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Abstract

This paper initiates the study of rigidity for immersed, totally
geodesic planes in hyperbolic 3-manifolds M of infinite volume. In
the case of an acylindrical 3-manifold whose convex core has totally
geodesic boundary, we show that the closure of any geodesic plane is
a properly immersed submanifold of M . On the other hand, we show
that rigidity fails for quasifuchsian manifolds.
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1 Introduction

Let M = Γ\H3 be an oriented complete hyperbolic 3-manifold, presented as
the quotient of hyperbolic space by the action of a Kleinian group

Γ ⊂ G = PGL2(C) ∼= Isom+(H3).

Let
f : H2 →M

be a geodesic plane, i.e. a totally geodesic immersion of a hyperbolic plane
into M .

We often identify a geodesic plane with its image, P = f(H2). One can
regard P as a 2–dimensional version of a Riemannian geodesic. It is natural
to ask what the possibilities are for its closure,

V = f(H2) ⊂M.

When M has finite volume, Shah and Ratner showed that strong rigidity
properties hold: either V = M or V is a properly immersed surface of finite
area [Sh], [Rn2]. Our goal in this paper is to show that the same type of
rigidity persists for certain infinite volume hyperbolic 3-manifolds.

Planes in acylindrical manifolds. To state the main results, recall that
the convex core of M is given by:

core(M) = Γ\ hull(Λ) ⊂M,

where Λ ⊂ S2 is the limit set of Γ, and hull(Λ) ⊂ H3 is its convex hull. The
ends of M are the open components E of M − core(M).

Let us say M is a rigid acylindrical manifold if the following two equiv-
alent conditions hold:

1. The convex core of M is a compact submanifold of M with nonempty,
totally geodesic boundary.

2. The Kleinian group Γ is geometrically finite, without parabolics, and
its domain of discontinuity

Ω = S2 − Λ =
∞⋃
1

Bi

is a countable union of round disks with disjoint closures.

1



These conditions imply that M is acylindrical in the sense of [Th2], and
that Λ is a Sierpiński universal curve [Why]; see Figure 1. We call such a
manifold rigid because the double of its convex core is a closed hyperbolic
manifold, to which Mostow rigidity applies. In particular, there are only
countably many rigid acylindrical hyperbolic 3-manifolds, up to isometry.
Moreover, any convex cocompact acylindrical hyperbolic manifold can be
deformed to a unique rigid acylindrical manifold [Mc1, Cor 4.3].

Figure 1. The limit set Λ for a rigid acylindrical 3-manifold.

We may now state:

Theorem 1.1 Let f : H2 → M be a geodesic plane in a rigid acylindrical
hyperbolic 3-manifold, and let V = f(H2). Then either:

1. V is an immersed compact hyperbolic surface; or

2. V is a properly immersed, nonelementary, convex cocompact hyperbolic
surface of infinite volume; or

3. V = M ; or

4. V = E for some end E for M ; or

5. V is a hyperbolic plane, properly immersed into one of the ends of M .

We remark that V may be non–orientable in cases (1) and (2), even
though M is orientable.

Corollary 1.2 The closure of a geodesic plane in M is a properly immersed
submanifold of M .
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Bounded planes. Note that P = f(H2) is closed except in cases (3) and
(4). In case (4), the closure is an embedded submanifold with boundary. We
remark that the geodesic plane P is bounded only in case (1), and a rather
general result holds for such planes:

Theorem 1.3 Let P ⊂M = Γ\H3 be a bounded geodesic plane in an arbi-
trary hyperbolic 3-manifold. Then either P is a compact immersed surface,
or P = M .

See Appendix B. In the rigid acylindrical case, the components of
∂ core(M) give compact geodesic surfaces in M , but there may be others.

Isolation and finiteness. The proof of Theorem 1.1 uses, in part, an
isolation theorem for compact geodesic surfaces, which also leads to the
following finiteness result:

Theorem 1.4 Let M = Γ\H3 be an infinite volume hyperbolic 3-manifold
with compact convex core. Then M contains only finitely many compact,
immersed geodesic surfaces.

In particular, case (1) of Theorem 1.1 occurs for only finitely many V ⊂M .
On the other hand, in arithmetic examples case (2) can occur for infinitely
many V . See §11 for details.

Passage to the frame bundle. To make Theorem 1.1 more precise, we
reformulate it in the language of group actions on homogeneous spaces. First
we identify H3 with G/K, where

G = Isom+(H3) ∼= PGL2(C)

and
K ∼= Isom+(S2) ∼= SU(2)/(±I).

Then G itself can be regarded as the bundle of oriented frames over H3. We
also let

H = Isom(H2) ∼= PGL2(R) ⊂ G.

Note that H includes the orientation–reversing isometries of H2. We have
H2 ∼= H/K0, where K0 = O2(R).

In this setup, the study of geodesic planes in M = Γ\H3 lifts to the study
of H-orbits on the frame bundle, FM = Γ\G. That is, for every geodesic
plane f : H2 → M , we have a frame x ∈ FM such that f lifts to a map
f̃ : H → Γ\G of the form

f̃(h) = Γxh,
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making the diagram

H

��

f̃ // Γ\G

��

= FM

H2 = H/K0
f // Γ\G/K = M

commute.

Classification of circles. Since the map FM →M is proper, the projec-
tion of the closure of f̃(H) to M is the same as the closure of f(H2). Thus
the description of the closures of H-orbits on Γ\G refines the description of
the closures of geodesic planes in M .

We now turn to this description. It is convenient to interchange the roles
of H and Γ. Then

C = G/H

is the space of unoriented circles on S2 (of varying radii), and we wish to
describe the closures of the Γ–orbits on C. Note that a circle C ⊂ S2 bounds
a unique hyperplane in H3, and hence it determines a geodesic plane

f : H2 →M

which is unique up to composition with an isometry of the domain. The
map f factors through the surface S = ΓC\ hull(C), where

ΓC = {γ ∈ Γ : γ(C) = C},

and the induced map S →M is generically one–to–one.
The five cases listed in Theorem 1.1 are then made more precise by the

five cases of the following result, proved in §7.

Theorem 1.5 Let M = Γ\H3 be a rigid acylindrical manifold, and let Λ be
the limit set of Γ. Let C be a circle on S2. Then either:

1. C ∩Λ = C, ΓC is conjugate to a cocompact subgroup of PGL2(R), and
ΓC ⊂ C is discrete; or

2. C∩Λ is a Cantor set, ΓC is conjugate to a convex cocompact subgroup
of PGL2(R), and ΓC is discrete; or

3. C ∩ Λ is a Cantor set, and

ΓC = {D ∈ C : D ∩ Λ 6= ∅}; or
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4. |C ∩Λ| = 1, C is tangent to the boundary of some component B of Ω,
and

ΓC = {D ∈ C : D ∩ Λ 6= ∅ and D ⊂ γB for some γ ∈ Γ}; or

5. C ∩ Λ = ∅, and ΓC is discrete in C.

Cantor sets. Here a Cantor set means a compact, perfect, totally dis-
connected set. Note that cases (2) and (3) cannot be distinguished by the
topology of C ∩Λ. They can, however, be distinguished by its geometry; in
§10 we will show:

Theorem 1.6 Suppose E = C ∩ Λ is a Cantor set. Then we are in case
(2) if E is a thin subset of C, and otherwise in case (3).

Here a subset E of a bounded metric space X is thin if there is a k > 0 such
that for all x ∈ X and 0 < r < diam(X), there exists a y ∈ X such that

B(x, r)− E ⊃ B(y, kr).

Homogeneous dynamics. Let A and N denote the real diagonal and
unipotent upper triangular subgroups of G, respectively (§2). In the lan-
guage of homogeneous dynamics, Theorem 1.5 implies the following result.

Corollary 1.7 Let M = Γ\H3 be a rigid acylindrical manifold, and let

X = {x ∈ Γ\G : xA is compact}.

Then for any x ∈ X, either xH is closed or xH = XNH.

(Theorem 1.5 includes a description of xH in the case x 6∈ X as well.)
The locus X can be identified with the renormalized frame bundle of M ,

corresponding to geodesics with both endpoints in the limit set of Γ (see
§2). It is also known that xN = XN for all x ∈ X; see [Fer], [Win].

Counterexamples. What happens if we drop the assumption that M is a
rigid acylindrical manifold?

It is easy to see that, when Γ is a Fuchsian surface group, there is no
analogue of Theorem 1.1; the closure of a plane in such a hyperbolic 3-
manifold can be as badly behaved as the closure of a geodesic on a hyperbolic
surface.

More precisely, let M = Γ\H3 where Γ ⊂ PSL2(R) is a cocompact
Fuchsian group. Then the convex core Σ ⊂M is a compact, totally geodesic
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surface. Given any geodesic γ ⊂ Σ, there is a unique hyperbolic plane
P ⊂M , normal to Σ, such that P ∩ Σ = γ. We then have

P ∼= γ × R ⊂M.

Since γ can be a fairly wild set (e.g. locally a Cantor set times [0, 1]), the
closure of a geodesic plane in a Fuchsian manifold certainly need not be a
submanifold, in contrast to Corollary 1.2.

This type of example is robust, in the sense that it persists for quasi-
fuchsian groups (see Appendix A). More generally, the presence of cylinders
in M (in the case of incompressible boundary) seems likely to invalidate any
simple description of the closures of geodesic planes in M and of H-orbits
in Γ\G. Thus the requirement that M is acylindrical in Theorems 1.1 and
1.5 is somewhat natural.

Discussion of the proof. To give the proof of Theorem 1.5, we first de-
velop some general results on Kleinian groups which may be of independent
interest.

Let Γ ⊂ PGL2(C) be a Kleinian group with limit set Λ and with quotient
3-manifold M = Γ\H3. Let C ⊂ S2 be a circle.

1. In §3 and §4 we describe some general mechanisms to insure that
ΓC ⊂ C is fairly large.

In §3 we study the case where Γ is a (nonelementary) convex cocompact
Fuchsian group, with limit set contained in a circle D. We observe
that if D is an accumulation point of ΓC, then ΓC contains a pencil
of horocycles sweeping out at least one component of S2 − D. This
statement is a direct corollary of results of Hedlund and Dal’bo.

2. Let CΛ denote the set of all circles meeting the limit set Λ. In §4 we
show if Γ is Zariski dense in PGL2(C) (as a real Lie group), and ΓC
contains a family of circles sweeping out an open subset of Λ, then
ΓC ⊃ CΛ. The proof is based on the existence of a dense orbit for the
geodesic flow on the renormalized frame bundle RFM . (The geodesics
in the renormalized frame bundle are those which stay in the convex
core of M for all time; see §2.)

3. In §6 we show that if Γ is convex cocompact, then either C is contained
in Λ or C ∩ Λ is totally disconnected. This result is needed to show
that C ∩ Λ is a Cantor set in cases (2) and (3) of Theorem 1.5. The
proof is based on an analysis of metric density points, and shows in
addition that this Cantor set has measure zero.
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4. In §7 we finally turn to the case of a rigid acylindrical 3-manifold
M . In this case the geodesic faces of ∂ core(M) provide Γ with many
cocompact Fuchsian subgroups. Using the influence of these groups
and the results above, we complete the proof of Theorem 1.5 under
the assumption that Γ has no exotic circles. Here C is exotic if ΓC
contains no discrete Γ–orbit.

5. Let U = {( 1 x
0 1 ) : x ∈ R} ⊂ G. To prepare for the proof that Γ has no

exotic circles, in §8 we prove two useful results about sequences gn → id
in G. We show that for most such sequences, one can find unipotent
elements un, u

′
n ∈ U such that ungnu

′
n converges to a desirable limit.

These results are closely related to [Mg1, Lemma 5].

6. In §9 we complete the proof that Γ has no exotic circles.

One of the principal challenges to understanding dynamics on an open
hyperbolic 3-manifold is that the renormalized frame bundle, while
invariant under the geodesic flow, is generally not invariant under the
horocycle flow. We begin by showing that in the rigid acylindrical
case, the horocycle flow still has good recurrence properties for RFM .

The proof of recurrence uses the fact that M is a rigid acylindrical
manifold in two critical ways: to insure that there is a definite gap
between any two distinct components of the domain of discontinuity
Ω = S2 − Λ; and to insure that the components of Ω are convex.

The remainder of the argument is similar to that used by Margulis in
the proof of the Oppenheim conjecture [Mg1]. We combine recurrence
with the results of §8 to show that if C is an exotic circle, then ΓC
contains a continuous family of circles of the form LC, for some semi-
group L ⊂ G, and that LC sweeps out an open subset of Λ. But then
ΓC contains CΛ by the results of §4. In particular, we have ∂B ∈ ΓC
for any component B of Ω. But Γ·∂B is discrete in the space of circles,
contrary to our assumption that C is exotic. This completes the proof
of Theorem 1.5.

Question. What can one say, in general, about the stabilizer of a circle
ΓC ⊂ Γ? For example, can ΓC be an infinitely generated group? (It is
known that infinitely generated groups can arise in an analogous situation
for Teichmüller space; cf. [Mc3]).

Notes and references. The work of Shah and Ratner establishes, more
generally, the rigidity of totally geodesic k-manifolds in finite–volume hy-
perbolic n-manifolds, for k ≥ 2 [Sh], [Rn2]. Payne gives a generalization
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to locally symmetric spaces of finite volume, using Ratner’s theorems [Pa].
For an example of a compact hyperbolic 3-manifold containing no immersed
compact geodesic surfaces, see [MR1, Cor. 6]. For more on homogeneous
dynamics, see e.g. [Mg2], [Rn3] and [Ein]. We have chosen for directness
to focus on convex cocompact groups in dimension three; many arguments
in the present paper can be generalized to higher dimensions and to groups
with parabolics.

In a sequel to this work [MMO], we apply the results of this paper to
obtain a description of the closures of horocycles and U–orbits for a rigid
acylindrical 3-manifold.

We would like to thank Ian Agol for raising the question of the measure
of E in Theorem 6.1.

2 Background

In this section we fix notation and recall some background in Lie groups,
Kleinian groups and hyperbolic geometry. For more details see e.g. [MT],
[Rc].

Lie groups. Let G denote the simple, connected Lie group PGL2(C). The
group G acts continuously on S2∪H3 ∼= B3, preserving the hyperbolic metric
on H3 and the complex structure on S2 ∼= Ĉ = C ∪ {∞}. Indeed, as a real
Lie group we have

G ∼= Aut(S2) ∼= Isom+(H3).

Thus G also acts on the bundle of oriented, orthonormal frames FH3 over
H3.

Within G, we have the following subgroups:

H = PGL2(R),

A =

{(
a 0

0 a−1

)
: a ∈ R+

}
,

S1 =

{(
exp(iθ) 0

0 exp(−iθ)

)
: θ ∈ R

}
,

K = SU(2)/(±I),

N =

{
ns =

(
1 s

0 1

)
: s ∈ C

}
,

U = {ns : s ∈ R}, and

V = {ns : s ∈ iR}.
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It is understood that the matrices on the right are representatives for equiv-
alence classes in PGL2(C) ∼= SL2(C)/(±I).

Homogeneous spaces. The conformal action of G on S2 ∼= G/S1AN
extends naturally to an action by isometries on H3 ∼= G/K. The induced
action on the frame bundle of H3 is simply transitive, and thus we can
identify G with FH3.

Kleinian groups and 3-manifolds. A Kleinian group is a discrete sub-
group Γ ⊂ G. Associated to Γ is a hyperbolic orbifold, M = Γ\H3, with
frame bundle

FM ∼= Γ\G.

When Γ is torsion–free, M is a manifold.
The right actions of A and N on Γ\G give the geodesic and horocycle

flows on the frame bundle, respectively. The orbit of A through a frame
x = (e1, e2, e3) corresponds to an oriented geodesic in the direction e1. The
orbit of N through x consists of those frames y such that d(xa, ya) → 0
as a → +∞ in A, where d is a left invariant metric on G. The frame x
determines a unique geodesic plane P # M whose tangent space at one
point is spanned by (e1, e2); and xH is the set of all frames tangent to P .

The space of circles. As in the Introduction, we let C ∼= G/H denote the
space of unoriented circles on S2. We frequently use the following elementary
fact:

If the orbit of a circle ΓC ⊂ C is closed, then it is discrete.

(If ΓC is closed but not discrete, then it has no isolated points by homo-
geneity, so it contains a perfect set, contrary to countability of Γ.)

The convex core. The limit set of Γ is defined by

Λ = S2 ∩ Γx,

where x is any point in H3. Here the closure is taken in the compactified
hyperbolic space S2 ∪ H3 ∼= B3. Its complement is the domain of disconti-
nuity,

Ω = S2 − Λ.

We will generally assume that Γ is nonelementary, i.e. it does not contain
an abelian subgroup of finite index. Equivalently, we assume |Λ| > 2. Then:

• Λ is a perfect set (it has no isolated points),

• The action of Γ on Λ is minimal (every orbit is dense), and
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• The action of Γ on Λ× Λ is transitive (there exists a dense orbit).

See e.g. [Eb, §2].
Given E ⊂ S2 we let

hull(E) ⊂ H3

denote the smallest convex set containing all geodesics with both endpoints
in E. The convex core of M is given by

core(M) = Γ\ hull(Λ) ⊂M.

It contains all the closed geodesics in M .

The renormalized geodesic flow. Let RFM ⊂ FM denote the renormal-
ized frame bundle M , i.e. the closed set consisting of all frames (e1, e2, e3)
such that e1 is tangent to a complete geodesic γ # core(M). The A–action
on RFM gives the renormalized geodesic flow; cf. [Sul].

When Λ 6= S2, most geodesics (a dense open set) in M exit the convex
core and tend to infinity in forward and backward time. The renormalized
frame bundle, RFM , captures the more recurrent part of the dynamics. It
can also be described as the quotient

RFM = Γ

∖{
(e1, e2, e3) ∈ FH3 :

the geodesic through e1

has both endpoints in Λ

}
.

The space RFM is invariant under S1 ⊂ G, yielding as quotient the
renormalized unit tangent bundle,

RT1M = RFM/S1.

The fact that Γ has a dense orbit on Λ × Λ is equivalent to the fact that
there is a dense A–orbit in RT1M .

In general K ⊂ G does not preserve RFM , but we still have a natural
projection

RFM → core(M).

This map need not be surjective.

3 Fuchsian groups

In this section we discuss families of circles invariant under the action of a
Fuchsian group Γ.
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Automorphisms of a ball. Let B ⊂ S2 be an open round ball. Then
B carries a natural hyperbolic metric ρB, since it is conformally isomor-
phic to the upper half plane. Every isometry of B extends to a conformal
automorphism of S2, and thus we have

GB ∼= Isom+(B, ρB) ∼= PSL2(R).

We refer to a discrete subgroup Γ ⊂ GB as a Fuchsian group, since it
is conjugate into PSL2(R) ∼= Isom+(H2). The quotient space X = Γ\B is
a hyperbolic orbifold in the metric it inherits from B. We usually assume
Γ is nonelementary; then its limit set Λ ⊂ ∂B is either a Cantor set or the
whole circle, and in particular Γ determines the circle ∂B uniquely.

Let hull(Λ, B) ⊂ B denote the convex hull of the limit set in the hyper-
bolic metric on B. If Γ\ hull(Λ, B) is compact, we say Γ is convex cocompact.

Horocycles. Now let C be a circle that meets B. Then the intersection
C ∩ B is an arc or circle of constant geodesic curvature in the hyperbolic
metric on B. We say C is a horocycle in B if C is tangent to ∂B; equivalently,
if C ∩B has geodesic curvature k = 1.

The closure of the set of horocycles in B is given by

H(B) = {C ∈ C : C ⊂ B and C ∩ ∂B 6= ∅}.

The only circle inH(B) which is not a horocycle, is ∂B itself. Given E ⊂ ∂B,
we denote the closure of the set of horocycles resting on E by

H(B,E) = {C ∈ H(B) : C ∩ E 6= ∅}.

Dynamics of the horocycle flow. As was shown by Hedlund, if X = Γ\B
is compact, then the horocycle flow on T1X is minimal [Hed, Thm. 2.5].
A generalization to convex cocompact groups follows from [Da, Prop. B].
Formulated in terms of the universal cover, it states the following.

Theorem 3.1 Let Γ ⊂ GB be a nonelementary, convex cocompact Fuch-
sian group, with limit set Λ. Then every Γ–orbit in the space of horocycles
H(B,Λ) is dense.

Corollary 3.2 Under the same assumptions, suppose Cn → ∂B in C, and
Cn ∩ hull(Λ, B) 6= ∅ for all n. Then

⋃
ΓCn contains H(B,Λ).

Proof. Let kn denote the geodesic curvature of Cn ∩ B in the hyperbolic
metric on B. Since Cn → ∂B, kn tends to 1, the curvature of a horocycle.
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Figure 2. Dynamics of a Schottky group acting on the unit disk: orbit of a
fundamental domain (left) and orbit of a circle C close to S1 (right).

By assumption, Cn also meets hull(Λ, B). Since Γ is convex cocompact,
there is a compact set K ⊂ hull(Λ, B) and a sequence γn ∈ Γ such that
γnCn meets K for all n.

Choose x ∈ K and pass to a subsequence such that γnCn → D ∈ C
and γnx → p ∈ B. Since the hyperbolic distance dB(K,Cn) → ∞, we have
p ∈ ∂B ∩ Γx = Λ. Since kn → 1, D is a horocycle for B; and since Cn
encloses x for all n� 0, we have p ∈ D. Thus Γ

⋃
Cn contains a horocycle

D resting on the limit set, so it also contains all such horocycles by the
preceding result.

The Corollary is illustrated in Figure 2 for a convex cocompact group
acting on the unit disk.

4 Zariski dense Kleinian groups

We now return to the setting of a Kleinian group Γ ⊂ G = PGL2(C) with
limit set Λ. Let

CΛ = {C ∈ C : C ∩ Λ 6= ∅}.

Our goal is to formulate conditions which insure that a Γ-orbit in CΛ is
dense.

Recall that Γ is Zariski dense in G = PGL2(C), as a real Lie group, if
it is contained in no proper real algebraic subvariety V ⊂ G. It suffices to
consider only subvarieties which are groups. In the case at hand, it is easy
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to see that Γ is Zariski dense if and only if its limit set is not contained in
a circle.

In this section we will show:

Theorem 4.1 For any Zariski dense Kleinian group Γ, there exists a dense
subset Λ0 of its limit set Λ such that

ΓC = CΛ

whenever C meets Λ0.

Corollary 4.2 Let D ⊂ C be a collection of circles such that
⋃
D contains a

nonempty open subset of Λ. Then there exists a D ∈ D such that ΓD = CΛ.

Theorem 4.1 will be deduced from:

Theorem 4.3 If Γ is Zariski dense in G, then there exists a dense geodesic
ray in the renormalized frame bundle RFM .

Indeed, we can take Λ0 ⊂ S2 to be the orbit under Γ of the endpoint of
such a ray, when lifted to the universal cover.

Twist. Every nonparabolic element g ∈ G is conjugate to an element
am ∈ AS1. We refer to τ(g) = m ∈ S1 as the twist of g. When g is
hyperbolic, τ(g) describes how a frame is rotated under parallel transport
along the closed geodesic corresponding to g. Let τ(g) = id if g is parabolic
(or the identity).

Proposition 4.4 If Γ is Zariski dense, then the twists

T = {τ(g) : g ∈ Γ is hyperbolic}

form a dense subset of S1.

Proof. We may assume Γ is finitely–generated and torsion–free, since any
Zariski dense discrete group contains a subgroup of this form which is still
Zariski dense. Since τ(gn) = τ(g)n, T ⊂ S1 is either finite or dense. But if
T is finite, then Γ is contained in the variety

V = {g ∈ G : g is parabolic, g = id, or τ(g) ∈ T},

contradicting Zariski density. Thus T is dense.
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Corollary 4.5 Any circle meeting Λ in 1 point is a limit of circles meeting
Λ in 2 or more points.

Proof. For each n > 0, let qn ∈ Λ be the fixed point of a hyperbolic element
γn ∈ Γ such that τ(γn) ∈ S1 generates a subgroup of order greater than n.
Such an element exists because τ(Γ) is dense in S1.

Now suppose C meets Λ in a single point p. Every Γ orbit in the limit
set is dense, so we can find an ∈ Γqn such that an → p. Note that the
tangent cone to Λ at an is invariant under 〈τ(qn)〉, so it is nearly dense in
S1 when n � 0. Thus we can find bn ∈ Λ such that bn 6= an, bn → p and
anbn converges to the tangent line to C at p. Choose c ∈ C disjoint from
{p}, {an} and {bn}, and let Cn ⊂ S2 denote the unique circle through the
three points (an, bn, c). Then |Cn ∩ Λ| ≥ 2 for all n, and by construction
Cn → C.

Proof of Theorem 4.3. Let A+ = {
(
a 0
0 a−1

)
: a ≥ 1} denote the positive

semigroup inside A. Introduce a relation on RFM by

x ≤ y ⇐⇒ there exist xn → x and yn → y such that yn ∈ xnA+.

Using the fact that a broken geodesic with small bends, far apart, is very
close to a geodesic, one can check that this relation is transitive. It also
follows directly from the definition that this relation is closed and that x ≤
y =⇒ xm ≤ ym for all m ∈ S1. Since Γ is nonelementary, it has a
dense orbit on Λ× Λ (§2); equivalently, there is a dense A–orbit in RT1M .
This implies we have a dense A+ orbit as well (cf. [Eb, Prop. 3.12]), and
therefore:

For all x, y ∈ RFM there is an m ∈ S1 such that x ≤ ym. (4.1)

Given x ∈ RFM , consider the closed semigroup

S(x) = {m ∈ S1 : xm ≤ x}.

Since S1 is compact, S(x) is a group; and since S1 is abelian, S(x) = S(xm)
for all m ∈ S1. Now given any x, y ∈ RFM there exist m0,m1 ∈ S1 such
that

x ≤ ym0 ≤ xm1,

with m1 ∈ S(x). This implies that

x ≤ ym0 ≤ ym0m ≤ xm1m, for all m ∈ S(ym0) = S(y),
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and thus S(y) is contained in S(x). This relation holds for all x, y ∈ RFM ,
so S(x) is independent of x.

Now for any hyperbolic element γ ∈ Γ, there is a y ∈ RFM tangent
to the geodesic stabilized by γ, and hence τ(γ) ∈ S(y) = S(x). Therefore
τ(Γ) ⊂ S(x). Since Γ is Zariski dense, τ(Γ) is dense in S1 by Proposition
4.4, and hence S(x) = S1. Thus we have x ≤ y for all x, y ∈ RFM by (4.1).

To complete the proof, choose a countable dense set {x1, x2, . . .} ⊂ RFM .
Let d(x, y) denote the natural metric on FM , and for i, j > 0 let

Uij = {x ∈ RFM : d(A+x, xi) < 1/j}.

Since x ≤ xi for all x, each open set Uij is dense in RFM . Thus, by the
Baire category theorem, X =

⋂
i,j Uij is nonempty; and for any x ∈ X, the

orbit A+x gives a dense geodesic ray in RFM .

Remark: Bruhat decomposition. Transitivity of the relation x ≤ y
can also be verified using the Bruhat decomposition. The key point is to
show that, if a1, a2 ∈ A+ and g ∈ G is small (close to the identity), then
a1ga2 = g1a1a2g2 with g1, g2 also small. To see this, let N+ and N− be
the unipotent subgroups that are respectively expanded and contracted by
the adjoint action of A+. Using the Bruhat decomposition, we can write
g = n−amn+ for small n± ∈ N±, a ∈ A and m ∈ S1. We then have

a1ga2 = a1n−amn+a2 = (n′−)a1a2(amn′+) = g1a1a2g2;

and n′− = a1n−a
−1
1 ∈ N− and n′+ = a−1

2 n+a2 ∈ N+ are still small, by the
definition of N±.

Proof of Theorem 4.1 . Let x ∈ Λ be the endpoint of a geodesic ray γ
whose projection to M gives a dense subset of RFM . Suppose x ∈ C.

Let F (C) ⊂ FM denote the projection to M of the frames (e1, e2, e3) ∈
FH3 such that e3 is normal to the hyperplane P (C) = hull(C) ⊂ H3. Since
γ and P (C) are asymptotic at x, we have RFM ⊂ F (C).

Now let D be a circle meeting Λ in 2 or more points. Then the plane
P (D) contains a geodesic with endpoints in the limit set, and hence F (D)
meets RFM . Thus there is a frame in F (D) which is a limit of frames in
F (C). This implies there are circles Cn ∈ ΓC such that hull(Cn)→ hull(D),
and hence Cn → D.

Thus ΓC contains all circles meeting Λ in 2 or more points. By Corollary
4.5, the closure also contains CΛ. Since C ∈ CΛ, and the latter set is closed
and Γ–invariant, equality holds.
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The same reasoning applies whenever C meets an element of the density
set Λ0 = Γx ⊂ Λ.

Remarks. A proof of Theorem 4.3 can also be based on ergodicity of
the geodesic flow on the frame bundle for Zariski dense convex cocompact
Kleinian groups, established in [Win]. (Apply ergodicity to Schottky sub-
groups of Γ and pass to the limit.) This second proof generalizes to all
dimensions. For a stronger version of Proposition 4.4, see [PR].

5 Influence of a Fuchsian subgroup

In this section we combine results from the previous two sections to analyze a
geodesic plane P ⊂M = Γ\H3 whose closure contains an immersed surface
with nontrivial fundamental group.

The setting. Let Γ be a Zariski dense Kleinian group with limit set Λ.
Let C ⊂ S2 be a circle, and suppose D ∈ ΓC − ΓC. We wish to show that
ΓC is large, if the stabilizer ΓD is large. We formulate two results in this
direction.

Theorem 5.1 Suppose ΓD is a nonelementary group, and there is limit set
on both sides of D. Then ΓC = CΛ.

Proof. By assumption ΓC is not closed, so C meets Λ. Therefore

ΓC ⊂ CΛ.

To establish the reverse inclusion, write the complement of D as the
union of two disjoint balls, S2−D = B∪B′. Then ΓB ⊂ ΓD is a nonelemen-
tary Fuchsian group. Any such Fuchsian group contains a nonelementary
convex cocompact group Γ0. Let Λ0 ⊂ D be the limit set of Γ0.

Choose Cn ∈ ΓC such that Cn → D. Since Cn 6= D, we find that Cn
meets hull(Λ0, B) ∪ hull(Λ0, B

′) for all n� 0. (Indeed, the set

S2 − (hull(Λ0, B) ∪ hull(Λ0, B
′) ∪ Λ0)

is a union of open balls, one for each component of D−Λ0, whose diameters
tend to zero; so eventually, Cn is not contained in one of these balls.) By
Corollary 3.2, this implies Γ0C contains H(B,Λ0) or H(B′,Λ0).

Without loss of generality, we can assume that H(B,Λ0) ⊂ Γ0C. Then
ΓC contains a family of circles sweeping out the open set B ⊂ S2. Since D
has limit set on both sides, B meets Λ, and thus ΓC ⊃ CΛ by Corollary 4.2.
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Immersed planes. Geometrically, Theorem 5.1 says that if M contains a
geodesic plane P which is not closed, and its closure contains an immersed,
totally geodesic surface S with nonelementary fundamental group, then the
chaotic dynamics on S forces the nearby plane P to become densely dis-
tributed in the convex core of M .

Boundary surfaces. The next result deals with the case where S is a
compact boundary component of the convex core of M .

Theorem 5.2 Suppose that D = ∂B is the boundary of a component B of
Ω = S2 − Λ, and ΓD is a cocompact Fuchsian group. Then either:

1. ΓC = CΛ, or

2. ΓC = ΓH(B), and |C ∩ Λ| = 1.

Proof. Let B′ = S2 − B. Since Γ is Zariski dense, its limit set is not
contained in D, and hence B′ meets Λ. Moreover D is the limit set of ΓD,
since ΓD is cocompact.

Choose Cn = γnC ∈ ΓC such that Cn → D, Cn 6= D. If Cn meets B′

for infinitely many n, then we may repeat the previous argument: we have
H(B′) ⊂ ΓC by Corollary 3.2, and hence ΓC = CΛ by Corollary 4.2.

Otherwise, we have Cn = γnC ⊂ B for all n � 0. Since Cn 6= D, this
implies that

|C ∩ Λ| = |Cn ∩D| = 1

for all n, and that C ∈ ΓH(B). Since the diameters of the components of
ΓB tend to zero, the set ΓH(B) is closed, and hence

ΓC ⊂ ΓH(B).

On the other hand, by Corollary 3.2 we have H(B) ⊂ ΓD
⋃
Cn ⊂ ΓC, so

equality holds in the equation above.

6 Convex cocompact Kleinian groups

In this section we turn to the theory of convex cocompact groups, i.e. those
such that the convex core of Γ\H3 is compact. We establish the following
topological and geometric properties of their limit sets.

Theorem 6.1 Let Γ be a convex cocompact Kleinian group with limit set
Λ. Then for any circle C ⊂ S2, either C is contained in Λ or C ∩ Λ is a
totally disconnected set of linear measure zero.
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(A sharper statement is given in Corollary 6.4 below.) For later use we also
record:

Theorem 6.2 Under the same hypotheses, suppose ΓC is discrete in C.
Then ΓC is finitely generated, and C ∩ Λ is the limit set of ΓC .

Points of density. Let E be a closed subset of a metric space C. We say
c is a metric density point of E in C if

lim
x→c

d(x,E)/d(x, c) = 0.

For example, c = 0 is a metric density point of E = {0} ∪ {1/n : n ≥ 1} in
C = [0, 1]. If C ⊂ S2 is a circle, then c is a metric density point of E if and
only if

lim
s→∞

d(γ(s), ∂ hull(E)) =∞ (6.1)

for every geodesic ray γ : [0,∞)→ hull(C) converging to c.

The space of inscribed circles. Now fix a convex cocompact Kleinian
group Γ with limit set Λ 6= S2. Let

I(Λ) = {C ∈ C : C ⊂ Λ}.

In Appendix B we will show:

The set Γ\I(Λ) is finite, and ΓC\ hull(C) is compact for all C ∈
I(Λ).

This means that every circle contained in Λ corresponds to one of finitely
many compact, immersed geodesic surfaces Si ⊂M = Γ\H3.

Theorem 6.3 Let C ⊂ S2 be a circle, let E = C ∩ Λ and let c be a metric
density point of E in C. Then there is a circle D ⊂ Λ tangent to C at c.

Proof. Consider the natural projection

π : hull(C)→M.

Choose a lift of π to a continuous map p : hull(C) → FM such that the
first two vectors in the frame (e1, e2, e3) = p(x) are tangent to the plane
described by π; in other words, such that (e1, e2) form a basis for the image
of Tx hull(C) under Dπ.
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Let γ : R → hull(E) be a geodesic such that γ(s) → c as s → +∞.
Then p ◦ γ takes values in the compact set RFM . Let L ⊂ RFM denote the
ω–limit set of p ◦ γ, i.e. the set of all frames of the form y = lim p ◦ γ(sn)
with sn →∞. Then L is compact and connected.

Since c is a point of metric density, equation (6.1) holds for γ(s). Thus
for any y ∈ L we can choose rn, sn → ∞ such that p ◦ γ(sn) → y and the
2-dimensional balls

B(γ(sn), rn) ⊂ hull(C)

are contained in hull(E) for all n. Since hull(E) ⊂ hull(Λ), this means that
the limiting frame y must be tangent to a geodesic plane entirely contained in
the convex core of M . Thus y is tangent to one of the finitely many compact,
immersed geodesic surfaces S1, . . . , Sn ⊂M . Since L is connected, in fact all
y ∈ L are tangent to the same surface Si. It follows that d(π ◦ γ(s), Si)→ 0
as s → ∞. Lifting to the universal cover, we find there is a circle D ⊂ Λ,
tangent to C at c, such that Si = ΓD\ hull(D).

Corollary 6.4 If C is not contained in Λ, then E = Λ ∩ C has at most
countably many metric density points.

Proof. Since Γ\I(Λ) is finite, I(Λ) itself is countable, and each D ∈ I(Λ)
has at most one point of tangency with C.

Proof of Theorem 6.1. Let E = C∩Λ. By the Lebesgue density theorem,
almost every point of E is a point of metric density. So if E 6= C, then E
has measure zero by the preceding Corollary, and in particular E is totally
disconnected.

Proof of Theorem 6.2. Let P = ΓC\ hull(C). Since ΓC is discrete, the
preimage of P in H3 is a closed, locally finite configuration of hyperplanes.
Thus the immersion f : P → M is proper. Hence P ′ = f−1(core(M)) is a
compact convex submanifold of P . The convex core of P is contained in P ′,
and hence compact, so π1(P ) ∼= ΓC is finitely generated. Moreover P ′ lies
within a bounded neighborhood of core(P ), so Λ(ΓC) = Λ(Γ) ∩ C.

7 Acylindrical manifolds

In this section we begin the proof of our main result, Theorem 1.5.
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The setting. Let M = Γ\H3 be a rigid acylindrical manifold, with limit
set Λ ⊂ S2. Note that Λ is not contained in a circle, so Γ is Zariski dense
in G.

We will describe 5 possible behaviors for a geodesic plane in M , in terms
of the orbit closure of a circle, ΓC ⊂ C.
Topology of C ∩ Λ. We begin with two observations.

Proposition 7.1 Let E = C ∩ Λ be the intersection of a circle C with the
Sierpiński curve Λ ⊂ S2. Then either E is a Cantor set, E = C, or |E| ≤ 1.

Proof. First suppose E has an isolated point p. That is, suppose p = I ∩E
where I ⊂ C is an open interval. Since the closures of the components
(Bi) of Ω are disjoint, I − {p} must be contained in a single component Bi.
Therefore C is tangent to ∂Bi at p, and |E| = 1.

Now suppose |E| > 1. Then E is perfect, by the preceding argument. If
E 6= C, then it is also totally disconnected by Theorem 6.1, and hence E is
a Cantor set.

Proposition 7.2 If |C ∩ Λ| = 0, then ΓC is discrete. If |C ∩ Λ| = 1, then
ΓC = Γ · H(B) for some component B of Ω.

Proof. The first case follows from the fact that Γ acts properly discon-
tinuously on Ω = S2 − Λ. In the second case, C is a horocycle for some
component B of Ω. Then ΓC 6= CΛ, and we have D = ∂B ∈ ΓC by Theo-
rem 3.1, so Theorem 5.2 finishes the proof.

Exotic circles. We say C is an exotic circle if there is no closed Γ–orbit
in ΓC. (We only regard C as ‘exotic’ in the rigid acylindrical setting, where
there are many closed Γ–orbits in C.)

The next two sections will be devoted to the proof of the following crucial,
technical result.

Theorem 7.3 If M = Γ\H3 is a rigid acylindrical manifold, then Γ has no
exotic circles.

Geometrically, this means the every geodesic plane in M contains a properly
immersed geodesic plane in its closure.
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Assuming Theorem 7.3, we can now complete the proof of the classifi-
cation theorem for geodesic planes in rigid acylindrical manifolds, using the
language of circles.

Proof of Theorem 1.5. Let M = Γ\H3 be a rigid acylindrical manifold
with limit set Λ, let C be a circle on S2, and let E = C ∩ Λ.

By Proposition 7.1, either E = C, E is a Cantor set or |E| ≤ 1.
If |E| ≤ 1, then the behavior of ΓC is described by Proposition 7.2 above,

yielding cases (4) and (5) of Theorem 1.5.
Now assume |E| > 1 and ΓC is discrete. Then |E| =∞, E coincides with

the limit set of ΓC , and ΓC is conjugate to a finitely–generated subgroup
of PGL2(R), by Theorem 6.2. In particular, ΓC is nonelementary. Since Γ
has no parabolics, ΓC is convex cocompact, so we have case (1) or (2) of
Theorem 1.5.

Finally assume |E| > 1 and ΓC is not closed. Since Γ has no exotic
circles, there is a closed orbit ΓD ⊂ ΓC. Since C meets Λ, so does D, and
hence the limit set of ΓD is either a Cantor set or a circle. In either case, ΓD

is nonelementary, so ΓC = CΛ by the combination of Theorems 5.1 and 5.2.
We cannot have C ⊂ Λ, since there are circles in ΓC that are not contained
in Λ. Hence E is a Cantor set, and we have case (3) of Theorem 1.5.

Remarks. Case (1), where we have C ⊂ Λ, can also be treated by dou-
bling core(M) across its boundary and then applying Shah’s theorem to the
resulting closed manifold.

8 Unipotent blowup

In this section we give a self–contained proof of two results concerning the
Lie group G which will play a key role in the proof that a rigid acylindrical
manifolds has no exotic circles (§9).

Thick sets. Let us say T ⊂ R is K-thick if

[1,K] · |T | = [0,∞).

In other words, given x ≥ 0 there exists a t ∈ T with |t| ∈ [x,Kx]. We say
T ⊂ U is K-thick if its image under an isomorphism U ∼= R is thick.

In this section we will demonstrate two similar results. Recall that H =
PGL2(R), that U = {( 1 x

0 1 ) : x ∈ R}, and that V = {
(

1 iy
0 1

)
: y ∈ R}. Note

that AN (or V H = ANH) appears in these statements because it is the
normalizer of U ; cf. [Mg1, Lemma 5].
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Theorem 8.1 Suppose gn → id in G− V H. Then there exist un ∈ U and
hn ∈ H such that after passing to a subsequence, we have

ungnhn → g ∈ V − {id}.

Moreover, given a sequence of K-thick sets Tn ⊂ U and a neighborhood G0

of the identity in G, we can arrange that un ∈ Tn and g ∈ G0.

Theorem 8.2 Let gn → id in G−AN . Then there exist un, u
′
n →∞ in U

such that after passing to a subsequence, we have

ungnu
′
n → g ∈ AV − {id}.

Moreover, given a sequence of K-thick sets Tn ⊂ U and a neighborhood G0

of the identity in G, we can arrange that un ∈ Tn and g ∈ G0.

In these results, we can think of the unipotent elements un and u′n (or
un and hn) as independent changes of coordinates, which blow up or rescale
the action of gn to obtain a desirable limit.

Polynomials and thickness. For the proofs we will use the polynomial
behavior of unipotent dynamics, together with thickness. The usefulness of
these two properties together comes from the following elementary principle.

Let pi(x) ∈ R[x], i = 1, . . . , n be a finite sequence of polynomials of total
degree d =

∑
deg pi(x), and let T ⊂ R be a K–thick set. Then there is a

constant k > 0, depending only on K and d, such that for any symmetric
interval I = [−a, a] we have

max
x∈T∩I

max
i
|pi(x)| ≥ kmax

x∈I
max
i
|pi(x)|. (8.1)

(Idea of the proof: choose x ∈ T ∩ I such that x is as far as possible from
the zeros of the polynomials pi(x).)

Proof of Theorem 8.1. We will prove the strong form of the result, with
respect to a sequence of K–thick sets Tn and a neighborhood of the origin
G0 ⊂ G.

It is convenient to pass to the Lie algebra of H = PGL2(R), given by

Lie(H) =

{
` =

(
a b

c −a

)
: a, b, c ∈ R

}
,

with the norm given by

‖`‖ = max(|a|, |b|, |c|). (8.2)

22



Note that the Lie algebra of G satisfies

Lie(G) = Lie(H)⊕ iLie(H)

as a vector space. Thus any element g ∈ G close to the identity can be
factored as

g = exp(i `)h,

with h ∈ H and ` ∈ Lie(H) both small. Choose ε > 0 such that ‖`‖ < ε =⇒
exp(i `) ∈ G0.

Now suppose gn → id in G − V H. Then for all n � 0 we can choose
hn ∈ H and `n ∈ Lie(H) such that

gnhn = exp(i `n),

with hn → id and

`n =

(
an bn

cn −an

)
→ 0.

By dropping an initial segment of the sequence `n, we may assume ‖`n‖ < ε
for all n. Since gn 6∈ V H, we have:

(cn 6= 0) or (cn = 0 and an 6= 0). (8.3)

Now consider a sequence of unipotent transformations of the form

un =

(
1 tn

0 1

)
∈ U.

We then have

un`nu
−1
n =

(
an + cntn bn − 2antn + cnt

2
n

cn −an − cntn

)
. (8.4)

The norm of the matrix on the right is large when |tn| is large, by condition
(8.3). Since its entries are polynomials in tn, and we have ‖`n‖ < ε, the
thick set principle expressed in (8.1) implies we can choose tn ∈ Tn such
that

kε ≤ ‖un`nu−1
n ‖ ≤ ε,

where k > 0 depends only on K.
Since `n → 0, we have |tn| → ∞. Pass to a subsequence such that

un`nu
−1
n → ` ∈ Lie(H).
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By construction, we have kε ≤ ‖`‖ ≤ ε. Since cn → 0, ` is upper triangular.
Moreover, Tr(`2n) → 0, so Tr(`2) = 0, and hence ` ∈ Lie(U). This implies
that g = exp(i `) ∈ V . By the upper and lower bounds on ‖`‖, we have
g ∈ G0 − {id}. Since

ungnhnu
−1
n = un exp(i `n)u−1

n = exp(i un`nu
−1
n )→ exp(i `) = g,

and hnu
−1
n ∈ H, the proof is complete.

Proof of Theorem 8.2. For this argument we will work in G instead of
its Lie algebra. To measure how close an element g =

(
a b
c d

)
∈ G is to the

identity, we define

‖g‖ = max{|a− 1|, |b|, |c|, |d− 1|}.

Choose 0 < ε < 1/100 such that ‖g‖ < ε =⇒ g ∈ G0.
Now suppose gn → id, where

gn =

(
an bn

cn dn

)
∈ G−AN.

After dropping an initial segment of the sequence, we can assume that
‖gn‖ < ε for all n. Consider a pair of sequences in U , given by

un =

(
1 tn

0 1

)
and u′n =

(
1 sn

0 1

)
.

Writing g′n = ungnu
′
n, we then have

g′n =

(
a′n b′n

c′n d′n

)
=

(
an + cntn bn + dntn + sn(an + cntn)

cn dn + cnsn

)
· (8.5)

Our goal is to choose sn and tn so that g′n converges to a nontrivial
matrix of the form

g =

(
x iy

0 x−1

)
with x, y ∈ R.

To this end, we first impose on tn the condition that

|cntn| < 3ε, (8.6)
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to insure that
1/2 < Re(an + cntn) < 2. (8.7)

Next, we choose sn such that Re(b′n) = 0. This gives

sn = −Re(bn + dntn)

Re(an + cntn)
. (8.8)

Once we have defined sn by (8.8), the entries in g′n become rational
functions of tn, with controlled denominators by (8.7). Thus the entries are
comparable to (linear and quadratic) polynomials in tn. By the thick set
principle expressed in (8.1), we can then choose tn ∈ Tn such that

kε ≤ ‖g′n‖ ≤ ε, (8.9)

where k > 0 depends only on K. It is here we use the fact that gn 6∈ AN :
this insures that either cn 6= 0, or cn = 0 and Im(an) 6= 0; in either case,
‖g′n‖ becomes large if we take tn large, so it eventually exceeds ε. Note that
‖g′n‖ ≤ ε implies the condition (8.6) we have assumed above, so we stay in
the range with controlled denominators.

Now pass to a subsequence such that g′n → g ∈ G. By equation (8.9) we
have g ∈ G0 − {id}. It remains only to verify that g ∈ AV . Clearly cn = c′n
converges to 0, and Re(b′n) = 0, so the only danger is that the diagonal
entries of g might not be real. But in this case | Im(a′n)| = tn| Im(cn)|+ o(1)
would be bounded below for all n� 0. By (8.5) and the fact that sn � −tn,
we would then have

| Im(b′n)| � t2n| Im(cn)| → ∞,

contrary to our choice of tn.

9 No exotic circles

In this section we prove that a rigid acylindrical manifold has no exotic
circles (Theorem 7.3).

Throughout this section, M = Γ\H3 denotes a rigid acylindrical mani-
fold. The stated results hold for all such M .

From circles to flows. It is useful to shift perspective from the action of
the discrete group Γ on the space of circles, C = G/H, to the action of the
continuous group H on the frame bundle, FM = Γ\G.
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Let us say an orbit xH ⊂ FM is chaotic if xH 6= xH and xH meets the
renormalized frame bundle RFM . We say L ⊂ G is a 1-parameter semigroup
if L = {exp(t`) : t ≥ 0} for some ` ∈ Lie(G), ` 6= 0.

In this language, we will show:

Theorem 9.1 Let X ⊂ FM be a closed set which is a union of chaotic
H–orbits. Then there is a 1-parameter semigroup L ⊂ G and a y ∈ X such
that yL ⊂ X and L ∩H = {id}.

To prepare for the proof, we must first develop some results on recurrence
and unipotent minimal sets.

Thickness. We begin by explaining how thick sets enter the discussion.

Lemma 9.2 There is a K > 1 such that for every y ∈ RFM ,

T (y) = {u ∈ U : yu ∈ RFM} (9.1)

is a K–thick subset of U .

Proof. Let ỹ = (e1, e2, e3) be a lift of y to a frame at a point p in H3 ∼=
C × R+. We can choose coordinates such that p = (0, 1), the geodesic
through e1 joins z = 0 to z = ∞ in ∂H3 = Ĉ, and e2 is parallel to the real
axis. Since y is in RFM , we have 0,∞ ∈ Λ. The group U ∼= R acts by
translation on R ⊂ Ĉ ∼= S2. If u ∈ U and u(0) is in Λ, then the geodesic
from u(0) to u(∞) =∞ joins two points of Λ, so u ∈ T (y). Thus it suffices
to show that Λ ∩ R is uniformly thick in R.

Let Ω =
⋃
Bi = Ĉ−Λ be the domain of discontinuity of Γ, expressed as

a union of countably many disjoint round balls. Let

δ = inf{d(hull(Bi),hull(Bj)) : i 6= j},

where d is the hyperbolic metric on H3. It is easy to see that δ is positive; for
example, 2δ is bounded below by the length of the shortest closed geodesic
on the double of core(M) across its boundary.

Let I = [t,Kt] ⊂ R, where t > 0 and K > 1. Choose K such that

d(hull(I),hull(−I)) = δ/2.

Note that K depends only on δ, since z 7→ tz is a hyperbolic isometry. Now
suppose that −I ∪ I is disjoint from Λ. Since we have 0,∞ ∈ Λ, I and −I
lie in different components of Ω, say Bi and Bj . It follows that

δ/2 = d(hull(I),hull(−I)) ≥ d(hull(Bi), hull(Bj)) ≥ δ,

a contradiction. Thus −I ∪ I meets Λ, and hence Λ ∩R is K-thick in R.
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Note that convexity of the components of Ω ⊂ C was used in the proof,
to insure that I and −I lie in different components of Ω (because 0 ∈ Λ).
This feature would not be present for general acylindrical manifolds, where
the components of Ω are only quasidisks.

Minimality. Let L be a closed subgroup of G. We say a set Y ⊂ FM is
(absolutely) L–minimal if Y 6= ∅ and

yL = Y (9.2)

for all y ∈ Y . The set Y is relatively L–minimal if

Y ∗ = Y ∩ RFM (9.3)

is nonempty, and (9.2) holds for all y ∈ Y ∗. Using the Axiom of Choice and
compactness of RFM , it is easy to show:

Proposition 9.3 Any closed, L–invariant set meeting RFM contains a rel-
atively L–minimal set.

Translation of Y inside of Y . Using thickness, we can now establish an
important property of the dynamics of U .

Theorem 9.4 For any relatively U–minimal set Y ⊂ FM , there exists a
1-parameter semigroup L ⊂ AV such that Y L ⊂ Y .

Theorem 9.4 shows that a unipotent flow automatically gives rise to a
whole semigroup of new and unexpected dynamical transformations.

To begin the proof, let

Z = {g ∈ G : Y ∗g ∩ Y 6= ∅},

where Y ∗ is defined by (9.3). Then Z is closed, we have ZU = Z, and for
every g ∈ Z, there exists a thick set T ⊂ U such that Tg ⊂ Z.

Note that if g ∈ AN ∩ Z, then yg ∈ Y for some y ∈ Y ∗; and since
gUg−1 = U , we have

Y ⊃ ygU = yUg = Y g (9.4)

by minimality.

Lemma 9.5 For any y ∈ Y ∗ there exists a sequence gn → id in G−U such
that ygn ∈ Y .
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Proof. By Lemma 9.2 and compactness of Y ∗, we can find un → ∞ in
U such that yun ∈ Y ∗ and yun → z ∈ Y ∗. In other words, we can write
yun = zgn with gn → id in G.

Suppose z = yu for some u ∈ U . Then yun = yugn. Since Γ contains no
parabolic elements, FM contains no periodic U–orbits, and hence gn 6∈ U
for all n � 0. Dropping the finitely many indices with gn ∈ U , we have
ugnu

−1 → id in G− U , and

y(ugnu
−1) = zgnu

−1 = yunu
−1 ∈ Y,

for all n, by U–invariance of Y .
Finally suppose z 6∈ yU . Since z ∈ Y ∗, we have zU = Y , and thus

zun → y for some sequence un ∈ U . That is, we can write zun = ygn with
gn → id in G. Then ygn ∈ Y , and gn 6∈ U since z 6∈ yU .

Proof of Theorem 9.4. By Lemma 9.5, there is a sequence gn → id in
G−U such that gn ∈ Z. We claim that Z also contains a sequence zn ∈ AV
converging to the identity, zn 6= id.

To see this, first suppose that gn ∈ AN for infinitely many n. Since
ZU = Z, we can then remove the U component of gn and obtain a sequence
zn → id in Z with zn ∈ AV . We have zn 6= id since gn 6∈ U .

Now suppose gn 6∈ AN for all n � 0. Recall that there is a uniform K
and a sequence of K–thick sets Tn ⊂ U such that TngnU ⊂ Z. By Theorem
8.2, for any neighborhood G0 of the identity in G, we can choose un ∈ Tn
and u′n ∈ Un such that

ungnu
′
n → z ∈ AV − {id},

with z ∈ G0. Since Z is closed, we have z ∈ Z; and since the neighborhood
G0 was arbitrary, we can choose zn → id in Z ∩AV , zn 6= id.

By (9.4), every element of the semigroup generated by zn translates Y
into itself. Passing to a subsequence and taking a Hausdorff limit, we obtain
a closed, 1-parameter semigroup with identity L ⊂ AV such that Y L ⊂ Y .

Proof of Theorem 9.1. With Theorem 9.4 in place, we can now return
to the main line of argument.

Let X ⊂ FM be a closed set which is a union of chaotic H–orbits. The
proof of Theorem 9.1 will depend on a sequence of lemmas, which gradually
yield more information about X.
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As a first simplification, recall that a chaotic H–orbit always meets
RFM . Thus any relatively H–minimal subset of X is absolutely minimal.
By Proposition 9.3, X contains such a subset. Therefore it suffices to prove
Theorem 9.1 under the additional assumption that:

X is an absolutely H–minimal set subset of FM .

Using the same Proposition, let us choose a closed set Y ⊂ FM such that

Y is a relatively U–minimal subset of X.

For the remainder of the analysis, we will study the interaction between X
and Y .

Translation of Y inside of X. Our first goal is to move Y inside of X.
To this end, let

S = {g ∈ G : Y ∗g ∩X 6= ∅}.

Since Y ∗ is compact, S is closed. Note that SH = S; moreover, there is a
K > 1 such that for every g ∈ S, there is a K–thick set T ⊂ U such that
Tg ⊂ S. Indeed, we can simply take T = T (y)−1, where y ∈ Y ∗∩Xg−1 and
T (y) is defined by (9.1).

Lemma 9.6 For any x ∈ X, there exist gn → id in G − H such that
xgn ∈ X.

Proof. If not, then there is a neighborhood G0 the identity in G such that
xG0 ∩X = (xG0 ∩ xH). This implies that (xG0H) ∩X = xH, and hence
the single orbit xH is open in X. Since X is H–minimal, we have X = xH,
contrary to our assumption that X contains no closed H–orbit.

Lemma 9.7 There exists a v ∈ V , v 6= id, such that Y v ⊂ X.

Proof. By Lemma 9.6, there is a sequence gn → id in G − H such that
gn ∈ S. We claim that S also contains a nontrivial element v ∈ V .

First suppose gn ∈ V H for some n. Then we can write gn = vh with
v ∈ V and h ∈ H. Since S = SH and gn 6∈ H, we have v ∈ S − {id}.

Now suppose gn 6∈ V H for all n. Recall that there is a uniform K and a
sequence of K–thick sets Tn ⊂ U such that TngnH ⊂ S. By Theorem 8.1,
we can choose un ∈ Tn and hn ∈ H such that ungnhn → v ∈ V −{id}. Since
S is closed, we have v ∈ S.
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So in either case, S contains a nontrivial element v ∈ V . This means we
have a y ∈ Y ∗ such that yv ∈ X. Since X is U -invariant, it follows that

yvU = yUv = Y v ⊂ X.

Completion of the proof of Theorem 9.1. By Theorem 9.4 and Lemma
9.7, we have a nontrivial v ∈ V and a 1-parameter semigroup L ⊂ AV such
that Y L ⊂ Y and Y v ⊂ X. Choose any y ∈ Y . Then we have yL ⊂ X, so
if L ∩H = {id} we are done.

Otherwise, we have L ⊂ A. But then L′ ∩H = {id}, where L′ = v−1Lv.
Then the point y′ = yv belongs to Y v ⊂ X, and its L′ orbit satisfies

y′L′ = yLv ⊂ Y v ⊂ X,

completing the proof in this case as well.

Proof of Theorem 7.3. Let M = Γ\H3 be a rigid acylindrical manifold,
and let C be an exotic circle. This means there is no closed Γ–orbit in
ΓC ⊂ C = G/H. In particular, |D∩Λ| =∞ for all D ∈ ΓC, by Propositions
7.1 and 7.2.

Let X ⊂ FM = Γ\G be the unique closed, H–invariant set such that
ΓX = ΓCH in G. Since C is exotic, X has no closed H–orbits; and since
|D ∩ Λ| ≥ 2 for all D ∈ ΓC, every H–orbit in X meets RFM .

Thus, by Theorem 9.1, there is a 1-parameter semigroup L ∼= R+ in
G, and a y ∈ X, such that L ∩ H = {id} and yL ⊂ X. Then the cosets
yLH ⊂ X give a nonconstant, continuous family of circles Dt ∈ ΓC, t ∈ R+.
Since |Dt ∩ Λ| =∞ for all t, Dt sweeps out an open subset of Λ, and hence

ΓDt = CΛ

for some t ∈ R+, by Corollary 4.2. Consequently ΓC = CΛ as well. In
particular, ΓC contains the boundary B of some component of Ω. But
ΓB is closed and discrete, contradicting the assumption that C is an exotic
circle.

Remark. The final argument shows that, in fact, there is no X ⊂ FM
satisfying the conditions of Theorem 9.1.

30



10 Thin Cantor sets

In this section we prove Theorem 1.6. That is, assuming M = Γ\H3 is a
rigid acylindrical manifold, and E = C ∩ Λ is a Cantor set, we will show
that ΓC is discrete if and only if E is a thin subset of C.

On the sphere Sn, the notion of a thin set can be formulated in terms of
hyperbolic geometry. Namely, E is thin if and only if there is an R > 0 such
that hull(E) ⊂ Hn+1 contains no hyperbolic ball of radius R. The proof is
straightforward.

Thus E ⊂ C is not thin if and only if the convex hull of E, regarded
as a subset of the hyperbolic plane hull(C) ∼= H2, contains arbitrarily large
hyperbolic balls.

Proof of Theorem 1.6. Suppose ΓC is discrete. Then, by Theorem 6.2,
X = ΓC\ hull(C) is a hyperbolic surface with compact convex core, and
E ⊂ C is the limit set of ΓC . Since core(X) is compact, its inradius is
bounded above, and the same is true of the convex hull of E in hull(C).
Thus E is thin.

Now suppose ΓC is not closed. In this case E is not thin because the
corresponding geodesic plane P ⊂M passes nearly parallel to the boundary
of the convex core, and hence P ∩ core(M) contains arbitrarily large balls.

More precisely, since E is Cantor set we have ΓC = CΛ by Theorem 1.5.
Let Ω =

⋃
Bi express the domain of discontinuity as a union of disjoint

balls. Note that diam(Bi)→ 0.
Let B1 = B(x, r), and consider the open annulus A(s) = B(x, r + s) −

B(x, r). Given ε > 0, choose s small enough that diam(Bi) < ε whenever
Bi meets A(s). Since Λ is connected, A(s) meets Λ, and hence it contains
a circle centered at x that meets Λ. Since ΓC = CΛ, there is a nearby
circle C ′ = γC ⊂ A(s) that encloses B1. Note that each component of
C ′−E′ =

⋃
Bi∩C ′ has diameter less than ε, since Bi meets A(s) whenever it

meets C ′. Since diam(C ′) > r, this implies that hull(E′) ⊂ hull(C ′) contains
a large embedded ball (of hyperbolic radius approximately log(1/ε).) But γ
gives an isometry of H3, sending the convex hull of E to the convex hull of
E′, so hull(E) also contains an arbitrarily large ball, and thus E is not thin.

11 Isolation and finiteness

In this section we discuss a general isolation result that follows from the
methods of §5. Geometrically, this result says that compact immersed
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geodesic surfaces S ⊂ M tend to repel one another, unless such surfaces
are dense.

Theorem 11.1 Let M = Γ\H3 be a hyperbolic 3-manifold, and let

X = {C ∈ C : S = ΓC\ hull(C) is compact}. (11.1)

If X 6= C, then every point of X is isolated.

Proof. Every circle C ∈ X is contained in the limit set Λ of Γ, so the
same is true for circles in X. Thus to show X = C, it suffices to show that
X ⊃ CΛ, for this implies that Λ = S2.

Suppose C ∈ X is not isolated. Then there is a sequence Ci 6= C in X
that converges to C. Since we have Ci ⊂ Λ for all i, Corollary 3.2 implies
that

X ⊃
⋃

ΓCi ⊃ H(B),

where B is a component of S2−C meeting Λ. By Corollary 4.2, this implies
that X ⊃ CΛ, and hence X = C.

Corollary 11.2 Let M = Γ\H3 be a convex cocompact 3-manifold. Then
either:

• M contains only finitely many immersed, compact geodesic surfaces;
or

• M is compact, and the union of all such surfaces is dense. More
precisely, compact H–orbits are dense in FM .

Proof. Let Y = {C ∈ C : C ⊂ Λ}, and define X ⊂ Y by equation
(11.1). Note that Y is a closed subset of C, and X consists of isolated points
by Theorem 11.1. Since M is convex cocompact, there is a compact set
K ⊂ C such that every Γ–orbit in Y meets K. If X ∩K is closed, then it
is finite, and hence Γ\X is finite, which is case (1). Otherwise, there is a
circle C ∈ X−X. Since C ∈ Y , C corresponds to a bounded geodesic plane
P ⊂M ; and since C 6∈ X, M is compact and P = M by Theorem 1.3. More
precisely, we have ΓC = C by Theorem B.1 below, and hence X = C. This
is equivalent to case (2) above.
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Corollary 11.3 Let Λ 6= S2 be the limit set of a convex cocompact Kleinian
group Γ. Then there are finitely many circles C1, . . . , Cn such that

I(Λ) = {C ∈ C : C ⊂ Λ} =

n⋃
1

ΓCi.

Proof. By Theorem 1.3, every circle C ⊂ Λ gives a compact immersed
geodesic surface S ⊂M .

Arithmetic 3–manifolds and open surfaces. By the preceding results,
a rigid acylindrical manifold M contains only finitely many compact im-
mersed geodesic surfaces. We conclude by showing that the situation for
open surfaces is different. It is convenient to define, for any Kleinian group
Γ,

D(Γ) = {C ∈ C : ΓC is discrete in C}.

Theorem 11.4 Let M be a covering space of a compact arithmetic 3-manifold,
and suppose there is a compact H–orbit in FM . Then closed H–orbits are
dense in FM .

Proof. Let M0 = Γ0\H3 be a compact arithmetic 3-manifold, and let M
be the covering space of M0 determined by a subgroup Γ ⊂ Γ0. Then M0

inherits at least one immersed, compact totally geodesic surface from the
compact H–orbit in M . By [Re], the presence of one such surface guarantees
that M0 contains infinitely many of them. By Corollary 11.2 above, this
means that D(Γ0) is dense in C. Since D(Γ) contains D(Γ0), and discrete
Γ–orbits in C = G/H correspond to closed H–orbits in FM = Γ\G, the
latter are dense as well.

Corollary 11.5 Let M = Γ\H3 be a rigid acylindrical 3-manifold that cov-
ers a compact arithmetic 3-manifold. Then there are infinitely many open,
properly immersed geodesic surfaces passing through the convex core of M .

These surfaces correspond to case (2) in Theorem 1.1.

Proof. The components of ∂ core(M) give compact H–orbits in FM , so
closed H–orbits are dense. Equivalently, D(Γ) is dense in C. The circles in
D(Γ) that meet Λ in a Cantor set provide the desired surfaces in M .
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Figure 3. A rigid acylindrical subgroup of an arithmetic group.

Example. Figure 3 illustrates an arithmetic rigid acylindrical manifold
with invariant trace field Q(

√
−7). The Figure shows the orbit of a circle C

such that C∩Λ is a Cantor set, and ΓC ⊂ C is discrete. The circles with this
behavior are dense in C by Theorem 11.4. In this example, Γ is a subgroup
of one of the compact arithmetic tetrahedral reflection groups, enumerated
in [MR2, §13].

A Appendix: Quasifuchsian groups

In this section we show that for a quasifuchsian group Γ, the closure of a
geodesic plane in M = Γ\H3 passing through the convex core can be rather
wild. The case of a Fuchsian group was treated in the Introduction, and we
will show the same phenomena persists under a small bending deformation.

Bending. Let Σ0 = Γ0\H2 be a closed hyperbolic surface of genus g ≥ 2.
We can identify Σ0 with the convex core of the 3-manifold M0 = Γ0\H3,
which can be written as

M0
∼= Σ0 × R

in cylindrical coordinates. Here the first coordinate is given by the nearest–
point projection π : M0 → Σ0, and the second is given by the signed distance
from Σ0.

Let β ⊂ Σ0 be a simple closed curve. Then for all angles θ sufficiently
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small, there is a quasifuchsian manifold Mθ = Γθ\H3 and a path isometry

jθ : Σ0 → Σθ ⊂ ∂ core(Mθ),

such that Σθ is bent with a dihedral angle of θ along the image of β, and
otherwise totally geodesic. The manifold Mθ is unique up to isometry. See
e.g. [Th1, Ch. 8], [EpM], [KaT], [Mc2] for this construction.

Choose r sufficiently small that β has an embedded annular collar neigh-
borhood Br of width 2r. Removing this collar, we obtain a surface with
boundary

Σ0(r) = Σ0 −Br ⊂ Σ0,

and a closed submanifold

M0(r) = Σ0(r)× R ⊂M0.

There is a unique extension of jθ|Σ0(r) to an orientation–preserving isomet-
ric immersion

Jθ : M0(r)→Mθ,

which sends geodesics normal to Σ0(r) to geodesics normal to Σθ(r) =
jθ(Σ0(r)).

Proposition A.1 Assume Mθ is a quasifuchsian manifold, and sin(|θ|/2) <
tanh(r). Then the map Jθ : M0(r)→Mθ is a proper, isometric embedding.

Sketch of the proof. Qualitatively, the statement above is nearly imme-
diate from the divergence of geodesics normal to Σ0 (see Figure 4). The ex-
treme case sin(θ/2) = tanh(r) corresponds to a hyperbolic right triangle with
base of length r and one ideal vertex; its internal angles are (0, π, π − θ/2).

Planes in quasifuchsian manifolds. Now let γ ⊂ Σ0 be an immersed
geodesic such that γ is disjoint from β. Then we can also choose r sufficiently
small that γ lies in Σ0(r). As discussed in §1, the locus P = γ × R ⊂M0 is
an immersed geodesic plane with

P = γ × R ⊂M0.

But in fact we have P ⊂ M0(r). Thus Pθ = Jθ(P ) is an immersed geodesic
plane in Mθ. By Proposition A.1, for all θ sufficiently small, Jθ maps a
neighborhood of P isometrically to a neighborhood of P θ. This shows:
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θΣ

Figure 4. Geodesics normal to Σ0 and at least distance r from the bending
locus remain disjoint under small bendings. (Diagram is in the universal cover.)

Corollary A.2 For all θ sufficiently small, the quasifuchsian manifold Mθ

contains an immersed geodesic plane Pθ, passing through its convex core,
such

P θ ∼= P = γ × R ⊂M0.

As noted in §1, the closure of a geodesic can be rather wild, and the
same is true for geodesics with γ disjoint from β. In particular, the closure
of Pθ need not be a submanifold of Mθ, so we have no analogue of Corollary
1.2.

B Appendix: Bounded geodesic planes

In this section we record a rigidity theorem for bounded geodesic planes in
an arbitrary hyperbolic 3-manifold. Shah’s theorem on geodesic planes in a
compact hyperbolic 3-manifold [Sh] follows as a special case.

Theorem B.1 Let P ⊂ M be a bounded geodesic plane in an arbitrary
hyperbolic 3-manifold M = Γ\H3. Then either:

• P is a compact, immersed hyperbolic surface; or

• M is compact, and P = M . More precisely, frames tangent to P are
dense in FM .

36



Proof. The proof will follow the same lines as the proof in §9 above.
Let Λ ⊂ S2 be the limit set of Γ, and let C ⊂ S2 be a circle corresponding

to a lift of P to the universal cover of M . To prove the theorem, we must
show that ΓC ⊂ C is either closed or dense. Note we have C ⊂ Λ, because
P is bounded in M . Thus every circle D in ΓC is also contained in Λ.

Assume ΓC is not closed. We will show that ΓC = CΛ.
Since ΓC is not closed, Γ is Zariski dense in G, and there is limit set on

both sides of C. (Otherwise C would be the boundary of a component of
Ω = S2 − Λ, and hence ΓC would be discrete.)

If ΓD is closed for some D ∈ ΓC, then ΓC = CΛ by Theorems 5.1 and 6.2.
So we may assume that C is an exotic circle, i.e. ΓD 6= ΓD for all D ∈ ΓC.
Then the corresponding compact, H–invariant set X ⊂ FM contains no
closed H–orbit.

Since P is bounded, and C is contained in Λ, X is a compact subset of
the renormalized frame bundle RFM .

The argument of §9 now goes through verbatim, to show that ΓC = CΛ.
Indeed, the argument is somewhat simpler: since X ⊂ RFM , we have Y ∗ =
Y , and hence there is no need to consider thick sets (i.e. we can take Tn = U
when applying Theorems 8.1 and 8.2).

To complete the proof, note that every circle in ΓC is contained in the
limit set. Thus ΓC = CΛ implies Λ = S2 and ΓC = C. Consequently frames
tangent to P are dense in FM ; and since P is bounded, M is compact.

Using Theorem 11.1, we obtain the following analogue of Corollary 11.2:

Corollary B.2 Let K ⊂M be a compact subset of a hyperbolic 3-manifold.
Then either:

• The set of compact geodesic surfaces in M contained in K is finite; or

• Compact geodesic surfaces are dense in M , and M is compact.

Remarks. One could also deduce these results from Ratner’s works [Rn1]
and [Rn2], using [DM, Thm. 1] or modifying [Rn2, Thm 2.1] to handle the
case where Γ is not a lattice.
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