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Abstract. We first construct new uniform pointwise bounds for the matrix coeffi-
cients of infinite dimensional unitary representations of a reductive algebraic group
over a local field k with semisimple k-rank at least 2 [21]. We explain how this
information on local harmonic analysis yields norm estimates for (global) Hecke
operators on L

2(Γ\G) for a connected almost simple simply connected Q-group G

and its congruence subgroup Γ [5]. With the tool of Hecke operators, we settle a
question of Linnik raised in the early sixties on the distribution of integer points of
Diophantine type varieties when the varieties are homogeneous spaces of a reductive
algebraic group over Q [10]. Lastly we discuss how to obtain evenly distributed se-
quences on the spheres S

n (n ≥ 4) [22], generalizing the work of Lubotzky, Phillips
and Sarnak on S

2 and S
3 ([18], [19]).

1 Uniform pointwise bounds ξS for matrix coefficients

The aim of this section is to explain the construction of new uniform pointwise
bounds for the matrix coefficients of infinite dimensional unitary representa-
tions of a reductive algebraic group over a local field [21]. Let k be a local field
(char k 6= 2), that is, k = R, C, a finite extension of Qp, or a finite extension
of Fq((t)) (q 6= 2). Let G be the group of k-rational points of a connected re-
ductive algebraic group over k. Two main ingredients in the construction of
the uniform pointwise bounds ξS are the Harish-Chandra function ΞPGL2(k)

of PGL2(k) and the strongly orthogonal systems S of the root system of G.
Roughly, there exists a (canonical for the split case) way of attaching to each
root a closed subgroup of G locally isomorphic to PGL2(k). We will then
define for each strongly orthogonal system S a spherical function ξS on G,
which is essentially the product of the Harish-Chandra functions ΞPGL2(k)

over all roots belonging to S. Our notation ξS is (hopefully) meant to stand
for its origin in Ξ (the little Ξ being ξ) over various strongly orthogonal
systems S.

Recall the Cartan decomposition of G: G = KA+ΩK where K is a good
maximal compact subgroup of G, A+ a closed positive Weyl chamber con-
tained in a maximal k-split torus A of G and Ω a finite subset of the central-
izer of A. That is, for each g ∈ G, there exist unique elements a ∈ A+ and
d ∈ Ω such that g ∈ KadK. We remark that if k is archimedean or if G is
k-split, Ω = {e}. A virtue of the Cartan decomposition which will be used
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here is that any bi-K-invariant function on G is completely determined by
its restriction to A+Ω.

Definition of ΞPGL2(k) [11]: Let B be the subgroup of PGL2(k) consisting
of the upper triangular matrices. It is well known that the unitarily induced
representation IndG

B(1) from the trivial representation 1 on B to PGL2(k) is
irreducible and has a unique (up to scalar) K-invariant unit vector, say v.
The Harish-Chandra function ΞPGL2(k) is defined by

ΞPGL2(k)(g) = 〈IndG
B(1)(g)v, v〉 for any g ∈ PGL2(k).

Denote by Φ the set of non-multipliable roots of A in G, and by Φ+ the
set of positive roots in Φ.

Definition: Strongly orthogonal system A subset S of Φ+ is called a
strongly orthogonal system of Φ if neither of α ± β is a root for any two
distinct elements α and β of S.

Each root α will be understood as a function on G by setting

α(g) := α(a) for g = k1adk2 ∈ KA+ΩK.

Definition of ξS : For each strongly orthogonal system S ⊂ Φ+, we set

ξS(g) =
∏

α∈S

ΞPGL2(k)

(

α(g) 0
0 1

)

for each g ∈ G. (1)

Let G+ denote the subgroup of G generated by all unipotent k-split sub-
groups of G and Z denote the center of G. We now state the main theorem:

Theorem 1.1. Let k 6= C and k-s.s.rank (G) ≥ 2 and G/Z almost k-simple.
Let S be a strongly orthogonal system of Φ. Then for any unitary represen-
tation ρ of G without a non-zero G+-invariant vector and its K-finite unit
vectors v and w,

|〈ρ(g)v, w〉| ≤
(

[K : K ∩ dKd−1] · dim〈Kv〉dim〈Kw〉
)1/2

ξS(g)

for any g = k1adk2 ∈ KA+ΩK = G.

Remark:

• The same inequality holds for k = C, provided that in the case when
G/Z(G) ≈ Sp2n(C), we replaceΞPGL2(k) by ΞPGL2(k)

1/2 in the definition
of ξS whenever α is a long root.

• We note that any irreducible unitary representation ρ of G has a non-
zero G+-invariant vector if and only if ρ is of finite dimension. Hence
the above theorem works for any infinite dimensional irreducible unitary
representations without an assumption on not possessing G+-invariant
vectors.
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The following properties of ξS can be directly deduced from those of
ΞPGL2(k):

Properties of ξS :

• 0 < ξS(g) ≤ 1 for any g ∈ G.
• For any ǫ > 0, there are constants d1 > 0 and d2(ǫ) > 0 such that

d1

(

∏

α∈S

|α(g)|
)−1/2

≤ ξS(g) ≤ d2(ǫ)

(

∏

α∈S

|α(g)|
)−1/2+ǫ

for any g ∈ G

where | · | denotes the standard norm on k in the sense of ([27], Ch 1).
• For g ∈ G, ξS(g) = 1 if and only if α(g) = 1 for all α ∈ S.

The second inequality implies that ξS decays fastest when S is maximal
in the following sense:

Definition: A strongly orthogonal system S is called maximal if the coeffi-
cient of each simple root in the formal sum

∑

α∈S logα is not less than the
one in

∑

α∈O logα for any strongly orthogonal system O of Φ.

A maximal strongly orthogonal system has been explicitly given for each
reduced irreducible root system in [20].

In general there exist more than one maximal strongly orthogonal systems
in Φ. However the following product is independent of the choice of Q, in fact,
an invariant of the root system Φ:

ηG :=
∏

α∈Q

α

for a maximal strongly orthogonal system Q in Φ.
The following is then immediate from Theorem 1.1:

Corollary 1.1. Under the same assumption as in Theorem 1.1, for any ǫ >
0, there exists a constant C (depending only on ǫ and G) such that

|〈ρ(g)v, w〉| ≤ C · (dim〈Kv〉dim〈Kw〉)1/2 |ηG(g)|−1/2+ǫ

for any g ∈ G, ρ, v and w as in Theorem 1.1.

Example 1.1. Let G = SLn(k). For a = diag(a1, · · · , an) ∈ A+ (here ai’s are
in decreasing order with respect to the norm on k), let γi(a) = ai

an+1−i
for

each 1 ≤ i ≤ x
n
2 y. Then Q = {γi | 1 ≤ i ≤ x

n
2 y} is a maximal strongly

orthogonal system.
Hence

|ηG(a)| =

xn/2y

∏

i=1

( |ai|
|an+1−i|

)−1/2

.



4 Hee Oh

A key notion in the proof of Theorem 1.1 is the following:

Definition: Let L be the group of the k-rational points of a connected re-
ductive linear algebraic group over k with a good maximal compact subgroup
M . A unitary representation ρ of L is said to be tempered if for any M -finite
unit vectors v and w,

|〈ρ(g)v, w〉| ≤ (dim〈Mv〉dim〈Mw〉)1/2
ΞL(g) for any g ∈ L

where ΞL denotes the Harish-Chandra function of L.

A unitary representation ρ being tempered is equivalent to the condition
that ρ is weakly contained in the regular representation of L

The scheme of the proof of Theorem 1.1 is then roughly as follows: to
each root α ∈ S, we attach the group Hα, locally isomorphic to the algebraic
subgroup generated by the one-dimensional root subgroups U±α. The first
step is to show that the restriction of ρ to Hα is tempered for any root α ∈ Φ.
This is proved based on Mackey’s theorem on the unitary representation of
the semi-direct products and the theory of oscillator representations.

Since S is a strongly orthogonal system, Hα and Hβ commute with each
other for any α, β ∈ S. In the spirit of Howe’s strategy, we then show that
the restriction ρ|HS

is tempered where HS is the subgroup generated by Hα,
α ∈ S. Denote by LS the subgroup generated by HS and the maximal k-split
torus A. Then HS has a finite index in LS , up to modulo their centers. We
then show that the temperedness of ρ|HS

transfers to the temperedness of
ρ|LS

using the work of Cowling-Haggerup-Howe [6]. Up to a constant term,
this implies Theorem 1.1.

A weaker bound in Theorem 1.1 in a form of Ξ
1/m
G (here ΞG denotes the

Harish-Chandra function of G) for some positive integer m can be deduced
from the work of Cowling [7], Howe [12], and Cowling-Haggerup-Howe [6]. An
optimal bound for m has not been obtained in general (cf. [14], [15], [20],
[21]). Even in the case when the optimal bound m is known, for instance,
G = SLn(R), the new bound presented in Theorem 1.1 is much sharper in
every regular direction.

Moreover when Q is maximal, the uniform pointwise bound ξQ turns
out to be optimal in two important class of groups: SLn(k) (n ≥ 3) and
Sp2n(k) (n ≥ 2). In the following theorem, the group Sp2n(k) is defined by

the bi-linear form

(

0 Īn
−Īn 0

)

where Īn denotes the skew diagonal n × n-

identity matrix.

Theorem 1.2. Let G be either SLn(k) (n ≥ 3) or Sp2n(k) (n ≥ 2, k 6= C).
Let P be the maximal parabolic subgroup of G which stabilizes ke1 and v a
(unique) K-invariant unit vector in IndG

P (1). Then for any ǫ > 0, there exist
positive constants C1 and C2 = C2(ǫ) such that

C1 · |ηG(g)|−1/2 ≤ 〈IndG
P (1)(g)v, v〉 ≤ C2 · |ηG(g)|−1/2+ǫ
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for any g ∈ G.

For Sp2n(C), the optimalness of ξQ is achieved by considering the even com-
ponent of the oscillator representation of Sp2n(C) [21].

2 Equidistribution of Hecke points

The notion of the Hecke operator is classical and has proven to be very useful
in the theory of automorphic forms as well as in counting the integer points
of some Diophantine type varieties. In this section, we explain how one uses
the uniform bounds on the spherical unitary dual of G(Qp)’s for a semisimple
algebraic Q-group G explained in section 1 to obtain norm estimates on Hecke
operators on L2(Γ\G(R)) for a congruence subgroup Γ . This is joint work
with L. Clozel and E. Ullmo [5].

Let G be a connected almost simple simply connected algebraic group
over Q and Γ ⊂ G(Q) a congruence subgroup. Set G = G(R). We denote
by µG the normalized Haar measure on Γ\G. For simplicity, we assume that
rankQ(G) ≥ 1, referring to [5] for a more general situation.

Definition: Hecke operator Ta Let a ∈ G(Q). We denote by deg(a) the
cardinality of Γ\ΓaΓ , or equivalently [Γ : Γ ∩ a−1Γa]. The Hecke operator
Ta is defined as follows: for any f ∈ L2(Γ\G) and g ∈ Γ\G,

Ta(f)(g) =
1

deg(a)

∑

x∈Γ\ΓaΓ

f(xg).

To state our theorem, we first set up some notation. For each prime p, let
Ap be a maximal Qp-split torus of G and Φp the set of non-multipliable roots
of the root system Φ(G, Ap). Set

R1 = {p | rankQp
G = 1};

R2 = {p | rankQp
G ≥ 2}.

We denote by T 0
a : L2

0(Γ\G) → L2
0(Γ\G) the restriction of Ta to L2

0(Γ\G)
where

L2
0(Γ\G) = {f ∈ L2(Γ\G) |

∫

Γ\G

fdµG = 0}.

The notation ‖T 0
a‖ denotes the usual operator norm.

Recalling the definition of ξSp
from section 1, we now state the following

norm estimates for T 0
a :

Theorem 2.1. There exists a constant C (depending only on G and Γ ) such
that for any a ∈ G(Q)

‖T 0
a‖ ≤ C





∏

p∈R1

ξ
1/2
Sp

(a)









∏

p∈R2

ξSp
(a)




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where Sp is a (maximal) strongly orthogonal system of Φp for each p.

In order to explain the proof of Theorem 2.1, let G(A) denote the adele
group associated to G and G(Af ) the group of finite adeles. Let Uf =

∏

p:prime Up

be an open compact subgroup of G(Af ) such that Γ = G(Q) ∩ Uf .
By the strong approximation, we have G(Q)GUf = G(A); hence

Γ\G = G(Q)\G(A)/Uf .

Moreover there exists a natural isometry between

L2(G(Q)\G(A)/Uf ) (≃ L2(G(Q)\G(A))Uf )

and L2(Γ\G). Via this isometry, the Hecke operator Ta corresponds to the
product, over all primes p, of the local Hecke operators Ta(p), which is pre-
cisely (after the normalization) the convolution operator by the characteristic
function on UpaUp: for f ∈ L2(G(Q)\G(A)/Uf ) and g ∈ G(Q)\G(A)/Uf

Ta(p)(f)(g) =
1

|Up\UpaUp|
∑

y∈Up\UpaUp

f(gy−1)

and
Ta =

∏

p

Ta(p).

Now if v andw are Up-invariant vectors of an irreducible G(Qp)-component,
say, ρp, of a representation weakly contained in L2

0(G(Q)\G(A)), then

〈Ta(p)v, w〉 = 〈ρp(a)v, w〉.

Furthermore, the Langlands spectral decomposition of L2
0(G(Q)\G(A)) says

that each ρp can be assumed non-trivial (cf. [1]). Since G(Qp) is non-compact,
almost simple and simply connected, any non-trivial irreducible representa-
tion is indeed infinite-dimensional.

Hence for the prime p such that Qp-rank of G(Qp) is at least 2, we can
use the uniform pointwise bound ξSp

for the matrix coefficients of irreducible
infinite dimensional unitary representations of G(Qp)’s presented in section
1 to obtain norm estimates of Ta(p). As for the prime p such that the Qp-
rank of G(Qp) is 1, such a uniform pointwise bound does not exist because
G(Qp) does not have Kazhdan property (T). However the method developed
by Burger and Sarnak in [2] (see [4] for its p-adic version) enables us to lift
the Gelbart-Jacquet bound [9] toward the Ramanujan conjecture for SL2 to

G, in order to obtain the bound ξ
1/2
Sp

on the part of the unitary dual of G(Qp)

coming from L2
0(G(Q)\G(A)/Uf ).

Remark:

• If the Ramanujan conjecture for SL2 is assumed, then we can replace

ξ
1/2
Sp

by ξSp
in Theorem 2.1
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• The Hecke operator norm bounds obtained in the above theorem are op-
timal for SLn (n ≥ 3) and Sp2n (n ≥ 2) when maximal strongly orthog-
onal systems Sp are used. In view of Theorem 1.2, this follows from the
observation that in those two cases, there is contribution on the bound-
ary of the spherical unitary dual of each G(Qp) from the spectrum of
L2(G(Z)\G).

Example 2.1. Let G = SLn(R) for n ≥ 3 and Γ = SLn(Z). Let

a = diag(a1, · · · , an) ∈ G(Q)

with ai ≥ ai+1 > 0 for each 1 ≤ i ≤ n − 1. Using the maximal strongly
orthogonal system Q in Example 1 at each prime p, we obtain from Theorem
2.1 for any ǫ > 0, there exists a constant C (depending only on ǫ) such that

‖T 0
a‖ ≤ C

xn/2y

∏

i=1

(

ai

an+1−i

)−1/2+ǫ

.

We can easily deduce the following from Theorem 2.1. For x ∈ Γ\G, set
Tax = {[ΓaΓx] ∈ Γ\G}.
Corollary 2.1. Let {an ∈ G(Q) | n ∈ N} be a sequence with deg(an) tending
to infinity. Then for any x ∈ Γ\G, the sets Tan

x are equidistributed with
respect to dµG, in the sense that

lim
n→∞

Tan
f(x) =

∫

Γ\G

f(g)dµG(g)

for any continuous function f on Γ\G with compact support.

It is observed in [2] that when an tends to an element which is not a commen-
surator of Γ , one can also deduce the above corollary from Ratner’s theorem
on orbit closures of unipotent flows. However the rate of convergence as in
Theorem 2.1 would not be obtained.

A Sobolev type argument then enables us to transfer the L2-convergence
rate obtained in Theorem 2.1 to a pointwise convergence rate under suitable
differentiability assumption on f . For instance, we have the following:

Theorem 2.2. For any smooth function f on Γ\G with a compact support,
there exists a constant Cf depending on f such that for any x ∈ Γ\G and
for any a ∈ G(Q),

∣

∣

∣

∣

∣

Taf(x) −
∫

Γ\G

f(g)dµG(g)

∣

∣

∣

∣

∣

≤ Cf





∏

p∈R1

ξ
1/2
Sp

(a)









∏

p∈R2

ξSp
(a)





where Sp is a (maximal) strongly orthogonal system of Φp for each p ∈ R1 ∪
R2.
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A special case of Theorem 2.1 for G = SLn was first announced by Sarnak
in his address in the 1991 international congress of mathematics in Kyoto [23].
Chiu afterwards obtained some analogues of Theorem 2.1 for SL2 and SL3

in [3] for special types of Hecke operators. Clozel and Ullmo, in their joint
work [4], have also obtained some special cases of the above results for GLn

and GSp2n.

3 Equidistribution of Integer points on a family of
homogeneous varieties

Let f be a homogeneous polynomial of degree d in n variables with integer
coefficients. For any integer m, consider the affine subvariety of Rn defined
by

Vm = {x ∈ Rn : f(x) = m}.
This variety is defined over Z. It is a classical problem in number theory to
understand the distribution of the set Vm(Z) of integer points in Vm.

Here is a problem raised by Linnik in the early sixties [16]:
Let π : Vm → V1 be the radial projection. What is the distribution of

π(Vm(Z)) on V1 as m→ ∞? In particular are these points equidistributed?

In joint work with W. T. Gan [10], we settle the above Linnik’s ques-
tion when the varieties Vm are homogeneous varieties of a linear semisimple
algebraic group.

Let G be a linear reductive Q-split algebraic group with absolutely almost
simple derived group and connected one dimensional center. Set G = G(R)0

and G0 = [G,G]0. Suppose that G acts (from the right) on Rn by a rep-
resentation ρ defined over Z with a non-trivial central character and that
the polynomial f is a semi-invariant of G. Then G0 acts on each Vm. Let
v0 ∈ V1(Z) and assume that the identity component of the stabilizer of v0 in
G0 does not possess any non-trivial Q-rational character.

The following generalizes the equidistribution statement obtained by Lin-
nik and Skubenko ([16], [17]) for the case when f = det and G = GLn.

Theorem 3.1. Fix a compact subset Ω ⊂ v0G0 and for any small ǫ > 0,
consider the standard division of Rn into ǫ-cubes. Then there exists a constant
mΩ,ǫ such that for any positive integer m > mΩ,ǫ, any ǫ-cube intersecting the
interior of Ω contains at least one point in the radial projection of Vmr (Z)
into V1. Here r is an explicit positive integer which depends only on G and
ρ.

Remark

• We remark that there are fundamental obstructions to having Theorem
3.1 for any sequence m tending to infinity; the restriction to a sub-
sequence of an r-th power of m as in Theorem 3.1 is necessary. In fact
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it follows from the work of Shintani [26] that when f is the discriminant
of a binary cubic form and G = GL2, one can find a compact subset
Ω with non-empty interior in v0G0 and a sequence mi → ∞ such that
the cardinalities of the sets consisting of the points in Vmi

(Z) which are
radially projected into Ω are uniformly bounded over all mi’s (cf. [10],
Example 3).

• If V1 is the union of finitely many G0-orbits each of which possessing
an integer point, then one can replace v0G0 by the whole variety V1 in
Theorem 3.1. For example, in the case of a regular prehomogeneous vec-
tor space with a unique semi-invariant, each Vm (m 6= 0) is the union of
finitely many G0-orbits. Therefore the classification of Q-split irreducible
regular prehomogeneous vector spaces given by Sato and Kimura in [24]
provides explicit examples to which Theorem 3.1 applies, with v0G0 re-
placed by V1, as long as each G0-orbit contains an integer point.

• In [10], we discuss Linnik’s question in a slightly more general situation
where the varieties in question are of type

Vm1,···,mk
= {x ∈ Rn | fi(x) = mi for each 1 ≤ i ≤ k}

for a system of semi-invariants f1, · · · fk.

Corollary 3.1. Given any open set U ⊂ v0G0, there exists a constant mU

such that U contains a point in the radial projection of Vmr (Z) for any positive
integer m > mU .

In particular, the radial projections of Vm(Z) onto V1 becomes dense as
m→ ∞.

We set Γ = G(Z). Let Z denote the connected component of the center
of G and let H be the stabilizer of v0 in G. By the assumption, H ⊂ G0 and
H ∩Γ is a lattice in H . We let µG and µH the normalized Haar measures on
ZΓ\G and (H ∩Γ )\H respectively. Then the measures µG and µH induce a
unique G-invariant measure on ZH\G ≃ H\G0, which we will denote by µ.
For a measurable set Ω ⊂ ZH\G, we will write vol(Ω) for µ(Ω).

The main idea in the proof of Theorem 3.1 is based in the crucial obser-
vation made by Sarnak [23] on the relation of Hecke operators with this type
of equidistribution question.

For a simply connected group G, we obtained norm estimates of the Hecke
operator Ta defined in section 2 by reducing the global problem to local
harmonic analysis on G(Qp)’s. When G is not simply connected, we give a
slightly modified definition of a Hecke operator below, designed so that the
passage between local and global Hecke operators continues to hold.

Let Uf be an open compact subgroup of G(Af ) such that Γ = G(Q)∩Uf .
For each a ∈ G(Q), we consider the double Γ -invariant subset

G[a] = {g ∈ G(Q) : g ∈ UfaUf}.
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If G is simply connected, then G[a] is simply equal to ΓaΓ .
We now set deg(a) = |Γ\G[a]|. A modified definition of a Hecke operator

Ta is given as follows: Ta acts on on the space of functions on ZΓ\G by

Ta(f)(g) =
1

deg(a)

∑

γ∈Γ\G[a]

f(γg).

For a compact subset Ω ⊂ ZH\G, define a function on ZΓ\G by

FΩ(g) =
∑

γ∈(Γ∩H)\H

χΩ(γg)

where χΩ is a characteristic function of Ω.
Observe that

Ta(FΩ)(1) =
1

|Γ\G[a]|
∑

γ∈Γ\G[a]

|Ω ∩ v0Γγ|

and ‖FΩ‖1 = vol(Ω).
In the following theorem, we keep the notation Ap, Φp and ξSp

(g) for
a maximal strongly orthogonal system Sp of Φp from section 1. Define the
real-valued function ξ on G(Q) by

ξ(g) =
∏

p∈R1

ξSp
(g)

1
2 ·
∏

p∈R2

ξSp
(g)

where
R1 = {primes p : Qp-rank of Z\G = 1};
R2 = {primes p : Qp-rank of Z\G ≥ 2}.

Fixing a right invariant metric on G, we denote by Uǫ the ǫ-neighborhood
of the identity in G for any ǫ > 0.

Definition: A compact subset Ω ⊂ ZH\G is nice if for all sufficiently small
ǫ > 0 (depending on Ω),

vol(∂Ω · Uǫ) < CΩ · ǫ

for some positive constant CΩ depending on Ω. Here ∂Ω denotes the bound-
ary of Ω.

The following can be interpreted as an equidistribution statement of (the
projections of) the Hecke orbits G[a] in the homogeneous variety ZH\G as
deg(a) → ∞:

Theorem 3.2. Let Ω be a nice compact subset of ZH\G. There exists a
constant CΩ (depending only on Ω) such that for any a ∈ G(Q), we have

|TaFΩ(1) − vol(Ω)| ≤ CΩ · ξ(a−1)
δ

d+2 ,

where 0 < δ ≤ 1 is the explicitly computable exponent and d = dim(Z\G).
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Theorem 3.2 does not follow directly from the results in section 2, since we
do not know whether FΩ has compact support or even belong to L2(ZΓ\G)
in general.

To relate Theorem 3.2 to Theorem 3.1, we introduce for each positive
integer m a subset G[m] of G(Q):

G[m] = {g ∈ G(Q) : ρ(g) ∈Mn×n(Z) and χ0(g) = m},

where χ0 denotes the basis element of the character group ofG with a positive
pairing with the central character of ρ.

For some integer m, G[m] might be empty; when it is not empty, it is
a finite union of the Hecke orbit G[a]’s for a ∈ G(Q) with χ0(a) = m. We
make an explicit choice of the exponent r0 (depending only on G and ρ) to
guarantee that G[mr0 ] is non-empty for any positive integer m. If the action
of G on f is given by f(vg) = χ0(g)

r1f(v), then r in the Theorem 3.1 is equal
to r0 · r1 and hence v0G[mr0 ] ⊂ Vmr (Z). Hence the subsets G[mr0 ] allow us
to produce many integer points in Vmr starting from v0 ∈ V1(Z). In fact, the
following counting statement implies that as m → ∞, the subsets v0G[mr0 ]
are equidistributed on the orbit v0G0 ⊂ V1 when radially projected.

Theorem 3.3. Fix a nice compact subset Ω of v0G0 and 0 < ǫ ≪ 1. Then
there exists a constant CΩ,ǫ such that for any positive integer m,

∣

∣

∣

∣

∣

∑

y∈Γ\G[mr0 ] |R+Ω ∩ v0Γy|
|Γ\G[mr0 ]| − vol(Ω)

∣

∣

∣

∣

∣

≤ CΩ,ǫ ·m−r0κ+ǫ

where R+Ω = {x ∈ Rn : tx ∈ Ω for some t > 0}. Here r0 is an explicit posi-
tive integer depending only on G and ρ and the exponent κ > 0 is independent
of Ω and is explicitly computable.

Since every point in v0G0 has a basis of neighborhoods which are nice compact
subsets, the above theorem implies Theorem 3.1. Note that it is essential to
have estimates for the rate of convergence in Theorem 3.3 in order to deduce
Theorem 3.1.

In order to deduce Theorem 3.3 from Theorem 3.2, we need to estimate
the number of disjoint Hecke orbits G[a] in G[m] as well as the number of
single Γ -orbits in each G[a].

We conclude this section by discussing the classical example treated by
Linnik and Skubenko in [17] and revisited by Sarnak in [23].

Example 3.1. Consider the action of GLn (n ≥ 3) on the space Mn of n× n
matrices by right multiplication. The determinant map is a homogeneous
polynomial on Mn of degree n. Then

Vm(Z) = {A ∈Mn(Z) : det(A) = m} = G[m].
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Set ‖A‖ = (
∑

i,j A
2
ij)

1
2 . Then, taking v0 to be the identity matrix In, Theorem

3.3 implies that for any given positive numbers R and 0 < ǫ≪ 1,

|{A ∈Mn(Z) : det(A) = m, ‖A‖ ≤ m
1
nR}| = cn,Rbm,n(1 +O(m

− 1

2n2+2
+ǫ

))

as m → ∞. Here cn,R is the volume of the set {A ∈ SLn(R) : ‖A‖ ≤ R}
with respect to the Haar measure of SLn(R) giving SLn(Z)\SLn(R) volume
1 and if m =

∏

i p
ki

i where pi’s are primes, then

bm,n =
∏

i

(pki+1
i − 1) · · · (pki+n−1

i − 1)

(pi − 1) · · · (pn−1
i − 1)

.

In fact, if gm = diag(m, 1, ..., 1), then

bm,n = [SLn(Z) : SLn(Z) ∩ gmSLn(Z)g−1
m ]

for each positive integer m. For n = 2, the same asymptotic holds except
that the error term should be replaced by m− 1

20
+ǫ.

The above example is deceptively simple and exceptional because of the
following two reasons. Firstly, r0 = r = 1 and every point in Vm(Z) is a Hecke
point obtained from v0, i.e. Vm(Z) = v0G[m]. In the general case, there is of
course no reason to expect that every point in Vmr (Z) is a Hecke point; in
fact there will be primitive or new points in Vmr (Z) which do not arise from
any lower stratum in this way.

Secondly, the stabilizer of v0 in GLn is trivial. This ensures that the
sets v0SLn(Z)y appearing in Theorem 3.3 are disjoint as y ranges over
SLn(Z)\G[m]. When the stabilizer of v0 is non-trivial, this will not be the
case and Theorem 3.3 should be interpreted as an equidistribution theorem
for Hecke points counted with multiplicities.

4 Distributing points on the spheres Sn (n ≥ 4)

Lastly we discuss how one uses the information on local harmonic anaylsis de-
scribed in section 1 to obtain uniformly distributed sequences on the spheres
Sn (n ≥ 4) [22], generalizing the work of Lubotzky, Phillips and Sarnak ([18],
[19]) on S2 and S3.

Definition: For a finite subset S of SO(n + 1), we define a Hecke operator
TS on L2(Sn) by

TSf(x) =
1

|S|
∑

γ∈S

f(γ−1x), for any f ∈ L2(Sn).

Denote by λS the operator norm of the restriction TS : L2
0(S

n) → L2
0(S

n)
where L2

0(S
n) denotes the orthogonal complement in L2(Sn) to the space of

constant functions.
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Theorem 4.1. Let n ≥ 4. For any prime p 6= 3 satisfying
{

p 6= 2 if n 6= 1 (mod 4)
p = 1 (mod 4) if n = 1 (mod 4)

(4.1)

we construct a subset Sp ⊂ SO(n+ 1) such that

|Sp| =

{

(
∑n−1

i=0 p
i) for n even

(
∑(n−1)/2

i=0 pi)(1 + p(n−1)/2) for n odd

and

λSp
≤ C ·

(

2
√
p

p+ 1

)

.

Here C is a positive constant independent of p.

The above theorem implies that the finite subsets Sp are becoming equidis-
tributed on Sn as p→ ∞. We refer to [18] for more implications of a statement
like Theorem 4.1.

We remark that whereas the results in [18] rely on a deep theorem on auto-
morphic forms, Deligne’s theorem on the Ramanujan conjecture for holomor-
phic cusp forms [8], which in fact yields the optimal equidistribution rates for
S2 and S3, our rates in Theorem 4.1 is based on a uniform pointwise bound
on matrix coefficients of the spherical unitary dual of a special orthogonal
group discussed in section 1.

Our construction of Sp follows what was referred to as “the lattice method”
in [19]. To construct subsets Sp, we start with a quadratic form Q of n + 1
variables defined over Q such that SO(Q)R ≃ SO(n + 1) and for each
prime p listed in (4.1), SO(Q)Qp

≃ SO(Īn+1)Qp
where Īn+1 is the skew-

identity n + 1 by n + 1 matrix. Existence of such Q can be verified using
the theory of quadratic forms [25]. Set G∞ = SO(Q)R and Gp = SO(Q)Qp

.
By a suitable embedding SO(Q) into SLn+1, we may assume that Kp =
SO(Q) ∩ SLn+1(Zp) is a hyperspecial compact subgroup of Gp for each p in
(4.1).

Let Γ be the image of the congruence subgroup

{g ∈ G(Z[
1

p
]) | g ≡ In+1 (mod 3Z[

1

p
])}

under the diagonal embedding into G∞ × Gp and let Γp be the image of Γ
under the canonical projection into Gp. Then Γp is a torsion-free uniform
lattice in Gp, and hence there exists a finite subset ∆p such that for any
g ∈ Gp, there exist unique elements γ ∈ Γp and δ ∈ ∆p such that g ∈ γδKp.

Via the isomorphismGp ≃ SO(Īn+1)Qp
, let ap be the element in Gp corre-

sponding to diag(p, In−1, p
−1) ∈ SO(Īn+1)Qp

We set deg(ap) = |KpapKp/Kp|.
Write KpapKp as ∐deg(ap)

j=1 γjδjKp where γj ∈ Γp and δj ∈ ∆p, and set

Sp = {γj ∈ Γp | j = 1, · · · , deg(ap)}.
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Since Γ = {(γ, γ) ∈ G∞ ×Gp | γ ∈ Γp}, Sp acts on G∞ by left translations
and hence on Sn. In fact, it suffices to prove Theorem 4.1 considering TSp

as
an operator on L2(G∞).

The related local Hecke operator is now defined as follows:

Definition: Define the operator T̃ap
on L2(Γ\G∞ ×Gp)

Kp by

T̃ap
(ψ)(g∞, gp) =

1

deg(ap)

∑

x∈KpapKp/Kp

ψ(g∞, gpx)

for ψ ∈ L2(Γ\G∞ ×Gp)
Kp , g∞ ∈ G∞ and gp ∈ Gp.

Through the G∞-equivariant maps G∞ →֒ G∞×∆p ≃ Γ\(G∞×Gp)/Kp,

the Hecke operator TSp
on L2(G∞) corresponds to T̃ap

on L2(Γ\G∞×Gp)
Kp .

We obtain:

Proposition 4.1. Set L0 = L2(Γ\G∞ ×Gp)
Kp ∩ L2

0(Γ\G∞ ×Gp). Then

λSp(m) ≤ |∆p| · ‖T̃ap
|L0

‖

We then show that 〈T̃ap
f1, f2〉 = 〈apf1, f2〉 for any f1, f2 ∈ L0 and no

finite dimensional irreducible unitary representation of Gp occurs in L0. This
enables us to apply Theorem 1.1 for Gp (recall that n ≥ 4) to obtain that

‖T̃ap
|L0

‖ ≤ ΞPGL2(Qp)

(

p 0
0 1

)

=
2
√
p

p+ 1
.

Theorem 4.1 now follows by showing that |∆p| is bounded by a constant
independent of p [22].
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