
 
Lecture23 Connections to Algebraicgeometry I

1 Hilbert's Nullstellensatz
2 Algebraicsubsets theirvanishing ideals
References E Sections 1.6 4.5 V Sec9.4

BONUSES 1 Why Hilbert cared
2 Is this idealredical

1 Hilbert's Nullstellensatz
Let F be an infinitefield then fe FE xn can be viewed

as a function F F f is uniquelyrecoveredfromthisfunction
To 4C F x xn we assign V X αeF false fey

solutions to the system 4 ofpolynomialequations and Iy
Spangaxp 4 an ideal in x Xn

Exercise 4CY V14 cV14

11 Main result
Q For4 4cflxn.tn findnecessary suffitcondinforV14 VY

Recall ForA a commutativering I A an ideal
IF aeAlame I forsome mac idealin A containing I

Lemma V X V Fy
Freet 4C IF V IF CV 4 X Toprove take fe If



Weneed to showfly o m f gift getic for fie 4 Since
filx o flee fly o

Thm Nallstellensatz Let Fbealgclosed YCFE.int fe
F x Xn If f is 0 on V14 then ferty
Cor If F isalg closedthen V14 V14 IT IT
Remarks 1 The conclusion of Them is falseover R Take 4 413

V X f 1 But I Iy 1

2 Nullstellensate connects an algebraicobject I and
a geometric object V Y As such it provides the firstconnectionbetween CommutativeAlgebraand Algebraic Geometry

Exercise Suppose F isalg closedShow V 4 p Iy FE tn

1 2 Proof of Nullstellensatz
Let X V Y Iy A F x tn I a ft ICA Ourjob

is to show that n an o Theproof is in 4 steps
1 We establish a bijection Hom AF w Hom Hom

neg
2 From here we deduce them

neg
Ala F D

3 We deduce A a 0 using ImportantforfromSec2 ofLec22
4 Wededuce ee an no finishingtheproof

I



1 LEX ex F x tn F f f a then eyetlemA F Since

f a o feI even factors through A F Theresultinghomomorphismis alsodenoted by era
Conversely let q A F be an algebra homomorphism Set
it I EA Set dy glt glinl EF

Exercise dyEX αHey y dyaremutually inversemaps
Hem A F

2 Hom AlasF univpropertyoflocalization yeHomAF lyCal
is invertible 0 Steph Lex of eval evα f fk p
6k flea

3 Suppose Alan 03 Notethat A a is fingenidby
Let meAla be a max idealThenAle M is fingenidFalgebra
that is also a field By Important Corollary in Sec2 ofLec22
A a m is finitefieldextension of F Since I is alg closed
Alan M F We'vegot an F algebrahomomorphism A Alanm
F Contradiction w Step 2

4 Recall Exer in Sec2ofLec8 that for SCA a multiplicative
subset ALS 0 OES Apply this to 5 an no so that
ACS A a andget ee an whichiswhat weneedtoprove



Corollary F is alg closed A FEx xn Iy X V47 Thefollowingsets are in bijection
i X
ii Homeneg A F

liii max ideals meA
Proof

Bijections i fiil are constructed in Step1
in iii y tokery maximal bc Alkery imy y is an
Falgebrahomomorphism F a field
iii il As in Step 3 Am F F algebra Ise unique bc 1 1

Wesend in to A Alm F
Exercise Prove Iii iii are inverse to eachother

Exercise If A is a finitelygenerated F algebra then
Foi A of all max ideals in A

2 Algebraicsubsets their vanishing ideals
2 1 Definitions
Below 5denotes an alg closedfield Let Abe a commutativering

Definition An ideal ICA isradical if I IT

A subset CE is algebraic if V X for some
CFE xn



For CF algebraic consider its vanishing ideal I x fe
F x xn lfl o its algebra ofpolynomial functions
F F x IN

Remarks 1 ByLemme in Sec 1.1 X V Ey Fy is a finitely
generatedideal bc F x xD is Noetherian If f fi are generators
then X Vlf fr Inparticular in thestudy ofalgebraic subsets
V41 it is enough to assume Y isfinite
2 I x is a radical ideal exercise Elements of F x can beviewed

as functions on X for Lex fe F x in thevalue fα only
depends on f Ilx bydefin of Ifx Hencethename for F x

2 2 Basicproperties
Corollary lotNullstellensate themaps I VII

I X are inclusion reversing mutually inverse
bijections between

radical ideals in F x xD
algebraic subsets in F

Proof Both I VII I x reverseinclusions Sec 1 for
theformer exercisefor the latter It remains to check that

i I I VIII I VCI f f is 0 on VII
Nullstellensate FI I isradical I



ii algebraic subset SF X VII x byLemma in Sec
1.1 X V T for a radical ideal J Hence VII VIII by
i I V T J V J Thisfinishestheproof

Now we discuss the behaviorof the bijections inthecorollary
under intersections ofideals ofalgebraicsubsets

Lemma Let X Y SF bealgebraicsubsets
a XUY is algebraic w I XUY IX AI Y
6 XAY is algebraic with I AY NIKHIT

Example n 2 X Vly Y Vlyx2 I x y I 7 ly x lexer
MY 10,01 I x I Y ly x y xy notradical

but Fyi xyY

e e indicates that non radical ideals havegeometric
significance too in this example theyreflect that intersectionsof
algebraic subsets is not transversal

ProofofLemma
a I I x J I Y radical ideals Observethat
In is radical exercise
for I fan_fact J go.ge XUY at F fig also i j



Since fig is 1 K j 1 l IJ XUY VIII
INT CI J INT so FIT INT VIII V INT

6 MY Vlf fcgo.n.ge f figo.n.ge It J So
MY V ITT I YAY IT

Exercise if MYp then F HY F x FLY

BONUS 1 WhyHilbertcared
This is a continuation of a bonusfromLecture5 Nullstellen
satt was an auxiliary result in the 2ndpaperbyHilberton
Invariant theory We nowdiscuss the main resultthere Let G
be a nice groupacting on a vectorspaceUby linear transformations

Important example U is thespace ofhomogeneousdegree n
polynomials in variables Xy so that dim V na For Gwe
take SL C thegroup of 2 2 matrices w Let 1 that
acts on V by linearchanges ofthe variables

The algebra of invariants U isgradedSo ithas

finitely many homogeneousgenerators And everyminimal
collection ofgeneratorshasthesamenumberofelements exercise

Example for n 2 V ax 26xy cy
We can represent an



element ofU as amatrix thengeSL E actsby
g g gt Thealgebra of invariants isgeneratedby a
single degree 2polynomial a 6 thedeterminant oressentially the
discriminant

Example for a 3 we stillhavea singlegenerator alsothediscriminant

And as ngrows thesituation
becomes more andmore complicated

Ingeneral very little is known about homogeneousgenerators
What isknownafterHiebert istheirsetofcommonzeroes Thefollowing
theorem is a consequence of a much moregeneral resultdueto
Hilbert Note thatany fell decomposes as theproductofa linear
factors

Theorem For feU thespace ofhomeg degnpolynomials in xyTFAE
f lies in the common set ofzeroes ofhomogeneousgenerators
of Cu

fhas a linearfactorofmultiplicity

Note thatfor 1 2,3 we recoverthe zero locusof thediscriminant

ThegeneralresultofHilbert was wayaheadofhistime Oversimplifying
a bit thefirstperson whoreally appreciatedthis resultof
lbert wasDavidMumford who used a similarconstructions



to parameterizealgebraic curves andotheralgebrageometric
objects intheGeis which brought him a Fieldsmedal

BONUS 2 Is this ideal radical
We've talkedabout variousproperties of ideals being

radicalprime andrings being a normaldomain Wework w the

ring F x Xn where F is a field its ideals quotients
Usually the ideals are specifiedby theirgenerators So we

can ask thefollowingquestions
I Given F Free F x Xn can we determinewhether

F Fc is radical orprime
Asusual the answer isboth Yes No

Yes forgiven h k RF Fc there are algorithmsoftenimplementedin Computer Algebra software thatallow to answer these
and relatedquestions The main approach is via Grabner
bases For more onthem see E Chapter 15

No if we care about the situation where we have afamily
of ideals with varying h k
Here's a famous example Considerthespaceofpairsofsquare

matrices Matn C 1C Wehave m quadraticpolynomials
in these 2m variables the entries ofthematrix commutator
AB AB BA Forexample for 4 2 we have
a



ya ya Int YaiYumgo.kz
2191142 1YuYiYuk YuXu XuYu

In fact as thisexample indicates the npolynomials weget are
linearly dependent tr AB o In any case let Ibetheideal

generatedby thesepolynomials sothat
I AB Mat 6 21AB BA aka the commutingvariety

Openproblem is I radical

I


