AFFINE WEYL GROUPS

Contents

1. Affine Dynkin diagrams 1
2. Alcoves 1
3. Extended affine Weyl group 2

1. AFFINE DYNKIN DIAGRAMS

Let \(g \) be a simple finite dimensional Lie algebra. Let \(D \) be the corresponding Dynkin diagram. Let \(W \) be the Weyl group of \(g \). Consider the lattice \(\Lambda^\vee_r \subset \mathfrak{h} \) generated by the simple coroots \(\alpha^\vee_i \). We can form the semi-direct product \(W^\vee_a := W \rtimes \Lambda^\vee_r \). Note that it acts on \(\mathfrak{h} \) by affine transformations.

This group will be called the affine Weyl group of \(g \). For \(\nu \in \Lambda^\vee_r \) we denote by \(t_\nu \in W^\vee_a \) the corresponding element of \(W^\vee_a \).

Example 1.1. Consider the case \(g = \mathfrak{sl}_2 \). In this case we have \(W = S_2 \) and \(\Lambda^\vee_r = 2\mathbb{Z} \subset \mathfrak{h} = \mathbb{C} \), where we identify \(\alpha^\vee \) with 2. The element \((12) \in S_2 \) acts via \(x \mapsto -x \). Then \(W^\vee_a \) consists of transformations of the form \(x \mapsto \pm x + 2k \) for \(k \in \mathbb{Z} \). Note that it is the Coxeter group with simple reflections \(s_0, s_1 \) given by \(s_1(x) = -x, s_0(x) = 2 - x \).

2. ALCOVES

The affine action of \(W^\vee_a \)-action on \(\mathfrak{h} \) preserves the real form \(\Lambda^\vee_r \) spanned by the coroots.

Definition 2.1. By an affine root hyperplane in \(\Lambda^\vee_r \) we mean a hyperplane of the form \(\langle \alpha, \cdot \rangle = n \) for a root \(\alpha \) and \(n \in \mathbb{Z} \). By an open alcove we mean a connected component of \(\Lambda^\vee_r \) with all affine root hyperplanes removed. By an alcove we mean the closure of an open alcove, this is a simplex. The fundamental alcove \(A^+ \) is one given by \(\langle \alpha_i, \cdot \rangle \geq 0, i = 1, \ldots, r \) and \(\langle \alpha_0, \cdot \rangle \geq -1 \), where \(\alpha_0 \) denotes the minimal negative root of \(g \).

Example 2.2. For \(g = \mathfrak{sl}_2 \), the affine root hyperplanes are integers (we view \(\alpha^\vee \) as 2 so \(\alpha_0 = -\alpha = -1 \)). The alcoves are the intervals of the form \([n, n+1]\), where \(n \) is an integer. The fundamental alcove is \([0, 1]\).

Exercise 2.3. The \(W^\vee_a \)-action permutes affine root hyperplanes, hence alcoves.
Proposition 2.4. \(W^\vee a \) in its action on \(\Lambda_\mathbb{K}^\vee \) coincides with the group generated by reflections along affine root hyperplanes. In particular, \(W^\vee a \) is a Coxeter group.

Proof. The reflection along \(\langle \alpha, \cdot \rangle = n \) is \(x \mapsto x - (\langle \alpha, x \rangle - n)\alpha^\vee \), it lies in \(W^\vee a \). This equality also easily shows that \(t_\alpha^\vee \) lies in the group generated by reflections. Hence we see that the two groups of affine transformations coincide. \(\square \)

Corollary 2.5. \(W^\vee a \) permutes the alcoves simply transitively.

Let \(s_1, \ldots, s_r \) denote the reflections along the corresponding walls of the fundamental alcove. These are the simple reflections in \(W^\vee a \).

Let us give a formula for the length function \(\ell: W^\vee a \to \mathbb{Z}_{\geq 0} \) (for \(u \in W^\vee a \), the length \(\ell(u) \) is the number of affine root hyperplanes separating \(A^+ \) and \(u(A^+) \)) in terms of our initial presentation.

Proposition 2.6. For \(w \in W, \nu \in \Lambda_\mathbb{K}^\vee \) we have

\[
\ell(wt_\nu) = \sum_{\alpha \in \Delta_+} |\langle \alpha, \nu \rangle| + \sum_{\alpha \in \Delta_-, w(\alpha) \in \Delta_-} |1 + \langle \alpha, \nu \rangle|.
\]

Example 2.7. For \(g = sl_2 \) we have

\[
l((s_0s_1)^n) = 2n = |\langle \alpha, n\alpha^\vee \rangle| = l(t_{n\alpha^\vee}),
\]

\[
l(s_1(s_0s_1)^n) = |2n + 1| = |1 + \langle \alpha, n\alpha^\vee \rangle| = l(s_1t_{n\alpha^\vee}).
\]

3. Extended affine Weyl group

Let \(\Lambda^\vee \) be the coweight lattice of \(g \), in particular \(\Lambda_\mathbb{K}^\vee \subset \Lambda^\vee \).

Definition 3.1. The extended affine Weyl group \(\tilde{W}^\vee a \) is \(W \rtimes \Lambda^\vee \).

The group \(\tilde{W}^\vee a \) contains \(W^\vee a \) as a normal subgroup and still acts on \(\Lambda_\mathbb{K}^\vee \) by affine transformations.

Example 3.2. Consider the case \(g = sl_2 \). In this case we have \(\Lambda^\vee = \mathbb{Z} \) and \(W^\vee a \) is an index 2 subgroup of \(\tilde{W}^\vee a \).

The \(\tilde{W}^\vee a \) still permutes alcoves. The stabilizer of \(A^+ \) is naturally identified with \(\Lambda^\vee / \Lambda_\mathbb{K}^\vee \). Since \(W^\vee a \) acts on the set of alcoves simply transitively, we have

\[
\tilde{W}^\vee a = \Lambda^\vee / \Lambda_\mathbb{K}^\vee \rtimes W^\vee a.
\]

Note that we can still extend the notion of length to \(\tilde{W}^\vee a \) with the same geometric meaning as before. For \(\gamma \in \Lambda^\vee / \Lambda_\mathbb{K}^\vee, u \in W^\vee a \), we have \(\ell(\gamma u) = \ell(u) \).