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Abstract. Let M be a complete Riemannian locally symmetric space of non-
positive curvature and of finite volume. We show that there are only finitely many
compact maximal flats in M of volume bounded by a given number. As a corollary
in the case M = SLn(Z)\ SLn(R)/ SOn, we give a different proof of a theorem of
Remak that for any n ∈ N, there are only finitely many totally real number fields
of degree n whose regulator is less than a given number.

1. Introduction

Let M be a complete Riemannian locally symmetric space of non-positive curvature
and of finite volume. A flat in M is a complete totally geodesic submanifold of
sectional curvature 0. A maximal flat means a flat of maximal dimension, i.e., of
dimension equal to the rank of M . On each flat of M , we have an induced volume
form.

The main aim of this note is to prove:

Theorem 1.1. For any given c > 0, the number of compact maximal flats in M of
volume less than c is finite.

In the case when M is compact, Theorem 1.1 was proved earlier by Spatzier [Sp].

In proving the above theorem, by applying the theorem of Eberlein [Eb, Theorem
7.3.3], we may assume that M has no local Euclidean de Rham factor. We may further
assume without loss of generality that M is irreducible, in the sense that there exists
no finite covering of M which is a direct product (as Riemannian manifolds) of locally
symmetric spaces of positive dimension [He].

Then M is of the form Γ\G/K where G is a connected center free semisimple real
algebraic group with no compact factors, K a maximal compact subgroup of G and
Γ an irreducible torsion free lattice in G, and the metric on M is induced from a left
invariant Riemannian metric on G/K [He].

In the case when the real rank of G is one, that is, when M has negative curvature,
a compact maximal flat in M is just a primitive closed geodesic in M . In this case,
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even the precise asymptotic for the number of (primitive) closed geodesics of length
less than c, as c → ∞, is known by Margulis [Ma1] for M compact and by Gangolli-
Warner [GW] otherwise. The latter is deduced from Selberg trace formula.

Hence we may assume that the real rank of G is at least 2. By Margulis arith-
meticity theorem [Ma2], Γ is then an arithmetic subgroup of G, that is, there exists
a semisimple algebraic group H defined over Q and an epimorphism f : H(R)0 → G
with compact kernel such that Γ is commensurable with f(H(Z)). Since any such
Γ has a torsion free subgroup of finite index by Selberg’s lemma [Se], there exist a
maximal compact subgroup K0 of H(R)0 and a torsion free arithmetic subgroup ∆
such that ∆\H(R)0/K0 is a finite covering space of M .

In what follows, a (resp. connected) real algebraic group defined over Q means
(resp. the identity component of) the group of real points of a connected algebraic
subgroup defined over Q.

Summarizing above, to show Theorem 1.1, it suffices to show the following:

Theorem 1.2. Let G be a connected semisimple real algebraic group defined over
Q and K be a maximal compact subgroup of G. Let Γ be a torsion free arithmetic
subgroup of G with respect to the given Q-structure of G. For any given c > 0, the
number of compact maximal flats in Γ\G/K of volume less than c is finite.

In Section 4, we obtain a number theoretic application of our theorem.

Corollary 1.3. Denote by Ωn the set of all orders in totally real number fields of
degree n. For any c > 0,

#{D ∈ Ωn : Reg(D) < c} < ∞,

where Reg(D) denotes the regulator of the order D.

In particular this implies that there are only finitely many totally real number
fields of degree n with regulator less than a given number. This is a special case of
a theorem of Remak who proved the same statement for any number fields which
are not CM. He obtained this as a consequence of a lower bound for the regulator in
terms of the discriminant of the field [Re] (see also [Si]).

Acknowledgment I would like to thank Dima Dolgopyat and Barak Weiss for helpful
discussion. I am also grateful to the referee for useful remarks.

2. Compact maximal flats in Γ\G/K

Let G be a connected center free semisimple linear real algebraic group. Let K be
a maximal compact subgroup in G and Γ a torsion free lattice in G. Let

G = (exp p)K
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be the Cartan decomposition, and consider the Riemannian symmetric space G/K
with a fixed left invariant Riemannian metric.

Lemma 2.1. There exists a maximal real split torus of G, whose identity component
will be denoted by S, such that

CG(S)0 = S(CG(S)0 ∩ K) (as a direct product)

where CG(S) denotes the centralizer of S in G.

Proof. Let S be the identity component of any maximal real split torus of G. Then
CG(S)0 is a reductive algebraic subgroup, and hence for some g ∈ G, gCG(S)0g−1

has a Cartan decomposition compatible with the one fixed for G [Mo]. On the other
hand, since S is a maximal real split torus, gCG(S)0g−1 is a direct product of gSg−1

with gCG(S)0g−1 ∩ K. Hence gSg−1 satisfies the desired properties. �

Fix S as in the above lemma and set

A = CG(S)0 and M = A ∩ K.

We refer to [Mo] for some known facts about maximal flats in the discussion below.
Any maximal flat in the Riemannian symmetric space G/K is of the form gSK/K
for g ∈ G. We say that a maximal flat F in G/K is Γ-compact if its image Γ\ΓF
under the projection map G/K → Γ\G/K is compact. A compact maximal flat in
Γ\G/K is then of the form Γ\ΓF where F is a Γ-compact maximal flat in G/K.

Since SK = AK, we have gSK/K = gAK/K. Moreover by [Mo, Lemma 5.1],

(2.2) gSK/K = hSK/K if and only if h−1g ∈ NG(S)

where NG(S) denotes the normalizer of S in G.

For a subgroup H of G, the notation ḡH denotes the orbit of ḡ ∈ Γ\G under the
right translation action of H and the notation [H] denotes the Γ-conjugacy class of
subgroups of G containing H.

Now set

X := {[gSg−1] : gSK/K is Γ-compact}; and

Y := {[gAg−1 ∩ Γ] : ḡA is compact }.

By (2.2), the set X is in bijection with the space of compact maximal flats in Γ\G/K.

Moreover we have:

Theorem 2.3. The map

[gSg−1] 7→ [gAg−1 ∩ Γ]

defines a bijection from X to Y .
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Proof. It can be easily checked that NG(S) ⊂ NG(A). Hence [gSg−1] = [hSh−1]
implies [gAg−1 ∩ Γ] = [hAh−1 ∩ Γ]. Now supposing gSK/K is Γ-compact, we show
that A ∩ g−1Γg is co-compact in A, or equivalently ḡA is compact in Γ\G. Set
F = gSK/K. By (2.2), the stabilizer of the flat F in Γ is equal to gNG(S)g−1 ∩ Γ
and hence

Γ\ΓF = (gNG(S)g−1 ∩ Γ)\F .

Since gAg−1 ∩ Γ has finite index in gNG(S)g−1 ∩ Γ and F is Γ-compact, we have
(gAg−1 ∩ Γ)\F is compact as well. Since gSg−1 = gAg−1/gMg−1 and it acts simply
transitively on F ,

(gAg−1 ∩ Γ)\F = (gAg−1 ∩ Γ)\gAg−1/gMg−1.

Since M is compact, the canonical projection map

(gAg−1 ∩ Γ)\G → (gAg−1 ∩ Γ)\G/gMg−1

is proper, and hence it follows that (gAg−1∩Γ)\gAg−1 is compact, being the preimage
of (gAg−1 ∩ Γ)\gAg−1/gMg−1. This proves the map is well defined.

To show that the map is injective, first note that if gAg−1 ∩ Γ is co-compact in
gAg−1, then the image of gAg−1∩Γ, under the natural projection of gAg−1 onto gSg−1,
is co-compact in gSg−1 as well, since A = S/M with M compact. Since S is R-split, it
follows that the Zariski closure of gAg−1∩Γ contains gSg−1 for any gSg−1 ∈ X. Since
S is the unique maximal real split torus of A, it follows that gAg−1 ∩ Γ = hAh−1 ∩ Γ
implies gSg−1 = hSh−1, proving the claim. Since gSK/K = gAK/K, the surjectivity
is clear. �

Note that for G = PSL2(R), K = PSO2 and Γ = PSL2(Z), the above theorem is
precisely the well known one to one correspondence between the set of primitive closed
geodesics and the conjugacy classes of primitive hyperbolic elements in PSL2(Z).

On the group G, we fix a left G-invariant and right K-invariant Riemannian metric
which is compatible with the left invariant metric on G/K. For each closed subgroup
H of G, this induces volume forms on H as well as on closed orbits ḡH in Γ\G. If
ḡH is compact, the volume of ḡH is then equal to vol((H ∩ g−1Γg)\H).

Lemma 2.4. If g ∈ G is such that F = gSK/K is Γ-compact, then

vol(Γ\ΓF) ≥ r · vol(ḡA)

where r > 0 is a constant independent of F .

Proof. If Ω is a fundamental domain for Γ in F , then g−1Ω is a fundamental domain
for g−1Γg in g−1F = SK/K. Since the metric on G/K is left invariant,

vol(Γ\ΓF) = vol(NG(S) ∩ g−1Γg)\g−1F).

Since [NG(S) ∩ Γ : A ∩ Γ] ≤ [NG(S) : A] and

(A ∩ g−1Γg)\g−1F = (A ∩ g−1Γg)M\A,
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we have

vol(Γ\ΓF) ≥
1

[NG(S) : A]
vol((A ∩ g−1Γg)M\A).

If Ω is a subset of A which bijectively maps to a fundamental domain in A/M for
the action of A ∩ g−1Γg, then the product Ω × M is a fundamental domain in A for
the action of A ∩ g−1Γg, which can be shown using the torsion free property of Γ.
Therefore

vol(ḡA) = vol((A ∩ g−1Γg)\A) = vol((A ∩ g−1Γg)M\A) · vol(M)

Hence we deduce

vol(Γ\ΓF) ≥
vol(ḡA)

vol(M) · [NG(S) : A]
.

�

3. Proof of Theorem 1.2

Let G be a connected linear semisimple real algebraic group defined over Q and
Γ be an arithmetic subgroup with respect to this Q-structure. Fix a left invariant
Riemannian metric on G, and hence induced volume forms on closed subgroups of G
as well as on closed orbits of the form Γ\ΓH for H closed subgroup.

By Theorem 2.3 and Lemma 2.4, Theorem 1.2 follows from:

Theorem 3.1. Let S be the identity component of a maximal R-split torus of G.
Denote by A the identity component of the centralizer of S in G. For any c > 0,

(3.2) #{[gAg−1 ∩ Γ] : ḡA is compact, vol(ḡA) < c} < ∞.

Moreover, if G is R-split, then

#{ḡS : ḡS is compact, vol(ḡS) < c} < ∞.

Our main tools in proving the above theorem are the following:

Theorem 3.3 (Dani-Margulis, [DM, Theorem 5.1). Let G be a connected linear Lie
group and Γ a discrete subgroup of G. For any c > 0, there are only finitely many
subgroups of the form H ∩ Γ such that H is a closed subgroup of G, Γ\ΓH is closed
and the co-volume of H ∩ Γ in H is less than c.

Theorem 3.4 (Tomanov- Weiss, [TW, Theorem 1.2]). Let G be a real algebraic
group defined over Q, and S a maximal R-split torus of G containing a maximal Q-
split torus of G. Let Γ be an arithmetic subgroup of G. Then there exists a compact
subset K ⊂ Γ\G such that for any g ∈ G,

ḡS ∩ K 6= ∅
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Proof of Theorem 3.1 The subgroup A is a direct product of S and its unique
maximal compact subgroup. First note that in G there exists a maximal real split
torus containing a maximal Q-split torus, e.g., take a maximal real split torus in
the centralizer of a maximal Q-split torus. Since all maximal real split tori of G are
conjugate with each other, we may apply Theorem 3.4 to S to conclude that there is
a compact subset K0 ⊂ G such that any A-orbit is of the form ḡA where g ∈ K0.

Clearly the left hand side in (3.2) is bounded above by

(3.5) #{gAg−1 ∩ Γ : g ∈ K0, ḡA is compact, vol(ḡA) < c}.

Note that for any compact A-orbit ḡA, the volume of ḡA is given by vol((g−1Γg ∩
A)\A) and

vol((Γ ∩ gAg−1)\gAg−1) = vol((g−1Γg ∩ A)\A) · δg

where δg denotes the factor which volumes of subsets get multiplied under the trans-
formation a → gag−1 for all a ∈ A (here volumes are computed with respect to the
induced metric on the submanifolds A and gAg−1 of G).

Since δg is a continuous function on G, we have

d := max
g∈K0

δg < ∞.

We now have for any g ∈ K0 such that ḡA is compact,

(3.6) vol((Γ ∩ gAg−1)\gAg−1) ≤ d · vol(ḡA).

On the other hand, by Theorem 3.3, there are only finitely many subgroups of the
form gAg−1 ∩ Γ such that ḡA is compact and

vol((Γ ∩ gAg−1)\gAg−1) < c · d.

Hence (3.5) is finite, proving the first claim. To see the second claim, if G is R-split,
we have A = S, and gSg−1 ∩ Γ is Zariski dense in gSg−1 for any compact ḡS. Hence
the map from {[gSg−1] : ḡS is compact} to {[gSg−1 ∩ Γ] : ḡS is compact} induced
by gSg−1 → gSg−1 ∩ Γ is a bijection. Therefore the first part of the theorem implies
that

#{[gSg−1] : ḡS is compact, vol(ḡS) < c} < ∞.

On the other hand, the cardinality of the fiber of the map ḡS 7→ gSg−1 is [NG(S) : S],
which is finite, since S = A. Therefore the number of compact ḡS with volume less
than c is bounded above by

[NG(S) : S] · #{[gSg−1] : ḡS is compact, vol(ḡS) < c} < ∞.

This proves the claim.
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4. Finiteness of orders of bounded regulators

We set up some notations as well as recall some basic definitions in number theory
(cf. [BS]).
Notation: Let k be a number field of degree n, which is totally real, that is, any
field embedding of k into C takes values in R.

(1). We set k∗ to be the set of totally positive elements in k, i.e.,

k∗ = {x ∈ k : σ(x) > 0 for any embedding σ : k → R}.

(2). Denote by Ok the ring of algebraic integers in k. An order of k is a subring
of Ok containing 1 which has rank n as a Z-submodule. Note that Ok is the
unique maximal order in k.

(3). For an order D of k, the notation D∗ denotes the group of units in D. Then

D∗ = {u ∈ k : uD = D} = {u ∈ D : Nk/Q(u) = ±1},

where Nk/Q(u) denotes the norm of u ∈ k.

(4). The regulator Reg(D) of an order D of k is defined as the covolume in
{(x1, ..., xn) ∈ Rn :

∑n
i=1

xi = 0} of the discrete subgroup

{(log |σ1(u)|, · · · , log |σn(u)|) : u ∈ D∗}

where σ1, · · · , σn are n different embeddings of k into R.
By Dirichlet unit theorem, Reg(D) < ∞ for any order D of k.

(5). The regulator of a field k means the regulator of its maximal order Ok.

We now begin the proof of Theorem 1.3. Let S denote the identity component of
the diagonal subgroup of SLn(R), i.e.,

S = {diag(a1, · · · , an) ∈ SLn(R) : ai > 0}.

Consider the space Z GLn(Z)\GLn(R) where Z denotes the center of GLn(R). Note
that an S-orbit ḡS, g ∈ GLn(R), is compact in Z GLn(Z)\GLn(R) if and only if the
discrete subgroup S ∩ g−1 SLn(Z)g is co-compact in S.

We may identify Z GLn(Z)\GLn(R) with SLn(Z)\ SLn(R) by the canonical isomor-
phism. Consider a left invariant Riemannian metric on SLn(R). Since each compact
S-orbit ḡS is a submanifold in SLn(Z)\ SLn(R), we have an induced volume form such
that vol(ḡS) is given by vol(S ∩ g−1 SLn(Z)g\S).

Setting C to be the set of all compact S-orbits in Z GLn(Z)\GLn(R), we first
establish an injective map from Ωn to C (recall that Ωn denotes the set of all orders
in totally real number fields of degree n). To do so, for each totally real number field
k of degree n, fix an n-tuple σk := (σ1, · · · , σn) of different embeddings of k into R
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with σ1 being the identity. For an order D of k, we set

φ(D) = ḡξS

where gξ := (σj(ξi))ij for a Z-basis ξ = (ξ1, · · · , ξn) of D. Clearly φ(D) does not
depend on the choice of Z-basis of D, and hence φ is a well defined map from Ωn to
the set of S-orbits in Z GLn(Z)\GLn(R).

To show that φ is injective, suppose that φ(D) = φ(D′) for some D,D′ ∈ Ωn. Then

gξ′ ∈ Z GLn(Z)gξS

where ξ = (ξ1, · · · , ξn) and ξ′ = (ξ′
1
· · · , ξ′n) are Z-bases for D and D′ respectively.

By comparing the first columns, we obtain that

D′ = aD for some non-zero a ∈ R.

Since 1 ∈ D, we have a ∈ D′. Therefore

aD′ ⊂ D′ = aD; hence D′ ⊂ D.

On the other hand, since 1 ∈ D′, a−1 ∈ D. Hence

D = aa−1D ⊂ aD = D′.

Therefore D = D′, showing that φ is injective.

Lemma 4.1. We have

S ∩ g−1

ξ SLn(Z)gξ = {diag(σ1(u), · · · , σn(u)) : u ∈ D∗ ∩ k∗}

where ξ is a Z-basis of D.

Proof. Note that diag(a1, · · · , an) ∈ S ∩ g−1

ξ SLn(Z)gξ if and only if

(4.2) Zn gξ diag(a1, · · · , an) = Zngξ

where Zn are integral row vectors. This is again same to say that for any non-zero
x ∈ D, there exists y ∈ D such that

ajσj(x) = σj(y) for all 1 ≤ j ≤ n.

Setting u = yx−1, we have u ∈ k and aj = σj(u). Since ajσj(D) = σj(D) from (4.2),
uD = D and hence u ∈ D∗. Moreover σj(u) = aj > 0 for each 1 ≤ j ≤ n, and hence
u ∈ k∗. This proves ⊂. The other inclusion is clear as well. �

Since {diag(σ1(u), · · · , σn(u)) : u ∈ D∗ ∩ k∗} has index at most 2n in the subgroup

{diag(σ1(u), · · · , σn(u)) : u ∈ D∗}

by Dirichlet unit theorem and the above lemma, we have φ(Ωn) ⊂ C.

Summarizing the above,
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Lemma 4.3. The map φ : Ωn → C is a well defined injective map and for any
D ∈ Ωn,

c · Reg(D) ≤ vol(φ(D)) ≤ c · 2n · Reg(D)

where c > 0 is a constant depending only on the volume form on S.

Now Theorem 1.3 follows from Theorem 3.1.
Remark

• In fact, any compact S-orbit in C can be constructed from a rank n free Z-
submodule (not necessarily order) in a totally real number field of degree n.
We refer to [Oh] for a precise description of the bijection between C and module
classes.

• To get an injective map into the maximal flats in SLn(Z)\ SLn(R)/ SOn rather
than into C, we need to put an equivalence relation on the set Ωn so that
D ∼ D′ if and only if there exists an isomorphism between the fields containing
D and D′ as orders which maps D to D′.
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