AFFINE WEYL GROUPS

Contents

1.	Affine Dynkin diagrams	1
2.	Alcoves	1
3.	Extended affine Weyl group	2

1. Affine Dynkin diagrams

Let \mathfrak{g} be a simple finite dimensional Lie algebra. Let D be the corresponding Dynkin diagram. Let W be the Weyl group of \mathfrak{g} . Consider the lattice $\Lambda_r^{\vee} \subset \mathfrak{h}$ generated by the simple coroots α_i^{\vee} . We can form the semi-direct product $W^{\vee a} := W \ltimes \Lambda_r^{\vee}$. Note that it acts on \mathfrak{h} by affine transformations.

This group will be called the *affine Weyl group* of \mathfrak{g} . For $\nu \in \Lambda_r^{\vee}$ we denote by $t_{\nu} \in W^{\vee,a}$ the corresponding element of $W^{\vee,a}$.

Example 1.1. Consider the case $\mathfrak{g} = \mathfrak{sl}_2$. In this case we have $W = S_2$ and $\Lambda_r^{\vee} = 2\mathbb{Z} \subset \mathfrak{h} = \mathbb{C}$, where we identify α^{\vee} with 2. The element (12) $\in S_2$ acts via $x \mapsto -x$. Then $W^{\vee a}$ consists of transformations of the form $x \mapsto \pm x + 2k$ for $k \in \mathbb{Z}$. Note that it is the Coxeter group with simple reflections s_0, s_1 given by $s_1(x) = -x, s_0(x) = 2 - x$.

2. Alcoves

The affine action of $W^{\vee a}$ -action on \mathfrak{h} preserves the real form $\Lambda_{\mathbb{R}}^{\vee}$ spanned by the coroots.

Definition 2.1. By an affine root hyperplane in $\Lambda_{\mathbb{R}}^{\vee}$ we mean a hyperplane of the form $\langle \alpha, \cdot \rangle = n$ for a root α and $n \in \mathbb{Z}$. By an open alcove we mean a connected component of $\Lambda_{\mathbb{R}}^{\vee}$ with all affine root hyperplanes removed. By an alcove we mean the closure of an open alcove, this is a simplex. The fundamental alcove A^+ is one given by $\langle \alpha_i, \cdot \rangle \ge 0, i = 1, \ldots, r$ and $\langle \alpha_0, \cdot \rangle \ge -1$, where α_0 denotes the minimal negative root of \mathfrak{g} .

Example 2.2. For $\mathfrak{g} = \mathfrak{sl}_2$, the affine root hyperplanes are integers (we view α^{\vee} as 2 so $\alpha_0 = -\alpha = -1$). The alcoves are the intervals of the form [n, n + 1], where n is an integer. The fundamental alcove is [0, 1].

Exersise 2.3. The $W^{\vee a}$ -action permutes affine root hyperplanes, hence alcoves.

AFFINE WEYL GROUPS

Proposition 2.4. $W^{\vee a}$ in its action on $\Lambda_{\mathbb{R}}^{\vee}$ coincides with the group generated by reflections along affine root hyperplanes. In particular, $W^{\vee a}$ is a Coxeter group.

Proof. The reflection along $\langle \alpha, \cdot \rangle = n$ is $x \mapsto x - (\langle \alpha, x \rangle - n) \alpha^{\vee}$, it lies in $W^{\vee a}$. This equality also easily shows that $t_{\alpha^{\vee}}$ lies in the group generated by reflections. Hence we see that the two groups of affine transformations coincide.

Corollary 2.5. $W^{\vee a}$ permutes the alcoves simply transitively.

Let s_1, \ldots, s_r denote the reflections along the corresponding walls of the fundamental alcove. These are the simple reflections in $W^{\vee a}$.

Let us give a formula for the length function $\ell : W^{\vee a} \to \mathbb{Z}_{\geq 0}$ (for $u \in W^{\vee a}$, the length $\ell(u)$ is the number of affine root hyperplanes separating A^+ and $u(A^+)$) in terms of our initial presentation.

Proposition 2.6. For $w \in W$, $\nu \in \Lambda_r^{\vee}$ we have

$$\ell(wt_{\nu}) = \sum_{\alpha \in \Delta_+, w(\alpha) \in \Delta_+} |\langle \alpha, \nu \rangle| + \sum_{\alpha \in \Delta_+, w(\alpha) \in \Delta_-} |1 + \langle \alpha, \nu \rangle|.$$

Example 2.7. For $\mathfrak{g} = \mathfrak{sl}_2$ we have

$$l((s_0s_1)^n) = 2n = |\langle \alpha, n\alpha^{\vee} \rangle| = l(t_{n\alpha^{\vee}}),$$
$$l(s_1(s_0s_1)^n) = |2n+1| = |1+\langle \alpha, n\alpha^{\vee} \rangle| = l(s_1t_{n\alpha^{\vee}}).$$

3. Extended affine Weyl group

Let Λ^{\vee} be the coweight lattice of \mathfrak{g} , in particular $\Lambda_r^{\vee} \subset \Lambda^{\vee}$.

Definition 3.1. The extended affine Weyl group $\tilde{W}^{\vee a}$ is $W \ltimes \Lambda^{\vee}$.

The group $\tilde{W}^{\vee a}$ contains $W^{\vee a}$ as a normal subgroup and still acts on $\Lambda_{\mathbb{R}}^{\vee}$ by affine transformations.

Example 3.2. Consider the case $\mathfrak{g} = \mathfrak{sl}_2$. In this case we have $\Lambda^{\vee} = \mathbb{Z}$ and $W^{\vee a}$ is an index 2 subgroup of $\tilde{W}^{\vee a}$

The $\tilde{W}^{\vee a}$ still permutes alcoves. The stabilizer of A^+ is naturally identified with $\Lambda^{\vee}/\Lambda_r^{\vee}$. Since $W^{\vee a}$ acts on the set of alcoves simply transitively, we have

$$\tilde{W}^{\vee a} = \Lambda^{\vee} / \Lambda_r^{\vee} \ltimes W^{\vee a}.$$

Note that we can still extend the notion of length to \tilde{W}^a with the same geometric meaning as before. For $\gamma \in \Lambda^{\vee}/\Lambda_r^{\vee}$, $u \in W^{\vee a}$, we have $\ell(\gamma u) = \ell(u)$.