1) Integral extensions of rings.
2) Integral closure.
Ref: [AM], Section 5.1.

Intro/recap: We’ve seen a bunch of constructs of rings:
- direct sums
- rings of polynomials
- quotient rings
- completions (HW4)
- localizations
- tensor products
- symmetric algebras (HW4)

Today: another construction: taking integral extensions/closures, motivated by algebraic number theory, generalizes algebraic extensions/closures for fields (see MATH 370).

1) Integral extensions of rings.
Reminder: if $K \leq L$ are two fields, then one can speak about:
- L being finitely generated (as a field) over K.
- L being algebraic over K.
- L being finite over K.

Now suppose that A is a commutative unital ring, let B be a commutative unital A-algebra. We’ve already defined what it means for B to be finitely generated (as algebra) over A:

[1]
\[\exists b_1, \ldots, b_k \in B \text{ s.t. } \forall b \in B \exists F \in A[x_1, \ldots, x_k] \mid b = F(b_1, \ldots, b_k). \]

1) Definition & examples.

Definition: Say \(B \) is finite over \(A \) if \(B \) is a finitely gen'd A-module.

- Say \(b \in B \) is integral over \(A \) if \(\exists \) monic (i.e. leading coeff = 1) \(f \in A[x] \mid f(b) = 0 \).
- \(B \) is integral over \(A \) if \(\forall b \in B \) is integral (over \(A \)).

Examples: 1) \(A = \mathbb{K} < B = \mathbb{L} \) -extension of fields. Then the notions of being finite are equivalent. And integral \(\iff \) algebraic. But \(\mathbb{L} \) is fin. gen'd as an algebra over \(\mathbb{K} \implies \)
fin gen'd as a field over \(\mathbb{K} \) but not vice versa.

2) Let \(d \in \mathbb{Z} \), not a complete square, \(A = \mathbb{K}, B = \mathbb{K}[\sqrt{d}] \)
\(B \) is finite over \(A \) (rk 2 free \(A \)-module w. basis \(1, \sqrt{d} \)).

Claim: \(B \) is integral over \(A \):
\[\beta \in B \text{ equals } a + b\sqrt{d} \ (a, b \in \mathbb{K}) \text{ } \iff \text{ conjugate } \overline{\beta} : = a - b\sqrt{d} \]
\[\beta + \overline{\beta} = 2a, \quad \beta \overline{\beta} = a^2 - b^2d \implies f(x) = (x - \beta)(x - \overline{\beta}) = x^2 - 2ax + (a^2 - b^2d) \in A[x] \text{ & } f(\beta) = 0. \text{ So } \beta \text{ is integral over } A \implies \]
\(B \) is integral over \(A \).

1.2) Properties.

Reminder: for field extensions: finite \(\iff \) algebraic \& fin gen'd.
Thm: Let B be an A-algebra. Consider the following conditions:

(a) B is fin. gen'd & integral over A.
(b) B is finite over A.

Then (a) \Rightarrow (b) and, if A is Noetherian, then (b) \Rightarrow (a).

 Added on 11/6: Can remove Noetherian assumpn: see Remark on page 6.

Proof: (b) \Rightarrow (a) when A is Noetherian

finite \Rightarrow fin. gen'd (by if $b_1, ..., b_k$ generate B as A-module \Rightarrow they generate B as A-algebra).

finite \Rightarrow integral: $\beta \in B$, want \exists monic $f(x) \in A[x]$ s.t. $f(\beta) = 0$.

For $k > 0 \Rightarrow M_k = \text{Span}_{A}(1, ..., \beta^{k-1}) \subset B$, is an A-submodule.

M_i's form an ascending chain of submodules, which has to terminate by A is Noetherian & B is fin. gen'd (\Rightarrow Noeth' A-module).

So $\exists k > 0$ s.t. $M_{k+1} = M_k \Rightarrow \beta^k \in M_{k+1} = M_k$, i.e.

$\beta^k = a_{k+1}\beta^{k-1} + a_k\beta^{k-2} + ... + a_1 \Rightarrow \text{set } f(x) = x^k - a_{k+1}x^{k-1} - ... - a_1$. \checkmark

(a) \Rightarrow (b): Let $\beta_1, ..., \beta_k$ be generators of A-algebra B, know all of them are int'l over A. Want to show B is fin. gen'd A-module; for $i = 0, ..., k \Rightarrow B_i = A[\beta_1, ..., \beta_i]$ (subalgebra gen'd by these elements), $B_0 = A$, $B_k = B$.

We'll show by induc't that B_i is a fin. gen'd A-module.

Induction step: $B_{i+1} = B_i[\beta_{i+1}]$, β_{i+1} integral over A hence over B_i, $f(x) \in B_i[x]$ s.t. $f(\beta_{i+1}) = 0$, $f(x) = x^m + c_{m-1}x^{m-1} + ... + c_0$.

$g \in B_i \Rightarrow B_i[x] \twoheadrightarrow B_i[\beta_i] \xrightarrow{\beta_{i+1}} B_{i+1}/(f(x))$.

Since $f(x)$ is monic, $B_i[x]/(f(x))$ is generated by $1, ..., x^{m-1}$ as a B_i-module, in part' its fin. gen'd $\Rightarrow B_{i+1}$ is a
fin. gen'd B_i-module.

We know $B_i = \text{Span}_A (b_1, \ldots, b_n)$,
$B_i h = \text{Span}_B (b_1, \ldots, h_e) \Rightarrow$
$B_i h = \text{Span}_A (b_i h_j | i=1, \ldots, l, j=1, \ldots, l)$. Finishes induction step —
and the proof.

\[\square \]

Corollary 1: Suppose A is Noethan ring. If (a) \iff (6) holds,
then B is a Noethan ring.
- 6/c B is a Noethan A-module \Rightarrow Noethan B-module

Corollary 2: If A is Noethan & $f(x) \in A[x]$ is mono, then
$A[x]/(f(x))$ is integral over A.
This is 6/c $A[x]/(f(x))$ is finite over A (see the proof). Here we
can also remove Noethan assumption, see Rmk on page 6.

Corollary 3 (transitivity) Let B be an A-algebra, C be a B-
algebra. Then:
(a) B fin. gen'd over A & C fin. gen'd over B \Rightarrow C fin. gen'd over A.
(b) \cdots finite \cdots finite \cdots finite \cdots
(c) \cdots integral \cdots finite \cdots finite \cdots
(if A is Noethan) — this assumption can be removed.

Proof of (c): $Y \in C$ integral over B \Rightarrow $\exists b_0, \ldots, b_{k-1} \in B$ s.t.
$y^{k} b_{k-1} \cdots b_0 = 0 \Rightarrow y$ is integral over $A[b_0, \ldots, b_{k-1}]$. Since
b_0, \ldots, b_{k-1} are integral over A $\Rightarrow A[b_0, \ldots, b_{k-1}]$ is finite over A;
$A[b_0, \ldots, b_{k-1}, y]$ is finite over $A[b_0, \ldots, b_{k-1}]$. By (6), $A[b_0, \ldots, b_{k-1}, y]$
\[4 \]
is finite over A, hence integral $\implies \beta$ is integral

2) Integral closure.

Proposition 1: Let B be an A-algebra. Suppose A is Noetherian.
If $d, \beta \in B$ are integral over A, then so are $d+\beta$, $d\beta$, ad ($a \in A$). Again: can remove the Noetherian assumption. See on page 6.
Proof: Consider subalgebras $A[x] \subset A[\alpha, \beta] \subset B$, $A[x]$ is integral over A, $A[\alpha, \beta]$ is integral over $A[x] \implies$ integral over A as well. Since $d\beta$, $d+\beta$, $ad \in A[\alpha, \beta]$, they are integral over A. □

Corollary/definition: The subset \overline{A}^B of all integral over A elements in B form an A-subalgebra. This subalgebra is called the integral closure of A in B.

Note that this is a direct generalization of algebraic closures of fields.

Prop 2: If A is Noetherian, then the integral closure of \overline{A}^B in B is \overline{A}^B.
Proof: Let $\beta \in B$ be integral over \overline{A}^B. Need to show β is integral over A ($\implies \beta \in \overline{A}^B$). Let $f(x) = x^k + b_kx^{k-1} + \ldots + b_0 \in \mathbb{Z}$, $f(\beta) = 0$.
Then b_0, \ldots, b_{k-1} are integral over $A \implies A[b_0, \ldots, b_{k-1}]$ is finite over $A \implies A[b_0, \ldots, b_{k-1}, \beta]$ is finite over A. Hence β is integral over A. □

Once again, can remove the Noetherian assumption.
Remark (added 11/6): we can remove the assumption that A is Noetherian throughout. This isn’t particularly important, as most of rings we encounter are Noetherian.

It’s enough to do this in Theorem from Section 1.2, the assumption that A is Noetherian propagates from there.

So let B be finite over A. We need to show if $\beta \in B$ is integral over A. This turns out to be a consequence of the Cayley-Hamilton theorem.

We can replace A with its image in B and assume A is a subring of B. The multiplication by β is an A-linear operator on B, denote this operator by x. Let b_1, \ldots, b_k be generators of the A-module B. Then $x(b_i) = \sum_{j=1}^k a_{ij} \beta$, for some $a_{ij} \in A$. Let $\Psi = (a_{ij}) \in \text{Mat}_{k \times k}(A)$. So x sends the collection $b = (b_1, \ldots, b_k)$ viewed as a column vector to $\Psi \vec{b}$.

Now view B as an $A[x]$-module. The matrix $\tilde{\Psi} = xI - \Psi \in \text{Mat}_{k \times k}(A[x])$ sends \vec{b} to 0. We know that for $\tilde{\Psi}$ consisting of $(k-1) \times (k-1)$ minors of Ψ (sometimes called the adjoint matrix of Ψ—although this terminology is not the best) we have $\tilde{\Psi}^* \tilde{\Psi} = \det(\tilde{\Psi})I$. It follows that the element $\det(\tilde{\Psi}) = \det(xI - \Psi) \in A[x]$ acts on B by 0.

Set $f(x) = \det(xI - \Psi)$, this is a monic polynomial. Recall that x acts on B as multiplication by $\beta \Rightarrow f(\beta) = 0$ in B. So β is integral over A.

67