB of SU(2, 2m) for every lin-
ear transformation B : R

2m−2 → R
2m−2, which can be considered as a deformation of a co-compact

subgroup of Sp(1,m). More precisely, let us realize SU(2, 2m) as isometries of the following form

〈v | v〉 = v1v̄2m+2 + v2v̄2m+1 +
∑2m

i=3 |vi|2 on C
2m+2 (for v = (v1, v2, . . . , v2m+2) ∈ C

2m+2). Thus
the Lie algebra of AN is



































t1 φ x η ui
t2 y wi −η̄

0 −ȳT −x̄T

−t2 −φ̄
−t1













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t1, t2, u, w ∈ R, φ, η ∈ C, x, y ∈ C
2m−2























.

For any linear transformation B ∈ Mat(2m−2, R) ⊂ Mat(2m−2, C), set ĤB to be the connected
closed subgroup of G whose Lie algebra is



































t 0 x η wi
t Bx̄ wi −η̄

0 −(Bx̄)T −x̄T

−t 0
−t













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t, w ∈ R, η ∈ C, x ∈ C
2m−2























.

Note that if B0 is the block diagonal matrix each of whose blocks is

(

0 1
−1 0

)

, then ĤB0
is a

co-compact subgroup of Sp(1,m), more precisely Sp(1,m) ∩ AN .

4.6. Theorem. Suppose that B ∈ SO(2m − 2) and that B has no real eigenvalue. Then

1) Γ\SU(2, 2m)/ĤB is a compact Clifford-Klein for any co-compact lattice Γ in SU(1, 2m).

2) Γ\SO(4, 4m)/ĤB is a compact Clifford-Klein for any co-compact lattice Γ in SO(3, 4m)

(since SU(2, 2m) ⊂ SO(4, 4m), we may consider ĤB ⊂ SO(4, 4m)).

The proof of the above theorem is similar to that of Theorem 4.1.

5. Non-existence results on compact Clifford-Klein forms of SO(2, n)/H

The “if” direction of Theorem 1.7 is obtained by Theorem 4.1 and Kulkarni’s construction [Kul,
Thm. 6.1] of compact Clifford-Klein forms of SO(2, 2m)/SO(1, 2m) . In this section we outline
the proof of the following theorem which contains Theorem 1.9 and the “only if” direction of
Theorem 1.7.

5.1. Theorem. Let G = SO(2, n) with n ≥ 3. Let H be a closed connected subgroup of AN such
that neither H nor G/H is compact. Suppose that G/H has a compact Clifford-Klein form.

1) If n is even, then H is conjugate either to SO(1, n) ∩ AN or to HB (see Theorem 1.5 for
notation).
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2) If n is odd, then dim H = n − 1 and SU(1, (n − 1)/2) ⊂ CHC for some compact subset C
of G.

Let L5 ⊂ SL5(R) be the image of SL2(R) under an irreducible 5-dimensional representation of
SL2(R). More concretely, we may take the Lie algebra of L5 to be the image of the homomorphism
π : sl(2, R) → so(2, 3) given by

π

(

t u
v −t

)

=



































4t 2u 0 0 0

2v 2t
√

6u 0 0

0
√

6v 0 −
√

6u 0

0 0 −
√

6v −2t −2u
0 0 0 −2v −4t













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t, u, v ∈ R























.

Via the embedding R
5 →֒ R

n+2 given by

(x1, x2, x3, x4, x5) 7→ (x1, x2, x3, 0, 0, . . . , 0, 0, x4, x5),

we may realize SO(2, 3) as a subgroup of SO(2, n), so we may view L5 as a subgroup of SO(2, n)
for any n ≥ 3.

In view of Theorem 3.1(1), Proposition 3.3 and Lemma 3.5, the following theorem reduces the
proof of Theorem 5.1 to the case when H is conjugate to a co-compact subgroup of SO(1, n) or L5.

5.2. Theorem. Let G = SO(2, n) with n ≥ 3. Let H be a closed connected subgroup of AN such
that neither H nor G/H is compact. Suppose that dimH ≥ 2 and that there is no non-trivial
connected subgroup L of AN such that dimL > dimH and L ⊂ CHC for some compact subset C
of G. Then one of the following holds:

1) H is conjugate to SO(1, n) ∩ AN ;
2) H is conjugate to L5 ∩ AN ;
3) n is even and H is conjugate to HB;
4) n is odd, dimH = n − 1 and SU

(

1, (n − 1)/2
)

⊂ CHC for some compact subset C of G.

Sketch of proof. For each closed connected subgroup H of SO(2, n), [OW1] gives explicit functions
f1 and f2, such that µ(H) ≈

[

f1(‖h‖), f2(‖h‖)
]

. This provides the means to check whether there is a
compact set C such that L ⊂ CHC for a given subgroup L. For example, we have µ(SU(1, ⌊n/2⌋)) ≈
[

‖h‖2, ‖h‖2
]

. Thus, if µ(H) is of the form µ(H) ≈
[

·, ‖h‖2
]

, then there is a compact subset C of G
such that SU(1, ⌊n/2⌋) ⊂ CHC.

The result is obtained by inspection of the list of subgroups that are not Cartan-decomposition
subgroups, and comparing their Cartan projections (see [OW2] for details). �

While the homogeneous space SO(2, n)/SO(1, n) for even n does have a compact Clifford-Klein
form, the following result of Kulkarni says that the situation is different for odd n.

5.3. Proposition (Kulkarni [Kul, Cor. 2.10]). The homogeneous space SO(2, 2m+1)/SO(1, 2m+1)
does not have a compact Clifford-Klein form.

To finish the proof of Theorem 5.1, we now only need to exclude the case when H is conjugate
to L5 ∩ AN .

5.4. Proposition (Oh [Oh, Ex. 5.6]). The subgroup L5 is a (G,K)-tempered subgroup for G =
SO(2, 3).

It easily follows that L5 is a (G,K)-tempered subgroup of G = SO(2, n) for any n ≥ 3. Hence by
combining this proposition with Theorem 3.2, we obtain the following corollary, which concludes
the proof of Theorem 5.1.

5.5. Corollary. Let G = SO(2, n) with n ≥ 3. Then G/L5 does not have a compact Clifford-Klein
form.

6. Finite-volume Clifford-Klein forms

Let H be a closed connected subgroup of G such that G/H has a G-invariant regular Borel
measure. (Because G is unimodular, this means that H is unimodular [Rag, Lem. 1.4, p. 18].)
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6.1. Definition (cf. [Kb1, Def. 2.2]). We say that G/H has a finite-volume Clifford-Klein form if
there is a discrete subgroup Γ of G such that

• Γ acts properly on G/H; and
• there is a Borel subset F of G/H such that F has finite measure and ΓF = G/H.

Unfortunately, the study of finite-volume Clifford-Klein forms does not usually reduce to the
case where H ⊂ AN , because the subgroup H ′ of Proposition 3.5 is usually not unimodular.

6.2. Theorem. [OW2] Let G = SO(2, n) with n ≥ 3. Let H be a closed connected subgroup of G.
If G/H has a finite-volume Clifford-Klein form, then one of the following holds:

1) H has a co-compact normal subgroup of G that is conjugate under O(2, n) to the identity
component of SO(1, n), SU(1, ⌊n/2⌋) or L5 (see section 5 for notation);

2) d(H) ≤ 1;
3) H = G.

It seems natural to conjecture that SO(2, 2m + 1)/SU(1,m) and SO(2, n)/L5 do not have finite-
volume Clifford-Klein forms, and that G/H does not have a finite-volume Clifford-Klein form when
d(H) = 1, either.
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