Lecture 5.

1) Noetherian rings & modules
2) Hilbert's Basis theorem

References: [AM], Chapter 6, intro to Chapter 7; [E], Section 1.4.

1) A is commutative unital ring

Motivating questions:

Q1: A-module generalize vector spaces

? generalize fin dim vector spaces

Q2: Which rings are "reasonable"?

We'll give two related answers to these questions.

Preliminary answer to Q1: finitely generated modules

Issue: Often need to consider submodules. A submodule in a finitely generated module may fail to be fin gen'd

Example: If infinite set, \(A = \prod_{i \in I} F \)

Module \(M = A \) (gen'd by 1), \(N = (x_i)_{i \in I} \)

Claim: \(N \) is not finitely generated.

Recall every \(f \in A \) is polynomial in fin many variables. If \(f_1, \ldots, f_k \in N \), \(\sum_{i=1}^{\infty} g_i f_i \) (\(g_i \in A \)): deg 1 terms in \(\sum_{i=1}^{\infty} g_i f_i \in \text{Span}_{F} (\text{deg 1 terms of } f_1, \ldots, f_k) \) only involves fin many \(x_i \)'s. □

1.1) Main definitions. Let \(M \) be \(A \)-module

i) Say that \(M \) is Noetherian if it submodule of \(M \) (including \(M \)) is finitely generated.
ii) \(A \) is a Noetherian ring if it's Noetherian as a module over itself, i.e. every ideal is finitely generated.

Examples: 1) Every field \(\mathbb{F} \) is Noetherian ring (submodules in \(\mathbb{F} \) are \(\{0\}, \mathbb{F} = (1) \)).

1) \(A = \mathbb{Z} \) is Noetherian: \(6/ \mathfrak{a} \) ideal is generated by 1 element.

Non-example: \(\mathbb{F}[x_i]_{i \in I} \) for infinite \(I \).

1.2) Basic properties of Noetherian modules.

\textbf{Want:} equivalent conditions of being Noetherian.

\textbf{Definition:} \(M \) is \(A \)-module. By an ascending chain (AC) of submodules we mean: collection \((N_i)_{i \in \mathbb{Z}_{\geq 0}} \) of submodules of \(M \) s.t. \(N_i \subseteq N_{i+1} \) \(\forall i \geq 0 \); \(N_i \subseteq N_j \subseteq N_k \).

We say that the AC \((N_i)_{i \in \mathbb{Z}_{\geq 0}} \) terminates: \(\exists k \geq 0 \) s.t. \(N_j = N_k \) \(\forall j > k \).

\textbf{Proposition 1:} For an \(A \)-module \(M \) TFAE:

1) \(M \) is Noetherian.

2) \(\forall \) AC of submodule in \(M \) terminates

3) \(\forall \) nonempty set of submodules of \(M \) has a maximal element w.r.t. inclusion.

\textbf{Proof:} (2) \(\iff \) (3) is easy & general statement about posets (exercise).

\textbf{Proof of (1) \(\iff \) (2)}

\(1 \Rightarrow 2 \): AC \((N_i)_{i \geq 0} : N_i \subseteq N_{i+1} \implies N_i = \bigcup_{i \geq 0} N_i \) is a
submodule (compare to proof of \(I \) of max. ideal, Lec 2). This \(N \) is fin gen'd: \(N = \text{Span}_A(m_1, \ldots, m_i) \Rightarrow \exists k \text{ s.t. } m_1, \ldots, m_i \in N_k \)
\(\Rightarrow N = \text{Span}_A(m_1, \ldots, m_i) = N_k \) so our AC terminates at \(N_k \).

\(\Box \)

(2) \(\Rightarrow \) (1). Know AC of submodule terminates. Let \(N \) be a submodule that is NOT fin generated: construct
\(N_i \)'s by induction: pick \(m_i \in N \Rightarrow N_i = \text{Span}_A(m_i) = A m_i \). Now suppose I've constructed \(m_1, \ldots, m_i \in N \) & \(N_i = \text{Span}_A(m_1, \ldots, m_i) \)
\(N \) is not fin gen. \(\Rightarrow N + N_i \Rightarrow \exists m_{i+1} \in N \setminus N_i \), set
\(N_{i+1} = \text{Span}_A(m_1, \ldots, m_{i+1}) \neq N_i \). So \((N_i)_{i \geq 0} \) is AC, doesn't terminate. Contradiction

Want: compare properties of being Noetherian for \(M \) & its sub- & quotient modules.

Proposition 2: let \(M \) be \(A \)-module, \(N \subset M \) be a submodule
TFAE
(1) \(M \) is Noetherian
(2) Both \(N, M/N \) are Noetherian.

Proof: (1) \(\Rightarrow \) (2): \(M \) is Noetherian \(\Rightarrow N \) is Noeth.'n (tautology)
Check \(M/N \) is Noetherian by verifying that \(\forall \) AC of submods of \(M/N \) terminates. Let \(\varphi: M \to M/N, \ m \mapsto m + N \).

Let \((N_i)_{i \geq 0} \) be an AC of submodules in \(M/N \), \(N_i = \varphi^i(N_i) \)
\((N_i)_{i \geq 0} \) form an AC of submodules of \(M \), it must terminate:
\(\exists k \geq 0 \ | \ N_j = N_k \ \forall j \geq k \). But \(N_i = \varphi^i(N_i) \) so
\(N_j = \varphi^j(N_j) = \varphi^i(N_k) = N_k \). So \((N_i)_{i \geq 0} \) terminates.
\[N_i = \{ n \mid \varpi_i(n) \in N_i \} \subseteq N_i = \{ n \mid \varpi_i(n) \in N_i \} \quad 6/ \quad N_i \subseteq N_i \]

(2) \Rightarrow (1): Have \((N_i)_{i \geq 0}\) is an AC of submodules in \(\mathcal{M}\). Want to show it terminates. Then \((N_i \cap N)_{i \geq 0}\) is AC in \(N\) & \((\varpi_i(N_i))_{i \geq 0}\) is AC in \(N/N\). We know that both terminate:

\[\exists K \geq 0 \text{ s.t. } N_i \cap N = N_k \cap N \& \varpi_i(N_i) = \varpi_i(N_k) \quad \forall i \geq k. \]

Want to check: \(N_j = N_k \) (show \((N_i)\) terminates):

\[n \in N_j \Rightarrow \varpi_i(n) \in \varpi_i(N_j) = \varpi_i(N_k) \quad \exists n' \in N_k \mid \varpi_i(n') = \varpi_i(n) \]

\[\Leftrightarrow \varpi_i(n-n') = 0 \Leftrightarrow n-n' \in N. \quad \text{But } n, n' \in \bigcap_{j \geq K} N_j: (K \ subseteq n' \in N_j) \Rightarrow \]

\[n-n' \in N_j \Rightarrow n-n' \in \bigcap_{i \geq K} N_j = N \cap N_k \Rightarrow n = n' + (n-n') \in N_k \Rightarrow N_j = N_k \square \]

Noetherian \(\Rightarrow\) fin. gen'd. But, when \(A\) is Noetherian, we also have \(\subset\).

Corollary: Let \(A\) be Noetherian. Then \(\mathcal{M}\) fin. gen'd \(A\)-module is Noetherian.

Proof: \(M = \text{Span}_A (m_1, \ldots, m_k) \quad m = (m_1, \ldots, m_k) \rightarrow \psi_m : A^\oplus_k \rightarrow M \)

\[\Leftrightarrow M = A^\oplus_k / \ker \psi_m. \quad B(y) (1) \Rightarrow (2) \text{ of Prop 2 enough to show } \]

\(A^\oplus_k\) is Noetherian. Proof: by induction on \(k\).

\(k = 1\) holds b/c \(A\) is Noetherian.

\(k > 1: \quad A^\oplus_{k-1} \subseteq A^\oplus_k\) as \(\{a_1, \ldots, a_{k-1}, 0\}\) submodule.

\(A^\oplus_k / A^\oplus_{k-1} \cong A\) via proj to \(k\)th coordinate.

Both \(A^\oplus_{k-1}\), \(A\) are Noetherian. We use \((2) \Rightarrow (2)\) of Prop 2 to conclude that \(A^\oplus_k\) is Noetherian \(A\)-module \(\square\)

2) Hilbert's basis thm : Most rings we are dealing with are Noetherian. The 1st result here is the following thm.
Theorem 1: If A is Noetherian, then so is $A[x]$.
Proof: see next lecture. Now: some corollaries.

Definition: Let B be an A-algebra. Say B is finitely generated (as an A-algebra) if $\exists b_1, \ldots, b_k \text{ s.t. } \forall b \in B \exists f \in A[x_1, \ldots, x_k] \text{ s.t. } b = f(b_1, \ldots, b_k)$

So $\Phi: A[x_1, \ldots, x_k] \to B$, $f \mapsto f(b_1, \ldots, b_k)$, is surjective.

Corollary: Let A be Noetherian & B be a finitely generated A-algebra. Then B is a Noetherian ring.
Proof: Use Hilbert's Thm 9 times to see that $A[x_1, \ldots, x_k]$ is Noetherian. Let $I \subseteq B$ be ideal, need to show it's fin gen'd

$J := \Phi^{-1}(I) \subseteq A[x_1, \ldots, x_k]$ is ideal, so $J = (f_1, \ldots, f_k)$. But then

$I = \Phi(J) = (\Phi(f_1), \ldots, \Phi(f_k))$ is finitely generated \[\square \]

Since fields, F & \mathbb{Z} are Noetherian rings, any finitely generated F- or \mathbb{Z}- algebra is also Noetherian.

BONUS: Non-Noetherian rings in real (rather, complex) math.

Life: Most of the rings we deal with in Commutative Algebra are Noetherian. Here is, however, a very natural example of a non-Noetherian ring that appears in Complex Analysis.

Complex analysis studies holomorphic (a.k.a. complex analytic or complex differentiable functions), let $\text{Hol}(\mathbb{C})$ denote the set of holomorphic functions on \mathbb{C}. These can be thought as power series that absolutely converge everywhere.
$\text{Hol}(C)$ has a natural ring structure via addition and multiplication of functions.

Proposition: $\text{Hol}(C)$ is not Noetherian.

Proof: We'll produce an AC of ideals: $I_j = \{ f(z) \in \text{Hol}(C) \mid f(2\pi j \cdot k) = 0 \}$ for integer k, $j \in \mathbb{Z}_o$. It's easy to check that all of these are indeed ideals. It is also clear that they form an AC (when we increase j, we relax the condition on zeroes). We claim that $I_j \nsupseteq I_{j+1}$, hence this AC doesn't terminate & $\text{Hol}(C)$ is not Noetherian. Equivalently, we need to show that, for each j, there $f(z) \in \text{Hol}(C)$ such that $f(2\pi j \cdot k) = 0 \neq k > j$ while $f_j(2\pi j \cdot i) \neq 0$.

Consider the function $f(z) = e^z - 1$. This function is periodic with period $2\pi j^{-1}$. Also $f(z) = \sum_{i=0}^{\infty} \frac{z^i}{i!}$. So $z=0$ is an order 1 zero of $f(z)$. Since $2\pi j^{-1}$ is a period, every $2\pi j^{-1} \cdot k$ ($k \in \mathbb{Z}$) is an order 1 zero. We set $f_j(z) = (e^z - 1)/(z - 2\pi j \cdot i)$. This function is still holomorphic on the entire C, we have $f_j(2\pi j \cdot i) \neq 0$ and $f_j(2\pi j \cdot k) = 0$ for $k \neq j$. \[\square\]