Lecture 7.

1) Further discussion of PID's.
2) Main Thy on moduly over PID's.
3) Proof of the main $T \mathrm{hm}$.

Ref: Dammit \& Foote, Chapter 12.
BONUS: Finite dimensional modules over $\mathbb{C}[x, y]$.

1) Further discussion of PID's.

Let A be a PID. Take $a_{1}, \ldots a_{n} \in A \leadsto$ ideal $\left(a_{1}, \ldots a_{n}\right) \in A$ $\exists \alpha \in A /\left(a, \ldots a_{n}\right)=(\alpha)$, defined uniquely up to invertible factor

- α divides $a_{1}, \ldots, a_{n} b / c \quad a_{1}, \ldots, a_{n} \in\left(\alpha_{n}\right)$.
- d^{\prime} divides $a_{1}, \ldots, a_{n} \Rightarrow d^{\prime}$ divides $d\left(=\sum_{i=1}^{n} x_{i} a_{i}\right.$ for some $\left.x_{1}, \ldots, x_{n} \in A\right)$. This α is the GCD of $a_{p} \ldots a_{n}$.

Classical application of GCD: PID $\Rightarrow U F D$.
Remarks: - in a $P I D$ every prince ideal $\neq\{0\}$ is maximal: $(f) \geq(p) \Leftrightarrow$ p: $f \Leftrightarrow[$ for (p) prime $] \Leftrightarrow(f)=(p)$ or $(f)=A$.

- PI \Rightarrow Noetherian.

2) Main Thu on moduly over PID's.
2.1) Statement.

Let A be PID. Let M be a fin. gen' α-module.

Thm: 1) $\exists k \in \mathbb{Z}_{\mathbb{Z}_{0}}$, primes $p_{1}, \ldots p_{l} \in A, d_{1}, \ldots, d_{l} \in \mathbb{Z}_{7_{0}}$ s.t

$$
M \simeq A^{\oplus k} \oplus \bigoplus_{i=1}^{\ell} A /\left(p_{i}^{\alpha_{i}}\right)
$$

2) K is uniquely determined by $M,\left(p_{1}^{d_{1}}\right), \ldots,\left(\rho_{e}^{d_{l}}\right)$ are uniquely determined up to permutation.

Example: For $A=\mathbb{Z}$, Thu =classifin of fin genid abelean grips,
2.2) Case of $A=\mathbb{F}[x], \sqrt[F]{ }$ is alg. closed

Assume $\operatorname{dim}_{\mathbb{F}} M<\infty($ so $K=0)$. \mathbb{F}_{15} alg. closed \Rightarrow primes in $\mathbb{F}[x]$ ave $x-\lambda, \lambda \in \mathbb{F}$, (up to invertible factor).

$$
\text { Main } T_{m} \Rightarrow \exists \lambda_{i} \in \mathbb{F}, \alpha_{i} \in \mathbb{Z}_{7_{0}} \text { s.t. } M=\bigoplus_{i=1}^{l} \mathbb{F}[x] /\left(\left(x-\lambda_{i}\right)^{\alpha_{i}}\right) \text {. }
$$

Reminder (Sec 3, Sec 2.2)

A module over $\mathbb{F}[x]=\mathbb{F}$-vector space \& an operator X. For a fixed \mathbb{F}-vector space M, operators $X_{M}, X_{M}^{\prime}: M \rightarrow M$ give isomorphic $\mathbb{F}[x]$-module structures $\Leftrightarrow X_{M}, X_{M}^{\prime}$ are conjugate: $\psi: M \rightarrow M$ is a homomorphism between the 2 module structures iff $\psi \circ X_{M}=X_{M} \cdot \circ \psi$ so ψ is an isomorphism $\Leftrightarrow \psi X_{M} \psi^{-1}=X_{M}^{\prime}$. So the Main The allows to classify linear operators up to conjugation.

Choose an \mathbb{F}-basis in $\mathbb{F}[x] /\left(\left(x-\lambda_{i}\right)^{\alpha_{i}}\right):\left(x-\lambda_{i}\right)^{j}, j=0, \ldots \alpha_{i}-1$.

$$
X\left(x-\lambda_{i}\right)^{j}=\left[x=\left(x-\lambda_{i}\right)+\lambda_{i}\right]= \begin{cases}\left(x-\lambda_{i}\right)^{j+1}+\lambda_{i}\left(x-\lambda_{i}\right)^{j} & \text { if } j<\alpha_{i}-1 \\ \lambda_{i}\left(x-\lambda_{i}\right)^{j} & \text { if } j=\alpha_{i}-1\end{cases}
$$

So X acts as a Jordan black:

$$
J_{\alpha_{i}}\left(\lambda_{i}\right)=\left(\begin{array}{ccc}
\lambda_{i} & 1 & 0 \\
& \lambda_{i} & 0 \\
0 & \ddots & 1 \\
0 & & \lambda_{i}
\end{array}\right)
$$

Main The in this case is:

Jordan Normal Form the:

Let X be a linear operator on a fin. dim. F -vector space, M let \mathbb{F} be alg. closed. Then in some basis X is represented by a "Jordan matrix": $\operatorname{diag}\left(J_{d_{1}}\left(\lambda_{1}\right), \ldots, J_{d_{e}}\left(\lambda_{l}\right)\right)$.

Can recover the pairs $\left(\alpha_{l}, \lambda_{1}\right), \ldots,\left(d_{l} \lambda_{l}\right)$ from X-will discuss in Lee 8 .
3) Proof of the main $T \mathrm{hm}$.
3.1) Strategy of the proof of existence.

Since M is finitely generated, there's a surjective A-linear mop $\pi: A^{\oplus n} \rightarrow M$. Let $N:=$ er π, this is a submodule in M. The main part of the proof is to show that \exists basis $e_{1}^{\prime} \ldots e_{n}^{\prime}$ $3_{3} A^{\oplus n}, r<n$, and $f_{1}, f_{r} \in A \mid\{0\}$ s.t. $N=\operatorname{Span}_{A}\left(f_{1} e_{1}^{\prime}, \ldots f_{r} e_{r}^{\prime}\right)$.

Now note that if L_{1}, L_{2} are A－modules \＆$N_{i} c L_{i}, i=1,2$ are submodules，then there is a natural isomorphism
（＊）$\quad\left(L_{1} \oplus L_{2}\right) /\left(N_{1} \oplus N_{2}\right) \leadsto L_{1} / N_{1} \oplus L_{2} / N_{2}$ ，
t_{0} construct it is an exercise．

$$
\begin{aligned}
& \underset{\text { So }^{\oplus n-r}}{ } A_{r}^{\oplus n} / N=\left(\underset{i=1}{n} A e_{i}^{\prime}\right) /\left(\underset{i=1}{\oplus} A f_{i} e_{i}^{\prime}\right) \stackrel{(*)}{\rightarrow} \underset{i=1}{\oplus} A e_{i}^{\prime} / \Delta f_{i} e_{i}^{\prime} \oplus \bigoplus_{i=r+1}^{n} A e_{i}^{\prime} \xrightarrow{\sim} \\
& A^{\oplus ⿴ 囗} \oplus \oplus A\left(f_{i}\right) .
\end{aligned}
$$

Part 1 of the theorem will then follow from
Lemma：for $f=\varepsilon \rho_{1}^{\alpha_{1}} \ldots \rho_{s}^{\alpha_{s}}\left(\varepsilon\right.$ is invertible，$p_{1} \ldots \rho_{s}$ ave distinct primes，$\left.\alpha_{1}, \ldots \alpha_{s}>0\right)$ we have $A /(f) \xrightarrow{\sim} \underset{i=1}{\dot{\infty}} A /\left(p_{i}^{\alpha_{i}}\right)$ ．
Proof：
It＇s enough to show that for $f_{1}, f_{2} \in A$ w．$\left(f_{1}, f_{2}\right)=A(\Leftrightarrow$ $\left.\operatorname{GCD}\left(f_{1}, f_{2}\right)=1\right)$ ，we have $A\left(\left(f_{1} f_{2}\right) \xrightarrow{\sim} A /\left(f_{1}\right) \oplus A /\left(f_{2}\right)\right.$ ，an A－module isomorphism then we take $f_{1}=\varepsilon p_{1}^{\alpha_{1}} p_{s-1}^{\alpha_{s-1}}, f_{2}=p_{s}^{d_{s}}$ and argue by induction on 5）．

Consider the natural projection $\pi_{i}: A /\left(f_{1} f_{2}\right) \longrightarrow A /\left(f_{i}\right)$ ， $a+\left(f, f_{2}\right) \mapsto a+\left(f_{i}\right)$ ，it＇s 1 －linear．We claim that

$$
\pi=\left(\pi_{1}, \pi_{2}\right): A /\left(f_{2} f_{2}\right) \simeq A /\left(f_{1}\right) \oplus A /\left(f_{2}\right),
$$

Since $G C D\left(f_{1}, f_{2}\right)=1 \exists a_{1}, a_{2} \in A, a_{1} f_{1}+a_{2} f_{2}=1$ ．
－π is infective：$\pi\left(a+\left(f_{1} f_{2}\right)\right)=0 \Leftrightarrow a \in\left(f_{1}\right) \cap\left(f_{2}\right) \Rightarrow$

$$
a=\left(a f_{1}+a_{2} f_{2}\right) a=a, f_{1} a+a_{2} f_{2} a \in\left(f_{1} f_{2}\right) b / c \quad a \in\left(f_{1}\right) \Rightarrow f_{2} a \in\left(f_{2} f_{2}\right)_{2} ; f_{1} a \in\left(f_{1} f_{2}\right)
$$

So $a+\left(f_{1} f_{2}\right)=0$ ．
－π is surjective：$\forall x_{1}, x_{2} \in A \quad \exists x \in A$ s．t $x-x_{i} \in\left(f_{i}\right)$ ．Take

$$
\frac{x:}{4}=Q_{1} f_{1} x_{2}+a_{2} f_{2} x_{1} \text {. So } x-x_{1}=a_{1} f_{1} x_{2}+Q_{2} f_{2} x_{1}-\left(Q_{1} f_{1}+a_{2} f_{2}\right) x_{1}=a_{1} f_{1}\left(x_{2}-x_{1}\right) \in\left(f_{1}\right)_{\square}
$$

Rem: Similarly, one can prove a version of the Chinese remainder Thu: for ideals $I_{1}, I_{2} \subset A$ (general ring) w. $I_{1}+I_{2}=A$, have $I_{1} \cap I_{2}=I_{1} I_{2} \& A / I_{1} I_{2} \leadsto A / I_{1} \times A / I_{2}$ las rings \& as A-modules).
3.2) Basis vectors and their multiples.

We proceed to proving the existence part of Thu. We start w. the following question. Notice that every nonzero vector in a vector space can be included into a basis. Even for free modules over rings, this may fail: take $A=\mathbb{Z}, M=\mathbb{Z}$ \& $m=2 \in M$ So, we can ask a more general question: when is an element in $A^{\oplus n}$ a multiple of a basis element (which is obviously the case in our example above). We will see that the answer is YES, as long as A is a PID.

Let $m=\left(a_{1}, \ldots a_{n}\right) \in A_{,}^{\oplus n} m \neq 0$. Set $G C D(m):=\operatorname{CCD}\left(a_{1}, \ldots a_{n}\right)$
Lemme: The following claims hold:
(i) if $m=\sum_{i=1}^{n} b_{i} e_{i}^{\prime}$ for some basis $e_{1}^{\prime} \ldots e_{n}^{\prime}$ of $A^{\otimes n}$, then $\operatorname{GCD}\left(b_{1}, \ldots, b_{n}\right)=\varepsilon G C D(m)$ (w. E invertible)
(i) there's a basis $\epsilon_{1}^{\prime} \ldots e_{n}^{\prime} w . m=d e^{\prime}$, for $\alpha \in A \mid\{0\}$, automatically equal to $G C D(m)$ (by (i)).
Proof: Observe that two bases in $A^{\oplus n}$ ave related vic an invertible matrix: in particular, in (ii): $\left(b_{1}, \ldots b_{n}\right)^{T}=X\left(a_{1}, \ldots a_{n}\right)^{T}$ for
$X \in \operatorname{Mat}(A)$ invertible. This is for the same reason as for fields. In particular, $b_{i}: G C D\left(a_{1}, \ldots a_{n}\right)$. Similarly, $\left(a_{1}, \ldots a_{n}\right)^{\top}=X^{-1}\left(b_{1}, \ldots b_{n}\right)^{\top}$ $\Rightarrow a_{i} \vdots G C D\left(b_{1}, \ldots, \sigma_{n}\right) \Rightarrow G C D\left(a_{1}, \ldots a_{n}\right)=\varepsilon G C D\left(\sigma_{1}, \ldots \sigma_{n}\right), \varepsilon$ invertible. This shows (ii). The proof of i) is in two steps,
Step 1: (ii) for $n=2$. We need to find invertible $X \in M_{2}(A)$. w. $\binom{a_{1}}{a_{2}}=X\binom{d}{0} w . d=\operatorname{G}\left(D\left(a_{1}, a_{2}\right)\right.$ (then $e_{1}^{\prime} \varepsilon_{2}^{\prime}$ ave columns of $\left.X\right)$ Let $a_{i}=x_{1 i} d\left(i=1,2, x_{1 i} \in A\right)$. Then $G C D\left(x_{11}, x_{12}\right)$ is invertible; $\exists x_{21}, x_{22} \in A \mid x_{22} x_{11}-x_{21} x_{n 2}=G C D\left(x_{11}, x_{12}\right)$ (can assume $=1$). Now take $X=\left(\begin{array}{lll}x_{12}, & x_{n} \\ x_{21} & x_{22}\end{array}\right)$.
Step 2: (ii) for general n. We want to find invertible y $\in \operatorname{Mat}_{n}(A)$ w. $Y\left(a_{1}, \ldots a_{n}\right)^{\top}=(\alpha, 0, \ldots 0)^{\top}$, then $\alpha=\operatorname{CCD}\left(a_{1}, \ldots a_{n}\right)$ by (ii). Well present y as $Y_{n-1} z_{n-1} y_{n-2} z_{1} Y_{1}$, where
. $Y_{1}=\operatorname{diag}\left(Y_{1}^{\prime}, \ldots, 1\right) w . Y_{1}^{\prime}$, invertible in $\operatorname{Mat} t_{2}(A) w . Y_{1}^{\prime}\binom{a_{1}}{a_{2}}=\binom{d_{1}}{0}$ $\alpha_{1}=G C D\left(a_{1}, a_{2}\right)$, this y_{1}^{\prime} exists by Step 1. So $y\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{n}\end{array}\right)=\left(\begin{array}{l}\alpha_{1} \\ a_{3} \\ a_{3} \\ a_{n}\end{array}\right)$ $\cdot Z_{1}=\alpha \log \left(1,\left(\begin{array}{lll}0 & 1 \\ 1 & 0\end{array}\right), 1, \ldots 1\right)$: multiplying by Z_{1} swaps $2 n \alpha \& 3 r \alpha$ entries. So $Z_{1} Y_{1}\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{n} \\ a_{n}\end{array}\right)=\left(\begin{array}{l}\alpha_{1} \\ a_{3} \\ 0 \\ a_{n}\end{array}\right)$

- $y_{2}=\left(y_{2}^{\prime}, 1,1, \ldots 1\right)$, where $y_{2}^{\prime}\binom{d_{1}}{a_{3}}=\binom{d_{2}}{0}$ So $y_{2} z_{1} y_{1}\left(\begin{array}{l}a_{1} \\ \vdots \\ a_{n}\end{array}\right)=\left(\begin{array}{c}d_{2} \\ 0 \\ \vdots \\ \vdots\end{array}\right)$
$\cdot Z_{2}$ is permutation matrix permuting the 2 an \& eth entries.
Etc. By the construction, Y has required properties. Then $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$ is the columns of Y

BONUS: Finite dimensional modules over $\mathbb{C}[x, y]$. $F_{1 x} n \in \mathbb{Z}_{7_{0}}$. Sur question: classify $\mathbb{C}[x, y]$-moduly that have $\operatorname{dim}_{\mathbb{C}}=n$. In the language of Linear algebra: classify pairs of commuting matrices X, Y (up to simultaneous conjugation).

For in large enough, there's no reasonable solution. However, various geometric objects related to the problem are of great importance, and we ll discuss them below.

Set $C:=\left\{(x, y) \in \operatorname{Mat}_{n}(\mathbb{C})^{\oplus 2} \mid x y=Y x\right\}$. Consider the subset $C_{\text {cycle }} \subset C$ of all pairs for which there is a cycle vector $v \in \mathbb{C}^{n}$ meaning that v is a generator of the corresponding $\mathbb{C}[x, y]$-module. The group $G l_{n}(\mathbb{C})$ acts on C by simultaneous conjugation: $g .(x, y)=\left(g X_{g} g^{-1}, g^{Y} g^{-1}\right)$

Exeruse: $C_{\text {cycle }}$ is stable under the action \& all the stabilizers for the resulting $G L_{n}(\mathbb{C})$-action are trivial.

Premium exercise: the set of $G_{n}(\mathbb{C})$-orbits in $G_{\text {cycle }}$ is identified with the set of codim n ideals in $\mathbb{C}[x, y]$.

It turns out that this set of orbits, equivalently, the set of ideals has a structure of an algebraic variety. This variety is called the Hilbert scheme of n points in \mathbb{C}^{2} and is denoted by $H_{l} l b_{n}\left(\mathbb{C}^{2}\right)$. It is extremely nice \& very important. For example, it is "smooth" meaning it has no singularities.

One can split $H_{1} l_{n}\left(\mathbb{C}^{2}\right)$ into the disjoint union of affine spaces (meaning $\mathbb{C}^{?}$). The affine spaces are labelled by the partitions of $n(\underset{\leftrightarrows}{\leftrightarrows}$ ideals in $\mathbb{C}[x, y]$ spanned by monomials) \& for each partition we can compute the dimension - thus achieving some kind of classification of points.

One of the reasons why Hill $\left(\mathbb{C}^{2}\right)$ is important is that it appears in various developments throughout Mathematics: Algebraic geometry (net surprising), Representation theory, Math Physics, and even Algebraic Combinatorics \& Knot theory (!!)

The structure of the orbit space for the action of $G_{n}(\mathbb{C})$ on C is FAR more complicated, yet the resulting geometric object is still important.

