
ON A PROBLEM CONCERNING ARITHMETICITY OF
DISCRETE GROUPS ACTING ON H× · · · ×H

HEE OH

Abstract. We discuss an open problem on the discreteness of subgroups of (SL2(R))n

(n ≥ 2) generated by n linearly independent upper triangular matrices and n lin-
early independent lower triangular matrices. According to a conjecture by Margulis,
only Hilbert modular groups can arise this way. The purpose of this note is to ex-
plain how this open problem is related to another conjecture on the orbit behavior
of diagonal subgroups in the homogeneous space SLn(Z)\SLn(R).

1. Introduction

Let G := (SL2(R))n be the product of n copies of SL2(R). A discrete subgroup Γ
of G is said to be a lattice if Γ\G is a finite volume space. A lattice in G is called non-
uniform if Γ\G is not compact, and irreducible if for any proper connected normal
subgroup N of G, Γ ∩N is not discrete.

An example of a non-uniform irreducible lattice in G is a Hilbert modular group
acting onHn, H the hyperbolic plane. If k is a totally real number field of degree n over
the rationals Q, and A(i), i = 1, · · · , n denotes the n conjugates of A ∈ SL2(k) under
the different embeddings of k into Q̄ over Q, then the subgroup {(A(1), · · · , A(n)) ∈
G : A ∈ SL2(Ok)}, Ok the ring of integers of k, is called the Hilbert modular group
related to the field k. We denote this group by SL2(Ok).

Selberg proved in the late sixties [Se]:

Theorem 1.1. If n ≥ 2 and Γ is a non-uniform irreducible lattice in G, then Γ is
a Hilbert modular group up to conjugation in GL2(R)n and up to commensurability,
that is, there exist a totally real number field k and an element g ∈ (GL2(R))n such
that gΓg−1 ∩ SL2(Ok) has finite index both in gΓg−1 and SL2(Ok).

This was the first instance where the arithmeticity of irreducible lattices in higher
rank (meaning that the real rank is at least 2) semisimple real algebraic groups,
which was conjectured by Selberg for non-uniform lattices and by Piateski Shapiro
for uniform lattices, was settled (cf. [Ti]). Both conjectures were completely settled
by Margulis in the mid seventies by his celebrated super-rigidity theorem [Ma2].

A main characteristic of a non-uniform lattice used in the proof of the above the-
orem given by Selberg [Se] was that Γ contains a non-trivial unipotent element and
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moreover, up to conjugation, Γ intersects U1 and U2 as lattices where U1, U2 denote
the (strictly) upper and lower triangular subgroup of G respectively, or equivalently
Γ ∩ Ui contains n linearly independent vectors over R, with Ui considered as Rn in a
natural way.

The following conjecture was made by Margulis in 1993:

Conjecture 1.2. Let n ≥ 2 and Γ be a discrete subgroup of G such that for each
i = 1, 2, Γ ∩ Ui is a lattice in Ui and for any proper connected normal subgroup N of
G, Γ∩Ui∩N is not discrete. Then Γ is commensurable with a Hilbert modular group
up to conjugation in (GL2(R))n.

Note that the above conjecture describes a sufficient (also necessary by the preced-
ing discussion) condition for a discrete subgroup Γ of G to be an arithmetic subgroup
in G with Γ\G non-compact.

One can also view the above as a statement about discreteness criterion on the
subgroups generated by some unipotent elements in G.

For simplicity, we write 1n = (1, · · · , 1) ∈ Rn and 0n = (0, · · · , 0) ∈ Rn. We
sometimes write(

(a1 · · · , an) (b1, · · · , bn)
(c1, · · · , cn) (d1, · · · , dn)

)
instead

((
a1 b1

c1 d1

)
, · · · ,

(
an bn

cn dn

))
,

(v1, · · · , vn) ∈ U1 instead

(
1n (v1, · · · , vn)
0n 1n

)
∈ U1,

and similarly for U2 as well.
For each i = 1, 2 and v = (v1, · · · , vn) ∈ Ui, the k-th component of v means vk.

Conjecture 1.2 has the following equivalent form (see section 3):

Conjecture 1.3. Let n ≥ 2. For each i = 1, 2, let Vi be a set of n-linearly independent
vectors in Ui such that no non-zero Z-linear combination of Vi has 0 component in Ui.
If V1 and V2 generate a discrete subgroup of G, then there exist a totally real number
field k of degree n over Q, an n-tuple α of non-zero real numbers and a non-zero
integer p such that

V1 ⊂ αOk and V2 ⊂ 1

p
α−1Ok.

Here α±1Ok denotes the set {(α±1
1 x(1), · · · , α±1

n x(n)) : x ∈ Ok}, respectively, for α :=
(α1, · · · , αn).

Even though we stated Conjecture 1.2 only for the case where G is a direct product
of n copies of SL2(R) (n ≥ 2), it is the expectation of Margulis conjecture (see [Oh1]
for a general statement) that the analogous statement should be true for any higher
rank connected semisimple real algebraic group G with no compact factors and for
any pair U1, U2 of the unipotent radicals of opposite parabolic subgroups of G; of
course the conclusion would be that any such Γ is an arithmetic subgroup.
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In [Oh1-2], this general version of Conjecture 1.2 has been settled in some cases,
for instance, including the cases G = SLn(R) (n ≥ 4). One of main ingredients of
the proof there is Ratner’s theorem on Raghunathan’s topological conjecture on the
behavior of orbits of unipotent subgroups in homogeneous spaces [Ra]. To apply this
method, one needs to have a unipotent one parameter subgroup contained in the
common normalizer of U ′

1 and U ′
2 for some pair U ′

1 ⊂ U1, U ′
2 ⊂ U2 of the unipotent

radicals of opposite parabolic subgroups of G.
This is certainly not available in the situation of G = (SL2(R))n, since the common

normalizer of any such U ′
1 and U ′

2 is a torus. Instead, it turns out the following
conjecture on the orbits of diagonal subgroups of SLn(R) on the homogeneous space
SLn(Z)\SLn(R) is relevant at least in the case of n ≥ 3.

Conjecture 1.4 (Ma3, Conjecture 9). Let n ≥ 3 and D denote the diagonal subgroup
of SLn(R). For any x ∈ SLn(Z)\SLn(R), if the orbit xD is relatively compact, then
xD is closed.

We remark that the Littlewood conjecture follows from Conjecture 1.4 (see [Ma3]).

Letting F1 := Γ ∩ U1, we may consider SLn(Z)\SLn(R) as the space of lattices in
U1 ' Rn with the same determinant as the lattice F1.

Theorem 1.5. Let n ≥ 2 and Γ be as in Conjecture 1.2.

(1) Then the orbit F1D is relatively compact in SLn(Z)\SLn(R).
(2) If the closure F1D contains a closed D-orbit in SLn(Z)\SLn(R) then Conjec-

ture 1.2 holds.

If we assume that Conjecture 1.4 is true, the above theorem in particular implies
Conjectures 1.2 and 1.3 for n ≥ 3.

Under the assumption that Γ is discrete, the compactness of the orbit F1D provides
some non-trivial diagonal elements of G which normalize F1 and F2 simultaneously.
Utilizing such elements one is then able to find a Q-structure of G with respect to
which Γ is contained in G(Q). We give a detailed proof of the above theorem in the
next section.

As well known, Conjecture 1.4 is not true for n = 2, in which case the structure
of geodesic flows is far from being rigid. We are then in the following situation: Let
α = (α1, α2) be a vector in R2 of non-zero reals and v = (v1, v2) be a vector in R2

such that vi /∈ Q for each i = 1, 2. Let Γα,v be the subgroup of SL2(R) × SL2(R)
generated by(

12 12

02 12

)
,

(
12 (v1, v2)
02 12

)
,

(
12 02

(α1, α2) 12

)
, and

(
12 02

(α1v1, α2v2) 12

)
.

If F := Z(1, 1) + Z(v1, v2) then the set FD ⊂ SL2(Z)\SL2(R) is the collection
of lattices {(aw1, a

−1w2) : (w1, w2) ∈ F} in R2 where a ranges over non-zero real
numbers. Theorem 1.5 then implies:
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Theorem 1.6. If Γα,v is discrete and the closure FD contains a closed D-orbit, in
SL2(Z)\SL2(R), then there exists a real quadratic extension field k over Q such that
v1 is an algebraic integer in k, α1 ∈ k and

α2 = σ(α1) and v2 = σ(v1)

where σ is the non-trivial Galois automorphism of k.

In fact for n = 2, it suffices to prove Conjecture 1.2 for the subgroups of the form
Γα,v as above (see Lemma 2.1). Conjecture 1.2 will hence be settled if the following
is true:

Conjecture 1.7. If Γα,v is discrete, FD contains a closed D-orbit in SL2(Z)\SL2(R).

Lastly we mention that the analogous problems remain open in the groups of the
form SL2(k1)×· · ·×SL2(kn), n ≥ 2 where k1, · · · , kn are the real field R, the complex
field C or the p-adic field Qp.

2. Proof of Theorem 1.5

In this section we give a proof of Theorem 1.5. We try to make the arguments self
contained and as elementary as possible. The scheme of the proof essentially follows
steps of [Oh2] which is in turn heavily influenced by [Se] and [Ma1]. We remark that
in [Ma1], Margulis first gave the proof of the arithmeticity of non-uniform irreducible
lattices in higher rank semisimple real algebraic groups before [Ma2] (see also [Ra1]
for an independent approach in this direction).

Let Γ be as in Conjecture 1.2 and n ≥ 2. Set Fi := Γ∩Ui for each i = 1, 2. Without
loss of generality, we may assume that Γ is the subgroup generated by F1 and F2.

Lemma 2.1. There exist an element u ∈ U1 and a diagonal element x ∈ G such
that uΓu−1 contains the subgroup generated by F1 and xwF1w

−1x−1 where w =(
0n 1n

−1n 0n

)
.

Proof. Let γ ∈ F2 be non-trivial element. Then γN(U1)γ
−1 ∩ N(U1) is conjugate

to the diagonal subgroup in G, which coincides with N(U1) ∩ N(U2). Here N(Ui)
denotes the normalizer of Ui in G for both i = 1, 2. Hence for some u ∈ U1,
uγN(U1)γ

−1u−1 = N(U2). Since wN(U1)w
−1 = N(U2), it follows that uγw−1 ∈

N(U2), which we can write xy for a diagonal element x ∈ G and y ∈ U2. Hence
uγF1γ

−1u−1 = xy(wF1w
−1)y−1x−1. Since both wF1w

−1 and y belong to U2, which
is commutative, y(wF1w

−1)y−1 = wF1w
−1. Since F1 = uF1u

−1 and uγF1γ
−1u−1 =

xwF1w
−1x−1 and they are both contained in uΓu−1, the claim is proved. ¤

Hence there is no loss of generality in assuming that Γ is generated by F1 and F2

where

F2 = xwF1w
−1x−1
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when x ∈ G is a diagonal element. Let H denote the subgroup

{
((

a1 0
0 a−1

1

)
, · · · ,

(
an 0
0 a−1

n

))
∈ G :

n∏
i=1

ai = 1}.

Note that the elements of H belong to the common normalizer of U1 and U2, and
preserve a Haar measure on U1. Hence via conjugation, H acts on the space of lattices
in U1 with the same determinant as F1, which can be identified with SLn(Z)\SLn(R).
Furthermore under this action we have F1.H = F1D

0 where D0 is the identity com-
ponent of D, that is, the subgroup of SLn(R) consisting of positive diagonals.

Note that D0 is a normal subgroup of G, and the orbit xD is a disjoint union of
finitely many translates of xD0. Hence F1D is relatively compact (resp. closed) if
and only if F1D

0 is relatively compact (resp. closed).

Theorem 2.2. If Γ is discrete, then both orbits F1D and F2D are relatively compact
in SLn(Z)\SLn(R).

Proof. There exists an ε0 > 0 (depending only G) such that the intersection of any
discrete subgroup of G and the ε0 neighborhood (the so-called Zassenhause neighbor-
hood) in G generates a nilpotent subgroup (cf. [Ma1]). By taking ε0 small enough,
we may also assume that for any g1 and g2 in ε0-neighborhood of G, the commutator
g1g2g

−1
1 g−1

2 is contained in the ε0/2-neighborhood of G (cf. [Se]).
By a theorem of Minkowski (cf. [Ca, Ch VIII]), there exists a constant c > 0

(depending only on n) such that any lattice in U2 with the same determinant as F2 con-

tains a non-zero vector whose norm is at most c. Let g =

((
a 0
0 a−1

)
, · · · ,

(
a 0
0 a−1

))
∈

G be a suitable diagonal element which contracts U2 so that if v is an element in U2

of norm less than c, then gvg−1 has norm less than ε0. Note that gΓg−1 is contains
a2F1 := gF1g

−1 and a−2F2 := gF2g
−1. Suppose that F1.H and hence a2F1.H is un-

bounded, then by Mahler’s compactness criterion (cf. [Ca, Ch V]), there exist an
h ∈ H and a non-zero vector v = (v1, · · · vn) ∈ a2hF1h

−1 with norm less than ε0,
considered as an Euclidean space. From the irreducibility assumption on Γ, we have
vi 6= 0 for each 1 ≤ i ≤ n. Consider the subgroup hgΓg−1h−1 which is generated by
a2hF1h

−1 and a−2hF2h
−1. Let w ∈ a−2hF2h

−1 be a non-trivial element with norm
less than ε0, provided by Minkowski theorem mentioned in the beginning. Then the
subgroup generated by v and vwv−1w−1 has to be nilpotent; in fact unipotent, since
any nilpotent subgroup generated by unipotent elements is unipotent. However from
the matrix multiplication it is easy to see that vwv−1w−1 cannot be an unipotent
element for any v ∈ U1 and w ∈ U2 with non-zero components. This contradiction
shows that F1.H hence F1D are relatively compact. Since F2H = (xw)F1H(xw)−1,
F2H is relatively compact as well. ¤
Theorem 2.3. If F1.H = F1D

0 is closed and Γ is discrete, then Γ is commensurable
with a Hilbert modular subgroup up to conjugation in (GL2(R))n.
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Remark A subgroup of G (locally compact and second countable) is called L-
subgroup if for any xn ∈ G, π(xn) has no convergent subsequence for the natural
projection π : G → Γ\G if and only of there exists γn 6= e ∈ Γ such that xnγnx

−1
n

converges to e as n →∞ [Ra2, Definition 1.21].
Note that any lattice in G is known to be an L-subgroup [Ra2, Theorem 1.21].

We remark that if we know that our discrete subgroup Γ in Conjecture 1.2 is an
L-subgroup, we can directly show that F1H is compact. In fact, for any discrete
subgroup Γ, π(H) is closed in Γ\G. It suffices to show that π(H) is relatively compact.
If not, there exists γn 6= e ∈ Γ and an ∈ H such that anγna−1

n converges to e as n →∞
[Ra2, Definition 1.21]. It is easy to see that the elements γn are unipotent elements
and moreover cotained in F1 ∪ F2. Hence this would contradict that F1H and F2H
are relativey compact. Therefore π(H) is compact, which clearly implies that F1H is
compact as well.

The property of being an L-subgroup which describes the cusp structure of a fun-
damental domain of Γ has proved to be very critical in the study of non-uniform
lattices. For instance, many properties of lattices in a connected semisimple real al-
gebraic group with no compact factors are known to be shared by discrete subgroups
with this property (cf. Ra2).

We now begin a proof of Theorem 2.3. Letting H0 denote the identity component
of H, set

∆ := {g ∈ H0 : g−1F1g = F1}.
Then

a :=

((
a1 0
0 a−1

1

)
, · · · ,

(
an 0
0 a−1

n

))
∈ ∆

if and only if (a2
1x1, · · · , a2

nxn) ∈ F1 for any (x1, · · · , xn) ∈ F1.
For each 1 ≤ i ≤ n, define a map φi : ∆ → R+ by

φi

((
a1 0
0 a−1

1

)
, · · · ,

(
an 0
0 a−1

n

))
= a2

i .

Note that the assumption that Γ ∩ U1 ∩ N is not discrete for any proper connected
normal subgroup N of G implies that for any non-zero (v1, · · · , vn) ∈ F1, vi 6= 0 for
all 1 ≤ i ≤ n. It follows that φi is an injective homomorphism. Also if φi = φj for
some i 6= j, this would imply that ∆ is contained in a subgroup of H of dimension
strictly less than n, which is a contradiction since ∆\H is compact. Hence all φi,
1 ≤ i ≤ n are distinct from each other. Denote the image of φi by ∆i. If we now
consider φi as a map from ∆ to ∆i, φi is an isomorphism. Furthermore, since ∆ is a
co-compact lattice in H0, ∆i has rank n− 1 as a free abelian group.

Let {Yi = (yi1, · · · , yin) : i = 1, · · · , n} be a Z-basis of F1. Then for any

a :=

((
a1 0
0 a−1

1

)
, · · · ,

(
an 0
0 a−1

n

))
∈ ∆,
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aYia
−1 = (a2

1yi1, · · · , a2
nyin) has to be a Z-linear combination of Y1, · · · , Yn for each

i = 1, · · · , n. So there exists an n×n matrix of integer coefficients whose characteristic
polynomial has a2

1, · · · , a2
n as its zeros.

It follows that every element in ∆i is an algebraic number with degree at most n.
Hence if ki denotes the field generated by ∆i, then [ki : Q] ≤ n. Since x ∈ ∆i implies
x−1

i ∈ ∆i as well, ∆i ⊂ O∗
ki

. On the other hand, by Dirichlet unit theorem (cf. [La]),
the rank of O∗

ki
is equal to [ki : Q]− 1. Hence this forces that the degree of ki over Q

be precisely n.
Define σi : ∆1 → ∆i by σi = φi ◦ φ−1

1 for each 1 ≤ i ≤ n. Then σi is a group
isomorphism and extends to a field isomorphism from k1 to ki, which we denote by
σi as well, by slight abuse of notation. Since φi, 1 ≤ i ≤ n, are distinct, so are σi,
1 ≤ i ≤ n.

For simplicity, we set k = k1 and write a(i) for σi(a). Hence the subgroup

{
(

a(1) 0
0 1/a(1)

)
, · · · ,

(
a(n) 0
0 1/a(n)

)
: a ∈ ∆1 ⊂ O∗

k}

is a subgroup of finite index in ∆.

By conjugating Γ using a diagonal element in (GL2(R))n, we may assume that F1

contains the element 1n = (1, · · · , 1). Since ∆ normalizes F1, F1 contains the Z-linear
combinations of (x(1), · · · , x(n)) where x ∈ ∆1, which we denote by a. Since the rank
of ∆1 is n− 1 and hence {(log |x(1)|, · · · , log |x(n)|) : x ∈ ∆1 is a co-compact lattice in
the subspace {(v1, · · · , vn) ∈ Rn :

∑n
i=1 vi = 0}, we can deduce that a is a subgroup

of finite index in
{(x(1), · · · , x(n)) : x ∈ Ok},

which we denote simply by Ok.

Since F2 = xwF1w
−1x−1 for a diagonal element x ∈ G and w =

(
0n 1n

−1n 0n

)
, we

have for an n-tuple of some positive real numbers α = (α1, · · · , αn), F2 = αF1 where
αF1 denotes the set

{(α1x1, · · · , αnxn) : (x1, · · · , xn) ∈ F1}.
Since ∆ is contained in the diagonal subgroup normalizing F1, ∆ normalizes F2 as

well. Hence by the same argument as above, we see that F2 ⊃ αa. To distinguish the
vector notations for F1 and F2, we now write F1 ⊃ U1(a) and F2 ⊃ αU2(a). We may
assume that a is an ideal of Ok by making it smaller if necessary.

Without loss of generality we may now assume that Γ is generated by U1(a) and
αU2(a).

Proposition 2.4. Let n ≥ 2. If U1(a) and αU2(a) generate a discrete subgroup, then

(α1, · · · , αn) = (b(1), · · · , b(n))

for some b ∈ k∗.



8 HEE OH

Proof. Denote by Γ0 the normalizer of Γ in G. We claim that Γ0 is discrete. Suppose
not; then there exists a sequence of distinct elements gj ∈ Γ0 which converges to the
identity as j → ∞. For each γ ∈ Γ, gjγg−1

j ∈ Γ and it converges to γ as j → ∞.
Since Γ is discrete, it follows that there exists a positive integer j(γ) such that for all
j > j(γ), gj is in the centralizer of γ. Since γ is an arbitrary element of Γ and Γ is
finitely generated, we can find j0 such that for any j > j0, gj is in the centralizer of Γ
and hence in the center of G, since Γ is Zariski dense. Since the center of G is finite,
this contradiction yields the claim.

Note that ∆ ⊂ Γ0. Set A1 := H n U1. Then since ∆ n F1 ⊂ A1 ∩ Γ0 and hence
A1 ∩ Γ0 is co-compact in A1, γA1γ

−1 ∩ Γ0 is co-compact in γA1γ
−1 for any γ ∈ Γ0.

Since Γ0 is discrete, the intersection γA1γ
−1 ∩A1 ∩ Γ0 is co-compact in γA1γ

−1 ∩A1

for any γ ∈ Γ0.
It can be easily checked that for any non-trivial g ∈ U2, gA1g

−1 ∩ A1 is conjugate
to H. Hence if γ ∈ F2 is non-trivial, we have that γA1γ

−1 ∩A1 ∩ Γ0 is infinite. Since

γA1γ
−1 ∩ A1 ∩ Γ0 = γ(A1 ∩ Γ0)γ

−1 ∩ (A1 ∩ Γ0)

there exist elements δ1, δ2 ∈ ∆n F1 ⊂ A1 ∩ Γ0 such that δ1, δ2 /∈ F1 and

(2.5) γδ1 = δ2γ.

Let

γ :=

(
1n 0n

(α1x
(1), · · · , αnx(n)) 1n

)
∈ F2;

and for each j = 1, 2, let

δj =

((
zj

(1) yj
(1)

0 1/zj
(1)

)
, · · · ,

(
zj

(n) yj
(n)

0 1/zj
(n)

))
∈ ∆n F1

for a non-zero x ∈ a, for a unit zj ∈ Ok and for a non-zero yj ∈ Ok.
Then the equation 2.5 yields that y2 6= 0, z1 6= ±1 and

αi =
(xy2)

(i)

(z1 − z−1
1 )

(i)

for each 1 ≤ i ≤ n. Hence it suffices to set b = (xy2)

(z1−z−1
1 )

. ¤

Therefore we can find a non-trivial ideal b of Ok contained in a such that

F1 ⊃ U1(b) and F2 ⊃ U2(b).

Applying the following, which was first proven by Vasserstein [Va], we now conclude
that Γ is commensurable with a Hilbert modular group, completing the proof of
Theorem 2.3.

Theorem 2.6. Let n ≥ 2. For any non-trivial ideal b of Ok, the subgroup of G
generated by U1(b) and U2(b) is of finite index in the Hilbert modular group SL2(Ok).
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Theorem 1.5 (2) now follows from Theorem 2.3 toghether with the following:

Theorem 2.7. If Γ is discrete and the closure F1D0 contains a closed D0-orbit, then
F1D

0 is closed.

Proof. Let E1 ∈ SLn(Z)\SLn(R) be such that E1D
0 is a closed orbit contained in

F1D0. There exists a sequence hn ∈ H such that hnF1h
−1
n converges to E1. Since

H.F2 is relatively compact, hnF2h
−1
n has a convergeant subsequence. By passing to a

subsequence, we may assume that hnF2h
−1
n converges to a lattice, say, E2 in Rn. Since

H.E1 and H.E2 are relatively compact, it follows from Mahler’s compactness criterion
that no non-zero vector in E1 or E2 has a zero component. We can furtheremor show
that there exists a neighborhood W of e such that hnΓh−1

n ∩W = {e}. If we denote
by ΓE1,E2 the subgroup generated by E1 and E2, then it follows that ΓE1,E2 is a
limit of hnΓh−1

n and that it is discrete. Hence by Theorem 2.3, ΓE1,E2 is a Hilbert
modular subgroup up to commensurability and up to conjugation. In particular, it
is locally rigid and finitely presentable. Using the property that ΓE1,E2 is finitely
presentable and hnΓh−1

n ∩ W = {e}, we can define a sequence of homomorphisms
φn : ΓE1,E2 → hnΓh−1

n such that φn converges to the identity map. By the local
rigidity, it follows that φn is a conjugation. Since φn(Ui) ⊂ Ui, φn is a conjugation by
a diagonal element in G. Since the determinant of Ei must be equal to that of Fi, it
follows that φn is in fact conjugation by an element of H. Hence Ei ⊂ H.Fi. Since
H.E1 is closed, so is H.F1; which in trun implies the same for H.F2. This finishes the
proof. ¤

It follows from the proof of Theorem 2.7 that in order to prove Conjecture 1.2,
we only need to know that any discrete subgroup Γ satisfying the assumptions in
the conjecture is finitely presentable and locally rigid. Again, the latter property has
known to be true, as shown by Selberg [Se]. However, a discrete subgroup of G being
finitely presetable is a strong hypothesis about a fundamental domain.

3. Equivalence of Conjecture 1.2 and Conjecture 1.3

To show that Conjecture 1.2 implies Conjecture 1.3, let Γ be the subgroup gener-
ated by V1 and V2. Then for each 1 ≤ k ≤ n, the k-th components of the elements in
Γ ∩ Ui contains n numbers which are linearly independent over Z. Since any proper
connected normal subgroup of G is a product of less than n copies of SL2(R), Γ satis-
fies the assumptions in Conjecture 1.2. Hence Γ is commensurable with gSL2(Ok)g

−1

for some g ∈ (GL2(R))n and a totally real number field k of degree n over Q. Set
Λ = Γ ∩ gSL2(Ok)g

−1. Let p ∈ N be an upper bound for the indices [Γ ∩ Ui : Λ ∩ Ui]
for i = 1, 2.

Fix a non-zero element α := (α1, · · · , αn) ⊂ Λ∩U1. Then for any y := (y1, · · · , yn) ⊂
Λ ∩ U2, the trace of the element αy is equal to

(2 + α1y1, · · · , 2 + αnyn),
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which must belong to {(x(1), · · · , x(n)) : x ∈ Ok}. Hence (y1, · · · , yn) ∈ α−1Ok. So we
have V2 ⊂ Γ ∩ U1 ⊂ 1

p
α−1Ok.

In the same way, if x = (x1, · · · , xn) ∈ Λ ∩ U1, then (x1, · · · , xn) ∈ y−1Ok for each
y ∈ Λ ∩ U2. So Λ ∩ U1 ⊂ pαOk and hence V1 ⊂ αOk.

To see the other direction, take Vi to be a basis of Ui contained in Γ∩Ui which exists
since Γ ∩ Ui is a lattice in Ui. Clearly the assumption on Vi required in Conjecture
1.3 is satisfied; hence V1 ⊂ αOk and V2 ⊂ 1

p
α−1Ok for some n tuple α of non-zero real

numbers and some non-zero integer p. By conjugating Γ using a suitable diagonal
element, say g, in (GL2(R))n, we have gΓg−1 ∩ U1 and gΓg−1 ∩ U2 are subgroups of
finite indices in U1(Ok) and U2(

1
p
Ok) respectively. We can hence find a non-zero ideal

a of Ok such that gΓg−1 contains U1(a) and U2(a). Now applying Theorem 2.6, since
Γ is discrete, gΓg−1 is commensurable with SL2(Ok).
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