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1. Affine Dynkin diagrams

Let g be a simple finite dimensional Lie algebra. Let D be the corresponding
Dynkin diagram. Let W be the Weyl group of g. Consider the lattice Λ∨

r ⊂ h
generated by the simple coroots α∨

i . We can form the semi-direct productW∨a :=
W n Λ∨

r . Note that it acts on h by affine transformations.
This group will be called the affine Weyl group of g. For ν ∈ Λ∨

r we denote by
tν ∈ W∨,a the corresponding element of W∨,a.

Example 1.1. Consider the case g = sl2. In this case we have W = S2 and
Λ∨
r = 2Z ⊂ h = C, where we identify α∨ with 2. The element (12) ∈ S2 acts via

x 7→ −x. Then W∨a consists of transformations of the form x 7→ ±x + 2k for
k ∈ Z. Note that it is the Coxeter group with simple reflections s0, s1 given by
s1(x) = −x, s0(x) = 2− x.

2. Alcoves

The affine action of W∨a-action on h preserves the real form Λ∨
R spanned by

the coroots.

Definition 2.1. By an affine root hyperplane in Λ∨
R we mean a hyperplane of the

form 〈α, ·〉 = n for a root α and n ∈ Z. By an open alcove we mean a connected
component of Λ∨

R with all affine root hyperplanes removed. By an alcove we mean
the closure of an open alcove, this is a simplex. The fundamental alcove A+ is one
given by 〈αi, ·〉 > 0, i = 1, . . . , r and 〈α0, ·〉 > −1, where α0 denotes the minimal
negative root of g.

Example 2.2. For g = sl2, the affine root hyperplanes are integers (we view α∨

as 2 so α0 = −α = −1). The alcoves are the intervals of the form [n, n + 1],
where n is an integer. The fundamental alcove is [0, 1].

Exersise 2.3. The W∨a-action permutes affine root hyperplanes, hence alcoves.
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Proposition 2.4. W∨a in its action on Λ∨
R coincides with the group generated by

reflections along affine root hyperplanes. In particular, W∨a is a Coxeter group.

Proof. The reflection along 〈α, ·〉 = n is x 7→ x − (〈α, x〉 − n)α∨, it lies in W∨a.
This equality also easily shows that tα∨ lies in the group generated by reflections.
Hence we see that the two groups of affine transformations coincide. �

Corollary 2.5. W∨a permutes the alcoves simply transitively.

Let s1, . . . , sr denote the reflections along the corresponding walls of the fun-
damental alcove. These are the simple reflections in W∨a.

Let us give a formula for the length function ` : W∨a → Z>0 (for u ∈ W∨a, the
length `(u) is the number of affine root hyperplanes separating A+ and u(A+))
in terms of our initial presentation.

Proposition 2.6. For w ∈ W, ν ∈ Λ∨
r we have

`(wtν) =
∑

α∈∆+,w(α)∈∆+

|〈α, ν〉|+
∑

α∈∆+,w(α)∈∆−

|1 + 〈α, ν〉|.

Example 2.7. For g = sl2 we have

l((s0s1)n) = 2n = |〈α, nα∨〉| = l(tnα∨),

l(s1(s0s1)n) = |2n+ 1| = |1 + 〈α, nα∨〉| = l(s1tnα∨).

3. Extended affine Weyl group

Let Λ∨ be the coweight lattice of g, in particular Λ∨
r ⊂ Λ∨.

Definition 3.1. The extended affine Weyl group W̃∨a is W n Λ∨.

The group W̃∨a contains W∨a as a normal subgroup and still acts on Λ∨
R by

affine transformations.

Example 3.2. Consider the case g = sl2. In this case we have Λ∨ = Z and W∨a

is an index 2 subgroup of W̃∨a

The W̃∨a still permutes alcoves. The stabilizer of A+ is naturally identified
with Λ∨/Λ∨

r . Since W∨a acts on the set of alcoves simply transitively, we have

W̃∨a = Λ∨/Λ∨
r nW∨a.

Note that we can still extend the notion of length to W̃ a with the same geometric
meaning as before. For γ ∈ Λ∨/Λ∨

r , u ∈ W∨a, we have `(γu) = `(u).


