EXERCISE SHEET. MICROLOCALIZATION

1. Completed Rees algebra

Let \mathcal{A} be a \mathbb{Z}-filtered algebra. Set $R_h(\mathcal{A}) := \bigoplus_{i \in \mathbb{Z}} \mathcal{A}/h^i \subset \mathcal{A}[h^{\pm 1}]$.

a) Show that $R_h(\mathcal{A})$ is a graded $\mathbb{C}[h]$-subalgebra in $\mathcal{A}[h^{\pm 1}]$ (the degree is with respect to h). Identify $R_h(\mathcal{A})/(h)$ with $\text{gr} \mathcal{A}$ and $R_h(\mathcal{A})/(h - a)$ with \mathcal{A} for $a \neq 0$.

We also consider the completed Rees algebra $R_h^\wedge(\mathcal{A})$, the h-adic completion of $R_h(\mathcal{A})$, so that $R_h^\wedge(\mathcal{A})$ is complete and separated in the h-adic topology and carries a \mathbb{C}^\times-action by \mathbb{C}-algebra automorphisms with $t.h = th$. This action is rational on all quotients mod h^k.

Now let \mathcal{A}_h be a $\mathbb{C}[[h]]$-algebra that is complete and separated in the h-adic topology that comes equipped with a \mathbb{C}^\times-action by \mathbb{C}-algebra automorphisms that is rational on all quotients $\mathcal{A}_h/(h^k)$ and satisfying $t.h = th$. If $A := \mathcal{A}_h/(h)$ is commutative and finitely generated, we will call \mathcal{A}_h a graded formal quantization of A. We define $\mathcal{A}_{h,\text{fin}}$ as the span of all elements $a \in \mathcal{A}_h$ with $t.a = t'a$ for some $i \in \mathbb{Z}$.

b) Prove that $\mathcal{A}_{h,\text{fin}}$ is a graded subalgebra of \mathcal{A}_h that is dense in the h-adic topology and satisfies $\mathcal{A}_{h,\text{fin}}/(h) = A$.

c) Prove that $\mathcal{A}_{h,\text{fin}}/(h - 1)$ is a filtered quantization of A.

d) Prove that the maps $A \mapsto R_h(\mathcal{A})$ and $\mathcal{A}_h \mapsto \mathcal{A}_{h,\text{fin}}/(h - 1)$ are mutually inverse bijections between filtered quantizations and graded formal quantizations.

2. (Micro)Localization for formal quantizations

Let \mathcal{A}_h be a formal quantization of A (we do not require the presence of \mathbb{C}^\times-actions/gradings, A is just required to be a finitely generated commutative algebra). We are going to sheafify \mathcal{A}_h in the Zariski topology on $\text{Spec}(A)$.

a) Let $f \in A$ be a nonzero divisor and let $\hat{f} \in \mathcal{A}_k := \mathcal{A}_h/(h^k)$ be a lift of f. Show that $[\hat{f}, \cdot]^k = 0$ and deduce from here that every left fraction by \hat{f} is also a right fraction. Show that the localization $\mathcal{A}_k[\hat{f}^{-1}]$ (defined by the same universality property as in the commutative case) makes sense and is independent of the choice of the lift. We will denote this localization by $\mathcal{A}_k[\hat{f}^{-1}]$.

b) Show that the algebras $\mathcal{A}_k[\hat{f}^{-1}]$ form an inverse system. Further show that $\mathcal{A}_h[\hat{f}^{-1}] := \varprojlim_{k \to \infty} \mathcal{A}_k[\hat{f}^{-1}]$ is a formal quantization of $A[\hat{f}^{-1}]$.

c) Establish a natural homomorphism $\mathcal{A}_h[\hat{f}^{-1}] \to \mathcal{A}_h[(fg)^{-1}]$.

d) Show that \mathcal{A}_h naturally sheafifies to a sheaf \mathcal{D}_h on $\text{Spec}(A)$. Show that $\Gamma(\mathcal{D}_h) = \mathcal{A}_h$.

Note that if \mathcal{A}_h is graded, then $\mathcal{A}_h[\hat{f}^{-1}]$ is graded provided f is \mathbb{C}^\times-semiinvariant. So we can get the microlocalization of $\mathcal{A}_{h,\text{fin}}/(h - 1)$ by taking the sheaf $\mathcal{D}_{h,\text{fin}}/(h - 1)$ that makes sense in the conical topology.

e) Work out the details.

f) Prove that $A[\hat{f}^{-1}]$ is a flat module over \mathcal{A}.

3. **Coherent modules over formal quantizations**

Let \mathcal{D}_h be a formal quantization of a Poisson scheme X. We say that a \mathcal{D}_h-module M_h is coherent if it is complete and separated in the h-adic topology and M_h/hM_h is a coherent sheaf on X.

a) Suppose that there is an open covering $X = \bigcup_i X^i$ such that $M_h|_{X^i}$ is coherent. Then M_h is coherent.

Now suppose that X comes with a \mathbb{C}^\times-action as before and $\mathcal{D} := \mathcal{D}_{h,fin}/(h - 1)$.

b) Show that a filtered \mathcal{D}-module M is coherent with a good filtration if and only if $R^\wedge_h(M)$ is a coherent \mathcal{D}_h-module.

4. **Microlocalization of modules**

Let \mathcal{A} be a filtered quantization of A and $f \in A$. Our goal here is to define the localization functor $M \mapsto M[f^{-1}]$.

a) Assume that M is equipped with a good filtration. Emulate the procedure in Exercise 2 to define $M[f^{-1}]$ and check that this space has a natural $\mathcal{A}[f^{-1}]$-module structure. Furthermore check that there is a natural isomorphism $\mathcal{A}[f^{-1}] \otimes_{\mathcal{A}} M \xrightarrow{\sim} M[f^{-1}]$ so that $M[f^{-1}]$ is independent of the choice of a filtration.

b) Check that the functor $M \mapsto M[f^{-1}]$ is exact.

c) Check that M sheafifies in the conical topology on $X := \text{Spec}(A)$.