Lecture 13: categones, functors \& functor morphisms, III.

1) Yonede lemme vs compositions \& inverses.
2) Objects representing functors
3) Products in categories.

Refs: [R], Secs 2.1-2.3; [HS], Sec II. 5.
BONUS: category equivalences.

1) Yonede lemme us compositions \& inverses.
1.0) Reminder.

Let $F, C: e \rightarrow D$ be functors. By a functor morphism $\eta: F \Rightarrow G$ we mean a collection $\sum_{x} \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x)), x \in O b(e)$ s.t. $\forall f \in H_{l}(X, Y)$, the following is commutative

We write Home Fun (F, G) for the collection of functor morphisms $F \Rightarrow G$.

In $\operatorname{Sec} 2.2$ of Lec 12 we have constructed the following example. For $X \in O 6(C)$, consider the Nom functor $F_{x}=\operatorname{Hom}_{e}(X, \cdot): C \rightarrow$ Sets. Then for $g \in H_{0} m_{e}\left(X^{\prime}, x\right)$ we have

$$
\eta^{g}: F_{x} \Rightarrow F_{x^{\prime}}: \eta_{y}^{g}: \operatorname{Hom}_{e}(x, y) \rightarrow \operatorname{Hom}_{e}\left(x^{\prime}, y\right), \eta_{y}^{g}(\psi):=\psi \cdot g .
$$

Thm (Yoneda lemma): $g \mapsto \eta^{g:} \operatorname{Hom}_{e}\left(X^{\prime}, X\right) \xrightarrow{\sim} \operatorname{Hom}_{\text {Fun }}\left(F_{x^{\prime}}, F_{x^{\prime}}\right)$
As we've seen in the proof, the inverse is given by

$$
\operatorname{Hom}_{\text {fun }^{\prime}}\left(F_{x^{\prime}}, F_{x^{\prime}}\right) \rightarrow \operatorname{Hom}_{e}\left(x^{\prime}, x\right)\left(=F_{x^{\prime}}(x)\right), \eta \mapsto \eta_{x}\left(1_{x}\right)
$$

Remark: More generally, for arbitrary $F: e \rightarrow$ Sets

$$
\operatorname{Hom}_{\text {Fun }}\left(F_{x}, F\right) \xrightarrow{\sim} F(x), \eta \mapsto \eta_{x}\left(1_{x}\right)
$$

The inverse map is given by $a \mapsto \eta^{a} w . \eta_{y}^{a}: \operatorname{Hom}_{e}(x, y) \rightarrow F(y)$, given by $\psi \mapsto[F(\psi)](a)$. Details ave a premium exercise.
1.1) Yonede lemme vs compositions.
\forall functor $F: C \rightarrow D$, have the identity morphism id $d_{F} F \Rightarrow F$. If $D=\operatorname{Sets} \& F=F_{x}$, then $i d_{F}=\eta^{1_{x}}$.

Also we can take compositions of functor monohisms

$$
\tau: G \Rightarrow H, \eta: F \Rightarrow G \leadsto \tau \circ \eta: F \Rightarrow H,(\tau \circ \eta)_{x}:=\tau_{x} \circ \eta_{x}
$$

Exercise: - check that (τ_{0}) is indeed a functor morphism. (hint: stack the commutative diagrams).

If $F=F_{x}, G=F_{x^{\prime}}, H=F_{x^{\prime \prime}}$ for $X, X^{\prime} X^{\prime \prime} \in O 6(e), \& g \in \operatorname{Hom}_{e}\left(X^{\prime}, x\right)$, $g^{\prime} \in \operatorname{Hom}_{e}\left(X^{\prime \prime}, X\right)$, then
(1) $\quad \eta^{g^{\prime} \circ} \eta^{g}=\eta^{g \circ g^{\prime}}$
equality of functor morphisms $F_{x} \Rightarrow F_{x^{\prime \prime}}$. Indeed, for $\psi \in \operatorname{Hom}_{e}(X, y)$

$$
z^{\eta_{y}^{g^{\prime}} \circ \eta_{y}^{g}(\psi)=\eta_{y}^{g^{\prime}}(\psi \circ g)=(\psi \circ g) \circ g^{\prime}=\psi \circ\left(g \circ g^{\prime}\right)=\eta_{y}^{g^{\circ g}}(\psi) .}
$$

Remark: If l is small ($O b(l)$ is a set), then the collection of functor morphisms $F \Rightarrow G$, denoted $H_{\text {Fun }}(F, G)$, is a set \leadsto category of functors Fun (ρ, D) : objects are functors, morphisms = merphisms of functors.

We then can consider a functor $e^{\text {app }} \rightarrow \operatorname{Fun}(l$, Set $)$ $X \mapsto F_{x} \forall X \in O b(e), g \in \operatorname{Hom}_{\text {esp }}(X, y)=\operatorname{Hom}_{e}(Y, X) \mapsto \eta^{g}: F_{x} \Rightarrow F_{y}$. The Yonede lemma says that

$$
\operatorname{Hom}_{\text {exp }}(X, Y) \sim \operatorname{Hom}_{F u n}(e, \text { sets })\left(F_{x}, F_{y}\right)
$$

Functers that induce isomorphisms between the marphism sets have a name: fully faithful ('faithful' refers to the injectivity, and "full" to the surjectivity).
1.2) Yoneda vs functor isomorphisms.

Let l, D be categories \& $F, C: l \rightarrow D$ be functors. By defin, $\eta: F \Rightarrow C$ is a functor isomorphism if it has a (twosided) inverse: $\eta^{-1}: G \Rightarrow F w . \quad \eta \cdot \eta^{-1}=i \alpha_{G}, \eta^{-1} \cdot \eta=i \alpha_{F}$, which, as usual is unique if it exists.

Lemme: 1) η is an isomorphism $\Leftrightarrow \eta_{y} \in \operatorname{Hom}_{D}(F(y), G(y))$ is an isomorphism for all $Y \in O b(l)$.
2) Let $D=$ Sets, $F=F_{x}, C=F_{x}, g \in \operatorname{Hom}_{e}\left(x^{\prime} x\right)$. Then $\eta^{g:} F_{x} \Rightarrow F_{x^{\prime}}$ is an 1 isomorphism (of functors) $\Leftrightarrow g$ is an 1 isomorphism (of objects). Proof: 1) \Rightarrow : from def in.

$$
\Leftarrow: \text { define }\left(y^{-1}\right)_{y}:=\eta_{y}^{-1} \text {. }
$$

Exercise: check the axiom of a functor morphism.
Then η^{-1} is automatically inverse of η.
2): exercise (from Yoneda lemma \& $\eta^{g^{\prime o g}}=\eta \eta^{g} \eta^{g^{\prime}}$).
2) Objects representing functors Definition: Let $F: ~ e \rightarrow$ Sets be a functor. We say $X \in O b(e)$ represents F if F is isomorphic to F_{x}.

A representing object may fail to exist (this is the case for the forgetful functor from finite groups to sets (cf. HW4). If a representing object exists, we say that F is representable.

Lemma: An abject, X, representing F is unique up to 150 m 'm if it exists.

Proof:
Let $X X^{\prime} \in O b(l)$ represent $F: F_{x} \underset{{ }_{2}}{\stackrel{\sim}{\leftrightharpoons}} F \stackrel{\sim}{\rightleftharpoons} F_{x^{\prime}} \rightarrow a$ functor isomorphism $\eta^{\prime-1}$ o $\eta: F_{x} \xlongequal{\rightrightarrows} F_{x^{\prime}}$. By 2) of Lemma in $\mathrm{Sec}_{\mathrm{c}}$ 1.2, $X \& X^{\prime}$ ave isomorphic.

Example: The forgetful functor For: $E=$ Groups \rightarrow Sets is represented by \mathbb{Z}. Indeed, for any group G we have a bijection (of sets) $\eta_{G}: \operatorname{Hom}_{\text {Groups }}(\mathbb{T}, G) \xrightarrow{\sim} G, \varphi \mapsto \varphi(1)$. $\left(\eta_{G}\right)$ is a functor morphism - what we need to check is that \forall group homomorphism $f: C \rightarrow H$, the diagram

is commutative, which is left as an exercise.
Since Z_{G} is bijective $\forall G$, by (2) of Lemme in Sec 1.2, is a functor 1 somorphism, implying our claim.

Now let's use the Yoneda lemma to compute End (For) $:=$ $H_{\text {Fun }}$ (For, For)) as a monoid w.r.t. composition. By Yonede, it's End groups (\mathbb{Z}) (with multiplication $g g^{\prime}:=g^{\prime} \cdot g$). We have $E_{n} \alpha_{\text {Groups }}(\mathbb{C}) \xrightarrow{\sim} \operatorname{For}(\mathbb{Z})=\mathbb{Z}$; to $m \in \mathbb{Z}$ we assign $g_{m}: \mathbb{Z} \rightarrow \mathbb{C}, x \rightarrow m x$. We conclude that En $\mathcal{F u n}$ (For) is the monoid \#l w.r.t. multiple. cation.

Exercuse: Let $\eta[m]$ be the endomorphism For \Rightarrow For corresponding to $m \in \mathbb{Z}$. Show that $\eta^{[m]_{G}}$ is given by $\eta[m]_{G}(x)=x^{m}, \forall x \in C$.
3) Products in categories.

The concept of a representing object allows to carry constructions from the category of sets to a general category. Here we consider a basic such construction-products.

Recall that in our usual categories: Sets, Groups, Rings, A-mod we have the notion of direct product. In all of them, this is characterized by universal property. Eng. if A_{1}, A_{2} are rings, then $A_{1} \times A_{2}$ is a ring w. ring homomorphisms $\pi_{i}: A_{1} \times A_{2} \rightarrow A_{i}$ s.t. \forall rings B w. homomorphisms $\varphi_{i}: B \rightarrow A_{i} \exists!\varphi: B \rightarrow A_{1} \times A_{2} w$.
$\varphi_{i}=\pi_{i} \cdot \varphi$.
Now let C be a category and $F_{1}, F_{2}: C \rightarrow$ Sets be functors. Define their product $F_{1} \times F_{2}$ by

- Sending $X \in O_{b}(l)$ to $F_{1}(x) \times F_{2}(x)$
- Sending $\varphi \in \operatorname{Hom}_{e}(X, y)$ to $F_{1}(\varphi) \times F_{2}(\varphi): F_{1}(x) \times F_{2}(x) \rightarrow F_{1}(y) \times F_{2}(y)$. $F_{1} \times F_{2}$ is a functor, to check the axioms is an exercise.

Now take $x_{1}, x_{2} \in O b(e)$ and let $F_{i}:=F_{x_{i}}^{\text {opp }}$ be the Hom functor $\operatorname{Hom}_{\text {op }}(X, \cdot)\left(=\operatorname{Hom}_{e}(; X)\right): e^{\text {opp }} \rightarrow$ Sets.

Definition: If $X \in O_{6}(l)$ represents $F_{X_{1}}^{\text {opp }} F_{X_{2}}^{\text {opp }}$, then we say that X is the product $X_{1} \times X_{2}$.

The to Lemma in $\operatorname{Sec} 2, X_{1} \times X_{2}$ is unique (up to iso) if it exists (that may foil to be the case).

Here's an alternative characterization of products.
Lemma: 1) There are $\Re_{i} \in \operatorname{Hom}_{e}\left(X, X_{i}\right)$ s.t.
(*) $\forall y \in O_{b}(l), \varphi_{i} \in \operatorname{Hom}_{e}\left(y, X_{i}\right), i=1,2, \exists!\varphi \in \operatorname{Hom}_{e}(y, x) \mid \varphi_{i}=\pi_{i} \circ \varphi$.
2) Conversely, let $\left(X, \pi_{1}, \pi_{2}\right)$ satisfy (*). Then $X=X_{1} \times X_{2}$

Note that (*) is the usual universal property of direct products. In particular, in air usual categories: Sets, Groups, Rings, A- Mod G1 products are just direct products - and they exist $\forall X_{1}, X_{2}$.

Proof (of Lemma) : 1) Let $\eta: F_{x}^{\text {opp }} \stackrel{\sim}{\Rightarrow} F_{x_{1}}^{\text {opp }} \times F_{x_{2}}^{\text {opp }} \leadsto$ for $\quad y \in O b(l)$ $\eta_{y}: \operatorname{Hom}_{e}(Y, X) \xrightarrow{\sim} \operatorname{Hom}_{e}\left(Y, X_{1}\right) \times \operatorname{Hom}_{e}\left(Y, X_{2}\right)$. We define $\left(\pi_{1}, \pi_{2}\right) \in$ $H_{l} m_{e}\left(X, X_{1}\right) \times \operatorname{Hom}_{e}\left(X, X_{2}\right)$ as $\eta_{x}\left(1_{x}\right)$. As in Step 3 of the proof of Yoneda lemma in Lee 12, $\forall \varphi \in H_{o m}(y, x)$, we have comm've diagram

which we apply to 1 getting: $\eta_{y}(\varphi)=\left(\pi_{1} \circ \varphi, \pi_{2} \circ \varphi\right)$. (*) follows $b / c \quad \eta_{4}$ is a bijection: $\forall \varphi_{1}, \varphi_{2} \exists!\varphi w . \eta_{y}(\varphi)=\left(\varphi_{1}, \varphi_{2}\right)$
2) We essentially reverse the argument. Define $\eta_{y}: \operatorname{Hom}_{e}(Y, X) \longrightarrow \operatorname{Hom}_{e}\left(Y, X_{1}\right) \times \operatorname{Hom}_{e}\left(Y, X_{2}\right), \varphi \mapsto\left(\pi, \circ \varphi, \pi_{2} \circ \varphi\right)$ $B_{y}(*), \eta_{y}$ is a bijection. To check that η_{y} constitute a functor morphism is an exercise. So $\eta=\left(\eta_{y}\right)$ is a functor isomorphism. \square

Rem: Note that we use the Yoneda lemme when we talk about representing objects ind products: it guarantees (vie its consequence in Sec 1.2] that representing objects are uniquely determined if they exist.

BONUS: Category equivalences.
Our question here: when are two categories the "same"? Turns out, functor isomorphisms play an important vole in answering this question.
Before we address this, we should discuss an easier question: when are two sets the same? Well, they are litevally the same if they consist of the same elements. But this definition is quite useless: sets arising from different constructions wont be the same in this sense. Of course, we use isomorphic instead of being literally the same.

Now back to categories. Again, being the same is useless. How about being isomorphic. Turns out, this is not useful Let's see why. Let l, D be categories. We say that either. l, D are isomorphic if there are functor $F: e \rightarrow D$, $S: D \rightarrow C$ such that $F G=I \alpha_{D}, G F=I \alpha_{e}$. The issue is: two functors obtained by different constructions are never the same (compare to sets). The solution: replace "equal" w. "isomorphic" (as functors).

Definition: . Functors $F: e \rightarrow D, G: D \rightarrow e$ ave quasi-inverse if $F G \cong I_{D}, G F \cong I_{C}$ (isomorphic).

- We say l, D ave equivalent if there ave quasi-inverse functors (called equivalences) $F: 巳 \rightarrow D, G: D \rightarrow e$.

Now we are going to state a general result. For this we need another definition.

Definitions: A functor $F: E \rightarrow D$ is called

- fully faithful if $\forall x, X^{\prime} \in O b(e) \Rightarrow$
$f \mapsto F(f)$ is a bijection $\operatorname{Hom}_{e}\left(X, X^{\prime}\right) \xrightarrow{\sim} \operatorname{Hom}_{\boldsymbol{D}}\left(F(x), F\left(X^{\prime}\right)\right)$
- essentially surjective if $\forall y \in O b(D) \exists x \in O b(e)$ such that $F(X)$ is isomorphic to Y.

Tho: A functor $F: e \rightarrow \nrightarrow$ is an equivalence \Leftrightarrow F is fully faithful \& essentially surjective.

We won't prove this, but we will give an example - that illustrates how the proof wonks in general.

Example: Consider the category $D=\sqrt{F}$-Vectpd of finite dimen'l vector spaces over a field \mathbb{F} and its full subcategory $l \mathrm{w}$. objects $\mathbb{F}^{n}(n \geqslant 0)$. We claim that the inclusion functor $F: e \leftrightarrow D$ is an equivalence. It's fully faithful by defin and the claim that it's essentially surjective.

Now we produce a quasi-inverse functor, G. In each $V \in \Omega(D)$ we $f_{i x}$ a basis, which leads to an isomorphism $\eta_{v}: V \xrightarrow{\sim} \mathbb{F}^{n}$ We define $G(V)$ as \mathbb{F}^{n}. For a linear map $f: U \rightarrow V$ (w. 9
$\operatorname{dim} U=m, \operatorname{dim} V=n)$ we set $S(f):=\eta_{v}^{-10} f \circ \eta_{u}$.
Exercise: Check G is a functor

Now we ave going to simplify our life a bit \& assume that $\eta_{\mathbb{F}^{n}}: \mathbb{F}^{n} \xrightarrow{\longrightarrow} \mathbb{F}^{n}$ is the identity.

Exercise: $C F: C \rightarrow C$ is the identity functor (not just isomorphic to it).

Now we produce a functor isomorphism $\eta: I \alpha_{D} \xlongequal{\Longrightarrow} F G$ So we need to have $\eta_{v}: V \rightarrow \mathbb{F}^{\text {dim }}$ and this is the 150 orphism from above.

Exercise: prove that η is indeed a functor morphism
Then η is an isomaphism of functors. So F is indeed a category equivalence.

Another exeruse: prove that the duality functor .* is an equivalence \mathbb{F} Vest $_{f_{\alpha}} \longrightarrow \mathbb{F}$-Vest $t_{f_{\alpha}}^{\text {op }}$.

