Lecture 9 (minor update 10/2)

1) Integral extensions of rings.

2) Integral closure.

Ref: [AM], Section 5.1.

1) Integral extensions of rings.

As usual, A is a commutative ring. The notions of finitely generated and finite A-algebras were recalled in Sec 2 of Lec 8.

1.1) Definition & examples.

Definition: Let B be a commutative A-algebra.

- $b \in B$ is integral over A if \exists monic (i.e. leading coeff = 1) $f \in A[x]$ s.t. $f(b) = 0$.
- B is integral over A if $\forall b \in B$ is integral (over A).

Exercise: If B is integral over A & C is a quotient of B, then C is integral over A.

Example: 1) Let $f(x) \in A[x]$ be a monic polynomial. Then $\overline{1} := x + (f) \in B := A[x]/(f)$ is integral. Also note that B is finite over A (generated by $1, \overline{x}, \overline{x}^d \ldots$ for $d := \deg f$). Below we'll see that B is integral over A.

2) Let $A \subset K \subset B \subset \mathbb{C}$ be a field extension. Then B is integral over A \iff B is algebraic over A (we can divide by the leading coefficient).
Rem: In this example the two meanings of being finite are equivalent. But being finitely generated as an algebra is much stronger than being finitely generated as a field (for the latter we allow taking inverses among operations we use, for the former we only use multiplication & addition/subtraction. We'll later see (under some restrictions although this result holds in general) that if \(L \) is a finitely generated \(K \)-algebra, then \(\dim_k L < \infty \).

1.2) Finite vs integral.

Reminder: for field extensions: finite \(\iff \) [algebraic & finitely generated (as a field extension)].

Thm: Let \(B \) be an \(A \)-algebra. TFAE

(a) \(B \) is integral and finitely generated over \(A \).
(b) \(B \) is finite over \(A \).

The proof of \((a) \implies (b) \) is based on the following lemma. Note that if \(A_2 \) is an \(A \)-algebra & \(A_2 \) is an \(A_1 \)-algebra, then \(A_2 \) is also an \(A \)-algebra: the homomorphism \(A \to A_2 \) is the composition \(A \to A_1 \to A_2 \).

Lemma 1: Suppose \(A_1 \) is finite over \(A \) & \(A_2 \) is finite over \(A_1 \). Then \(A_2 \) is finite over \(A \).

Proof: Have \(a_1, \ldots, a_k \in A_1 \) & \(b_1, \ldots, b_l \in A_2 \) s.t. \(A_1 = \operatorname{Span}_A (a_1, \ldots, a_k) \), \(A_2 = \operatorname{Span}_{A_1} (b_1, \ldots, b_l) \).

Exercise: \(A_2 = \operatorname{Span}_A (b_i a_j \mid i = 1, \ldots, l, j = 1, \ldots, k) \)
Proof of (a) ⇒ (b) of Thm: B is generated by finitely many elements \(b_1, \ldots, b_k \in B \). Each of them is integral over \(A \). Let \(B_i, i = 1 \ldots k \), be the \(A \)-subalgebra of \(B \) generated by \(b_1, \ldots, b_i \), i.e. \(B_i = \text{Span}_A(b_1, \ldots, b_i, d_i \in \mathbb{N}_{\geq 0}) \). By the construction, we have \(B_k = B \) and \(B_i \subset B_{i+1} \). Set \(B_0 : = A \). Since all \(b_i \) are integral over \(A \), we also have that \(b_i \) is integral over \(B_{i-1} \). By the construction, \(b_i \) generates \(B_i \) as an algebra over \(B_{i-1} \). We claim that \(B_i \) is finite over \(B_{i-1} \). This claim together with Lemma 1 yields (a) ⇒ (b). So let’s prove the claim.

Let \(f_i \in B_{i-1}[x] \) be a monic polynomial s.t. \(f_i(b_i) = 0 \). Then the unique \(B_{i-1} \)-algebra homomorphism \(B_{i-1}[x] \to B_i \) \(x \mapsto b_i \) factors as \(B_{i-1}[x] \to B_{i-1}[x]/(f_i) \to B_i \). But \(b_i \) generates \(B_i \) over \(B_{i-1} \). So \(B_{i-1}[x]/(f_i) \to B_i \). The source is a finite over \(B_{i-1} \), by Example 1. So is the target.

To prove (b) ⇒ (a) we will need the following lemma: a module version of the Cayley-Hamilton theorem from linear algebra. We will prove a more general form that will be used later.

Lemma 2: Let \(M \) be an finitely generated \(A \)-module, \(I \subseteq A \) an ideal, \(q: M \to M \) \(A \)-linear map s.t. \(q(M) \subseteq IM \). Then there is a polynomial \(f(x) \in A[x] \) of the form

\[
(*) \quad f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \quad \text{with} \quad a_k \in I^k \quad \forall k
\]

s.t. \(f(q) = 0 \).
Proof: Note that M becomes an $A[x]$-module w. x acting by q. Pick generators $m_1,...,m_n \in M$. We have elements $a_{ij} \in I$, $i=1,...,n$ s.t.

\[(1) \quad x m_i = \sum_{j=1}^{n} a_{ij} m_j\]

Form the matrix $X = x I - (a_{ij})$. Then $\det(X) \in A[x]$. Note that $\det(X)$ is a polynomial for as in condition (*) (use the initial definition of \det, left as exercise.)

Also note that $\det(X)$ acts by $f(q)$ on M. So it’s enough to show that $\det(X)$ acts by 0.

Let $\vec{m} = (m_1,...,m_n)$ viewed as a column vector. Then $X \vec{m} = 0$ by (1). Consider the "adjoint" matrix $X' = (x'_{ij})$ w. $x'_{ij} = (-1)^{i+j} \det (\text{the matrix obtained from } X \text{ by removing row } i \text{ & column } j)$ so that $X'X = \det(X) I$. Then $X \vec{m} = 0 \Rightarrow \det(X) \vec{m} = X'X \vec{m} = \vec{0}$. So

\[(2) \quad \det(X) m_i = 0 \neq i.

Since $m_1,...,m_n$ span the A- (and hence $A[x]$-) module M,
\[(2) \Rightarrow f(q)m = \det(X)m = 0 \quad \forall \; m \in M. \text{ This finishes the proof} \]

Proof of (6) \Rightarrow (a): Let B be a finite A-algebra. It’s finitely generated as module generators are also algebra generators. We need to show that $\forall \; b \in B$ is integral over A.

In Lemme 2 we take $M := B, I = A$ and $q : M \rightarrow M, \; \eta \rightarrow 6m$.

We conclude: \exists monic polynomial $f(x) \in A[x] \; s.t. \; f(q) = 0$.

But applying $f(q)$ to $1 \in B$ we get $f(q)1 = f(6) = 0$. So 6 is integral over $A.$
Exercise: Under the assumptions of Thm, if A is Noetherian, then B is Noetherian.

1.3) Consequences of Thm.

Corollary 1: i) If $f(x) \in A[x]$ is monic, then $A[x]/(f(x))$ is integral over A.
 ii) If $g \in B$ is integral over A, then $A[x]$, the A-subalgebra of B generated by g, is integral over A.

Proof: Using Example 1 & (6) \Rightarrow (a) of Thm we get (i). In (ii) if $f(x) \in A[x]$ is a monic polynomial w. f.g. $f(\alpha) = 0$, then $A[x]/(f(x)) \rightarrow A[\alpha]$. Since $A[x]/(f(x))$ is integral (by (i)), $A[\alpha]$ is also integral. □

Corollary 2 (transitivity of integral extensions): If B is an A-algebra integral over A, and C is a B-algebra integral over B, then C is integral over A (as an A-algebra).

Proof: Take $\gamma \in C$, it's integral over B \rightarrow $\exists b_0,.., b_{k-1} \in B$ s.t. $\gamma^k - b_{k-1} \gamma^{k-1} - .. - b_0 = 0$. We write $A[b_0,.., b_{k-1}]$ for the subalgebra of B generated by $b_0,.., b_{k-1}$. So γ is integral over $A[b_0,.., b_{k-1}] \subset B$. But $b_0,.., b_{k-1}$ are integral over A. We use (a) \Rightarrow (6) of Thm to show that $A[b_0,.., b_{k-1}]$ is finite over A, while $A[b_0,.., b_{k-1}, \gamma]$, the subalgebra of C generated by $b_0,.., \gamma$, is finite over $A[b_0,.., b_{k-1}]$. Using Lemma 1, we see that $A[b_0,.., b_{k-1}, \gamma]$ is finite over A. By (6) \Rightarrow (a) of Thm, γ is integral over A and we are done. □
2) Integral closure.

Proposition 1: Let B be an A-algebra. If $d, \beta \in B$ are integral over A, then so are $d+\beta, d\beta, ad$ ($a \in A$).

Corollary/Definition: The elements in B integral over A form an A-subalgebra of A called the integral closure of A in B. We'll denote the integral closure \overline{A}.

Note that this is a direct generalization of algebraic closures of fields.

Example: If $A = K \subset B = L$ are fields, then \overline{K} is the algebraic closure of K in L.

Proposition 2: The integral closure of \overline{A} in B is \overline{A}.

Proof: apply Corollary 2, left as exercise.