MATH 720, PROBLEM SET 1

1. EXISTENCE AND UNIQUENESS OF MOMENT MAPS

This problem investigates the questions of existence of moment maps for Lie group actions on symplectic manifolds. Let G be a connected Lie group, M be a connected manifold with a symplectic form ω . Let G act on M preserving ω . We start with uniqueness, which is easier.

1, 2pts) Let $\mu: M \to \mathfrak{g}^*$ be a moment map for the *G*-action on *M*. A map $\mu': M \to \mathfrak{g}^*$ is a moment map iff $\mu' - \mu$ is a constant map taking values in $(\mathfrak{g}^*)^G$.

Now we turn to the existence. First, we need conditions for vector fields $\xi_M, \xi \in \mathfrak{g}$, to be <u>Hamiltonian</u>, i.e. to lie in the image of $C^{\infty}(M)$ under the skew-gradient map $v : C^{\infty}(M) \to \operatorname{Vect}(M)$.

2, 1pt) Suppose that $H^1(M,\mathbb{R}) = 0$. Then ξ_M is Hamiltonian for all $\xi \in \mathfrak{g}$.

3, 1pt) Show that $[\xi, \eta]_M = v(\omega(\xi_M, \eta_M))$ for all $\xi, \eta \in \mathfrak{g}$. Deduce that ξ_M is Hamiltonian for all $\xi \in \mathfrak{g}$ provided $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$.

2) and 3) give rise to $\xi \mapsto H_{\xi} : \mathfrak{g} \to C^{\infty}(M)$ but it doesn't need to be G-equivariant (equivalently, a Lie algebra homomorphism).

4, 1pt) Let M = V be a symplectic vector space and G = (V, +) act on M by translations. Show that all vector fields ξ_M are Hamiltonian, but the action is not Hamiltonian.

In fact, assuming G is simply connected, we can always find a central extension of G by $(\mathbb{R}, +)$ whose action on M is Hamiltonian (the copy of $(\mathbb{R}, +)$ acts trivially). Any such central extension of a semisimple group is trivial, and so every action of a semisimple group by symplectomorphisms is Hamiltonian.

2. From formal quantizations to filtered ones

Suppose that A is a $\mathbb{Z}_{\geq 0}$ -graded Poisson algebra so that we can talk about its filtered and formal quantizations. Let \mathcal{A}_{\hbar} be a formal quantization. By a *grading* on \mathcal{A}_{\hbar} we mean a collection of algebra gradings on the quotients $\mathcal{A}_{\hbar}/\hbar^{n}\mathcal{A}_{\hbar}$ such that

- deg $\hbar = 1$,
- the projections $\mathcal{A}_{\hbar}/\hbar^{n+1}\mathcal{A}_{\hbar} \to \mathcal{A}_{\hbar}/\hbar^{n}\mathcal{A}_{\hbar}$ are graded,
- $\iota : \mathcal{A}_{\hbar}/\hbar \mathcal{A}_{\hbar} \xrightarrow{\sim} A$ is graded.

For $k \ge 0$, define $\mathcal{A}_{\hbar}^{k} := \varprojlim_{n} (\mathcal{A}_{\hbar}/\hbar^{n}\mathcal{A}_{\hbar})^{k}$, where the superscript denotes the kth graded component. Set $\mathcal{A}_{\hbar}^{fin} := \bigoplus_{k} \mathcal{A}_{\hbar}^{k}$.

1, 1pt) Show that $\mathcal{A}_{\hbar}^{fin}$ is a $\mathbb{C}[\hbar]$ -subalgebra in \mathcal{A}_{\hbar} . Equip it with an algebra grading.

2, 2pts) Show that $\mathcal{A}_{\hbar}^{fin}/(\hbar-1)\mathcal{A}_{\hbar}^{fin}$ is a filtered quantization of A.

3, 2pts) Show that the assignments $\mathcal{A} \mapsto \hat{R}_{\hbar}(\mathcal{A})$ and $\mathcal{A}_{\hbar} \mapsto \mathcal{A}_{\hbar}^{fin}/(\hbar - 1)\mathcal{A}_{\hbar}^{fin}$ give mutually inverse bijections between the set of isomorphism classes of filtered quantizations and the set of isomorphism classes of formal quantizations with a grading (in the latter case you need to explain what one means by an isomorphism).

MATH 720, PROBLEM SET 1

3. Classical and Quantum formal Darboux theorems

The classical Darboux theorem states that every point in a symplectic manifold has a neighborhood with a coordinate system, where the symplectic form is constant (Darboux coordinates). Here we investigate an algebraic analog of this theorem and its extension to quantizations.

1, 1pt) Let A be a Poisson algebra and \mathfrak{m} be its maximal ideal with $A/\mathfrak{m} = \mathbb{C}$. Show that the Poisson bracket on A induces a skew-symmetric form on $\mathfrak{m}/\mathfrak{m}^2$.

2, 2pts) Suppose that $A = \mathbb{C}[[x_1, \ldots, x_{2n}]]$ (so that there's the unique maximal ideal m). Further, suppose the form on $\mathfrak{m}/\mathfrak{m}^2$ is nondegenerate. Prove that there are elements $x'_i \in \mathfrak{m}$ such that

- the elements $x'_i + \mathfrak{m}^2, i = 1, \dots, 2n$, form a basis in $\mathfrak{m}/\mathfrak{m}^2$,
- and $\{x'_i, x'_i\} \in \mathbb{C}$ for all i, j.

In other word, after a change of coordinates, the Poisson bivector on A becomes constant. A hint for a solution: lift x_i 's order by order.

3, 2pts) Now let A be as in part 2), and \mathcal{A}_{\hbar} be its formal (=deformation) quantization (in the sense of the original definition in Lecture 3). Show that there are elements $\hat{x}'_i \in \mathcal{A}_{\hbar}$ such that

x̂'_i + ħA_ħ = x'_i,
and ¹/_ħ[x̂'_i, x̂'_j] ∈ C for all i, j.

In other words, A has only one quantization up to isomorphism and it is the formal version of the Weyl algebra.