
 
Bonus lecture B1 Connections to Algebraicgeometry III

1 Algebra homomorphisms vspolynomialmaps
2 Category ofaffine varietiesschemes
3 Moregeneral varieties schemes

Refs V Sec 9 6 E See1.9

1 Algebra homomorphisms vspolynomialmaps
Let F be algebraically closedfield Let Xbe an algebraic
subsetof F the set ofsolutions to a system ofpolynomial
equations Recall that to we assign the ideal I x
fe F x nl flee thealgebra FIX F x xn IX

whose elements can be interpreted aspolynomialfunctions on X
The naturalprojection FEx xn FIX is therestriction

to X Set x ̅ ily note that x ̅ ingeneratethealgebraF x

1 1 Polynomial maps
Definition Let CE YCF bealgebraicsubsets
Amap y X Y is calledpolynomial if f fine F x st

q x fCal fm x Lex inparticular If121 fmk EY

Rem polynomialmap F polynomialfunctiononX

xercise the composition ofpolynomialmaps ispolynomial



Inparticular let q X Y be apolynomialmap geFLY i e

g Y F Considerthe composedpolynomialmapg p F
When viewedas an element of F X goy will bedenotedby
g andcalled

thepullback from g underg

Lemma P g F 4 FIX is algebra homomorphism

2 On thegeneratorsyjfy.ly q lyj fj
Proof
1 is exercise compare to Problem 5 in HW3

2 4 19 a yj.lycall flat y lyjl fj
Examples 1 The inclusionmap 1 F is polynomial
F x n F x is therestrictionmap Moregenerally

if CYCF are algebraicsubsets thenthe inclusionmap
L Y ispolynomial FLY FIX is gagly
2 X FI Y Vly y of g X Y X x x is a

polynomialmap Theideal lyiy isprime
Problem3 inHW6

hence radical so F Y Fly gl Cyiyi By 2 of Lemma

y
3

y yi thisdetermines q uniquely because

yi.gegenerate the algebraFLY

1 2 Main result
The following is themain resultof this section



Theorem
y to y

defines a bijectionbetween

I polynomialmaps y X Y
I algebra homomorphisms FLY F X

Proof Given g f fm q is theuniquealgebra homomorphism
FLY F x st y lyj fj We'll usethisobservation
to construct theinverse map II I
Given an algebra homomorphism E F Y FIX define

Ye X Fm by y tly tCgm Weclaim impecy
so that y can be viewed as apolynomialmap Y We

have imy CY G imy o EI Y

G ily Ilysm a A

Note that Gly fm o6lcGEI 7 It preservespolynomial
relations bc it's an algebrahomomorphism follows
So we have maps y y I II I ye Wehave
4 yi ith coordinate in t elyi y t 6kyi'sgenerate
On theotherhand Yq y y gml Cy 4m y So these

maps are mutually inverse finishing theproof

2 Category ofaffine varietiesschemes
2 1 Affinevarieties

Similarly to Problem5 in HW3 we see that
foralgebraic subsets CF YCFM Z F polynomial

maps 4
X Y Y Z we have yay yoy



id Id

Exercise prove that in thenotation of theproofofThm

Yet YeYe Yid id

So far we have discussed algebraicsubsets as subsets of F
A naturalquestion motivatedforexample by a similar issue
with Cmanifolds embedded into R vs definedabstractly is

can we define algebraicsubsets irrespective ofembedding a k a

affine varieties
Our first observation is that onthe level ofalgebrasthe

inclusion i F corresponds to the natural surjective
map F x Xn F x in otherwords to the identification
F X F x Xn I x which is how thealgebra F x was

defined to start with So to forget theinclusionshould
mean to forget the identification F F x xD I x
The language of Categorytheoryallows to dothis
Consider categories

1 E 06 e fin generated FalgebrasA wo nonteronilpotents

ae A an0 for some nbut ate
Morphisms homomorphisms ofalgebras

2 E 06 é algebras oftheform F x Xn I for some n a
radical ideal I FIX Xn
I



So objects of E are labelledbypairs n I Morphisms in
É are algebra homomorphisms

3 D 06D algebraicsubsets in some F
Morphismspolynomialmaps

Bywhat was explainedin the beginning of this section
we havefunctors

yayEPP X F x Xn I X

G E D A F x Xn I V I I Yo

Crucially importantexercise KG are mutually inverse

Note that there is an obvious functor E e it is full
and essentially surjective so is a categoryequivalence see
Bonus to Lec 13

Definition The category ofaffinevarieties over 5 is D EPP

Theobjects in D can be thought of as algebraicsubsets

irrespectiveofembedding into 5 This is because in C comparedto é
we no longer view our algebras asgivenby F x xn I
The morphisms in D are stillpolynomialmaps

I



Example Let Xp I Xz VENICE They have isomorphicalgebras
offunctions polynomials in one variable but differentembeddings
into F is From thepoint of view ofalgebraicgeometrythey behave
in thesameway so can beviewed as the same variety

While this definition of an affine variety looks like cheating
we can talk amongotherthings about

Algebra ofpolynomialfunctions FIX of an affinevariety
Xviewed as an objectof e
Points of X algebrahomomorphisms FIX F compare w

Corollary in Sec 1.2 of Lec 23
The Zariski topology on X
Etc

Remark We can generalize the definition of an affinevariety
to include moregeneral algebras removingthe conditions that
our algebras have no nonzero nilpotentelements are finitelygeneratedand even general commutativerings we can definethe
categories ofaffine schemes as theopposite category ofthe
category ofaffine rings This is useful for variouspurposes
which are studied in courses on scheme theoreticalgebraic
geometry andgo beyond thepurpose of this introduction

6T



3 Moregeneral varieties schemes

31 What is an algebraicvariety
We'vediscussedaffine algebraic varietiesNow we aregoingto

addressthequestion in the title
A common approach to constructinggeometricobjects is to

glue themfrom simplerobjects Forexample C manifolds are

gluedfromballs in Euclideanspaces M YD where D

velR Hull 1 Thecondition is roughly that for all
in theindex set the images of DAD under Y Ypare open
subsets in VER Iv11 I and the resulting composition

Ypy 4218188 DAD 4181Dp
is C which makes sense bc this is a map betweenopen
subsets in 12 Thanks to this definition it makes to speak
aboutvarious C objectse.g C maps M N

Similarly it makes senseto speak aboutcomplexanalytic
manifolds we use balls in 6 and requirethatYpey is
complex analytic youmight have studied that for

n t

in which case the resulting objects appearwhenyoustudy
analytic continuation ofholomorphicfunctions

Something like this happens for algebraic varieties too
The building blocks are affine algebraic varieties andthey are

glued together usingpolynomial isomorphisms if thevarietyof
interest is reasonable separated in a suitablesense the inter
FI



section oftwoopenaffine subvarieties isagainaffine so we can

just use what we have in thislecture
We can define thenotion of apolynomialmap a.k.a morphism

g X Y is amorphism if we can cover X Ulli Y UVj wopen
affinevarieties sit i j.ly Ui cVj g lli Vj is a
polynomialmap of affine varieties

3.2 Projective varieties andgradedalgebras
Here comesoneofthemostimportantexampleofthe construction

sketched above projective varieties
We start with F viewedas a vectorspace Theprojective

space P P F as a set consistsof 1 dimensional subspaces
in F In otherwords it consists ofequivalence classes
Exo Xn w XIE F Yo where equivalentmeans

proportionalLet us explain how gluing works

Let U x xn ite i e n Then themap
Ui F Ex X is a bijectionthat
will beused to identify U w F Note that go UiAU

isgivenby nonvanishing of a single coordinate so is anaffine

variety aprincipalopensubset in 5 And one can show that

yj.fi gilding yj 4in
is apolynomial isomorphism

A



Example let n 2 Let g y be coordinates

on gold F q U F Then gilU.nu isgivenby

gito yay sendsyo togo which is apolynomial isomorphism
as we have invertedyo

So P is an algebraic variety in thesense of Sec 3.1

One cangeneralizethis construction Let F FKEFK.n.tn
behomogeneouspolynomials ofdegree 70 If Fi vanishes at
a nonteropoint in F then it also vanishes on the line
between thispoint 20 So it makes sense to speakabout
the zero locus of Fi in P note that Fi isNOT afunction

F Thisgives rise to the zero locus F F andhence
to the notion of an algebraic subsetofP

Exercise V F F AUi is an algebraic subset in Ui F

So V F F is an algebraic variety varieties ofthatkind
are calledprojective

Here's a reason why we care about them Let F 6 So
has the usual topology Andso does P withUi's being open
subsets

I



Important exercise P iscompact intheusual topology

And so every VIF F is compact In Geometry Topology

we like compact spaces more than noncompact as theybehave
better in many ways Andwhile not all compact intheusual
topology algebraic varieties areprojective theprojectiveones
are nicest

Now we discuss a connection betweenprojectivevarieties

graded algebras Thevanishing locus of VCE Fic depends only on
F F a homogeneousideal

Exercise If I f x Xn is a homogeneous ideal then so is
its radical

In fact V19 FI only depends on IE.FF similarly to
the affine case Thisgives rise to a bijection between

Algebraic subsets of 13h
and radicalhomogeneousideals in F x xn not containing 1

Exercise What ideal corresponds to

So starting from an algebraic subset in P weget afingenid
graded algebra wo nilpotentelements thequotient of F x Xn

6
aug
the corresponding ideal Note that the elements ofthisalgebra



are not functions on the initial algebraic subsetofP
Conversely let D Ai be a fingenidgraded Falgebraw o

nilpetents s t Ao F Fromthisalgebra we can construct a

projective variety Namely if A isgeneratedby A A is
a graded quotient of F x Xn then we considerthe

algebraic subsetof P definedbythe kernel of Fxa.tn A
which is a homogeneous ideal

In general ifA isn'tgeneratedbyA we havethefollowing

Exercise 270 St Aldi Adi isgeneratedbyAd

Afun fact theprojectivevariety weget is independent
ofthe choice ofαup to an isomorphism

Example Take A F x x w usualgrading It givesrise
to theprojective line B Now consider Any It'sgeneratedby

yo yi X.lyYi
The relationsbetweenthe elementsyo

yay aregeneratedbyYoyogi The corresponding algebraic
subset is yiyi.gsy.yz yi Denote itby X

We aregoing to construct twomutually inversepolynomial
maps

between P X Let y P X begivenby
x x x Hx xp Now wedefine y P

I



4 yigi.gs
Gay ifgate
yi.gs ify.to

Exercise Check
gy are well defined mutually inverse

maps Furthermore check that yY are morphisms inthesense
explained in the endof Section 3.1

A connection withprojective varieties isone ofthereasons
to care aboutgradedalgebras

I


