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BONUS WhyHilbertcared
This is a continuation of a bonusfromLecture 6Nullstellen
sett was anauxiliary result in the 2ndpaperbyHilberton
Invariant theory We nowdiscuss themain resultthere Let 6
be a nice groupacting on a vectorspaceUby linear transformations
Important example U is thespace ofhomogeneousdegree n

polynomials in variables Xy
Cso that dimVs na For Cwe

take SL CEI thegroup of 2 2 matrices w det P that
acts on V by linearchanges ofthe variables
The algebra of invariants Ct UI isgradedSo ithas



finitely many homogeneousgenerators And everyminimal
collection ofgeneratorshasthesamenumberofelements exercise
Example fer n 2 V fax't 2bxytcy We can represent

an element ofU as amatrix EE thengeSHE actsby
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Thealgebra of invariants isgeneratedby
a single degree 2polynomial ee G thedeterminant oressentially
the discriminant

Example for a 3 we stillhavea singlegenerator alsothediscriminant

And as ngrows thesituation
becomes more andmore complicated

Ingeneral very little is known about homogeneousgenerators
What isknownafterHilbert istheirsetofcommonzeroes Thefollowing
theorem is a consequence of a much moregeneral resultdueto
Hilbert Note thatany fEUdecomposes as theproductofn linear
factors
Theorem For fe U thespace ofhomeg degnpolynomials in xyTFAE
f lies in the common set ofzeroes ofhomogeneousgenerators
of Glut

fhas a linearfactorofmultiplicity 12
Note thatfor n 2,3 we recoverthe zero locusof thediscriminant
ThegeneralresultofHilbert was wayaheadofhistime Oversimplifying

a bit thefirstperson whoreally appreciatedthis resultof
Hilbert wasDavidMumford who used a similarconstructions

yto parameterizealgebraic
curves andotheralgebrageometric
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