Lecture 22: Finite & integral extensions of rings, I. 1) Integral closures, contid. 2) Noether normalization Cemma.

Refs: [AM], Sec 5.3; [E], Sec 4.2

1.0) Recap. A is commive ring, Bis an A-algebra. Recall (Sec 2 of Lec 21) the integral closure of A in B: $\overline{A}^{B} = \{ b \in B \mid b \text{ is integral over } A \ \ \ A - subalgebra \text{ in } B. \}$

1.1) Normal domains. Let A be a domain. Definition: i) The normalization of A is A Frac (A), integral closure of A in its fraction field Frac (A). ii) A is normal if A coincides w. its normalization.

Special cases: 1) Lis a field, ACL is a subring. Claim: At is normal. Indeed, A' is integr. closed in L & Frac (A') CL => A closed in Frac (A'). In particular, any ring of algebraic integers (ZK, where K is a finite field extension of Q, Sec 2 in Lec 21) is a normal domain.

Exercise: Let K be a finite field extension of Frac (A). Prove that Frac (AK) = K (hint: for any algebraic (over Frac(A)) LEK ZaEA, R = 0, S.t. RL is integral over A).

2) UFD => hormal: let A be UFD & = EFrac (A) w. coprime a, b E A. Need to show: a is integral over A => BEA i.e. b is invertible, Let f(x)=XK+CK+XK+++ GX+Co $(c; \in A) \text{ be s.t. } f(\frac{a}{6}) = 0 \implies 0 = 6^{\epsilon} f(\frac{a}{6}) = a^{\kappa} + \sum_{i=1}^{k} c_{i} a^{i} 6^{\kappa - i}$ The sum is divisible by 6. So RE: 6. Since a & 6 are coprime, this implies that 6 is invertible.

1.2) Algebraic integers in Q(VI). Proposition: Let I be a square-free integer, and K=Q(Jd). Then $\overline{\mathbb{Z}}^{K} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2 \text{ or } 3 \mod 4 \\ \\ \left\{a + 6 \int d \mid a, 6 \in \mathbb{Z} \text{ or } a, 6 \in \frac{1}{2} + \mathbb{Z} \end{cases} & \text{if } d \equiv 1 \mod 4. \end{cases}$

Proof: We need to understand when $\beta = Q + 6\sqrt{J} \in Q(\sqrt{J})$ (a, $6 \in Q$), is integral over Z.

Claim: TFAE (i) β is integral over \mathbb{Z} , (ii) $2a, a^2 - b^2 d \in \mathbb{Z}$.

Proof of Claim: Set $\overline{B} := a - 6 \cdot \overline{d}$. Note that $B + \overline{B} = 2a$, $B\overline{B} = 2l$

 $a^2 - b^2 d \in (\mathbb{R}, S_0(x-\beta)(x-\overline{\beta}) = x^2 - 2Rx + (a^2 - b^2 d), hence (ii) \Rightarrow (i).$ Now assume (i). Note that BHB is a ring homomorphism $\mathbb{Z}[\sqrt{d}] \to \mathbb{Z}[\sqrt{d}]. \text{ So for } f(x) \in \mathbb{Z}[x] \text{ we have } f(\overline{\beta}) = \overline{f}(\overline{\beta}). \text{ So}$ if $f(\beta)=0$, then $f(\overline{\beta})=0$. In particular, if β is integral over \mathbb{Z} , then B is integral. By Proposition 1 of Section 2 of Lecture 9, $\beta + \overline{\beta}, \beta \overline{\beta} \in \mathbb{Q}$ are integral over \mathbb{Z} . But \mathbb{Z} is UFD, hence normal. So elements of Q integral over 72 are integers. (ii) follows. 🗆 Now we get back to the proof of Proposition. The following claim is elementary Number theory. Exercise If $d=2 \text{ or } 3 \mod 4$, then $(ii) \iff gb \in \mathbb{Z}$; if $d=1 \mod 4$, then $(ii) \iff either \ gb \in \mathbb{Z}$ or $gb \in \mathbb{Z} + \frac{1}{2}$. Claim & exercise finish the proof of Proposition. Ŋ Using Proposition and 1) from Section 1.1, we get Corollary: i) $\mathbb{Z}[\mathbb{JZ}]$ is normal $\iff d \equiv 2 \text{ or } 3 \mod 4$. If $d \equiv 1 \mod 4$, then the normalization of $\mathbb{Z}[\mathbb{JZ}]$ is $2a+6\sqrt{d}$ $a, b \in \mathbb{Z}$ or $a, b \in \mathbb{Z} + \frac{1}{2}\overline{\zeta}$. ii) $\mathcal{U}[\sqrt{-5}]$ is normal but not UFD.

2) Noether normalization lemma Recall that a finitely generated field extension is a finite extin of a purely transcendental one. Here's an analog for rings.

Theorem (Noether). Let IF be a field, A a fin. generated F-algebra. Then I inclusion F[x1,...xm] ~ A s.t. A is finite over F[x,...xm] (for some mzo).

We'll only prove this when IF is infinite, where a proof is easier. For a general case, see [E], Lemma 13.2 & Theorem 13.3.

Key lemma: Assume F is infinite, $F \in \mathbb{F}[x_1, \dots, x_n]$ be nonzero. The $\exists \mathbb{F}$ -Cinear combinations y_1, \dots, y_{n-1} of variables x_1, \dots, x_n s.t. $\mathbb{F}[x_1, \dots, x_n]/(F)$ is finite over $\mathbb{F}[y_1, \dots, y_{n-1}]$.

Proof of Cemma: $F = f_{k} + f_{k}$, f_{i} is homogeneous of deg = i, $f_{k} \neq 0$. Special case: $a := f_{k}(0, ..., 0, 1) \neq 0$. Note that a is the coeffit of X_n^{k} in F, & $F = \alpha X_n^{k} + \sum_{i=0}^{\infty} q_i(x_1, ..., x_{n-i}) X_n^{i}$, where $q_i \in F[x_1, ..., x_{n-i}]$, Replacing F.W. 2-1F, can assume the is monic as an element in F[x,...x,][xn]. Exemple 2 in Sec 1.2 of Lec 21, F[x,...xn]/(F) is finite over F[x,..., Xn.,] and we set y: = x:.

General case: $f_{k} \neq 0 \& F$ is infinite $\Longrightarrow f_{k}(a_{1}, a_{n}) \neq 0$ for 4

some ai EF. Pick invertible PEMatnam (F) s.t. $\mathcal{P}\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} u_1\\0\\1 \end{pmatrix}$ Consider $F^{\oplus} = F \circ \mathcal{P}$ as a function $F^{\oplus} \to F$ (polynomial obtained from F by linear change of variables). Then $f_{\kappa}^{\varphi}(0,...,0,1) = f_{\kappa}(a_{\mu},...a_{m}) \neq 0$. So

F[x1. Xn]/(F) is finite over [[X1...Xn.], hence 2 P¹, linear change of variables. F[x,...x,]/(F) is finite over FLy,...yn.,] w. $\begin{pmatrix} g_{1} \\ \vdots \\ g_{n} \end{pmatrix} := \mathcal{P}^{-1} \begin{pmatrix} \chi_{1} \\ \vdots \\ \chi_{n} \end{pmatrix}$ П

-> A s.t. A is finite over IF[x,..., Xm]. This makes sense b/c A is finitely generated, hence a gustient of F[x,...x,] for some n. It remains to prove the following:

Claim: q is injective. Proof of claim: Assume the contrary: 3 FEKery, F=0. By Key Lemma F[x1,...xm]/(F) is finite over F[y1...ym.] & A is finite over F[x1,...xm]/(F) loke q factors through F[x, xm]/(F)). By Lemma 1 in Section 1.3 in Lecture 21 A is finite over F[y1,..., ym.]. Contradiction w. choice of m.

Important corollary: Let A be a fin genid F-algebra. If A is a field, then $\dim_F A < \infty$

Proof: By Thm, $F[x_1,...,x_m] \longrightarrow A$ s.t A is finite over $F[x_1,...,x_m]$. Need to show M=0. Assume the contrary. Since A is a field, the image of x_1 is invertible, so $F[x_1,...,x_m] \longrightarrow A$ extends to $F[x_1,...,x_m] \longrightarrow F[x_1^{\pm 1}, x_1,...,x_m] \xrightarrow{\tau} A$. The homomorphism τ is injective (if $\tau(x_1^{-i}f)=0$, then $\tau(f)=0$). Note that A is finitely generated over $F[x_1,...,x_m] & F[x_1,...,x_m]$ is Noetherian \Rightarrow $F[x_1^{\pm 1}, x_2,..., x_m]$ is a finitely generated $F[x_1,...,x_m]$ -module. But this is not true: the $F[x_1,...,x_m]$ -submodule generated $b_{\gamma} = x_1^{-d_i}F_i$, i=1,...,l is contained in $x_1^{-d}F[x_1,...,x_m]$, w. d= $max(d_i)$, a proper subset of $F[x_1^{\pm 1}, x_2,..., x_n]$. Contradiction w. m > 0.

Exercise: Let F be algebraically closed. Prove that \forall max. ideal $M \subset F[x_1...x_n] \exists (a_1,...a_n) \in F^n[M = (x_1-a_1,x_2-a_2,...,x_n-a_n).$

Remark: Important Corollary is an elegant statement but its usefulness for us is that we'll use it to prove Hilbert's Nullstellensatz in Lec 23 (it's sometimes called "weak Nullstellensatz).