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1 A brief discussion about the moduli space of marked curves

Let us begin our discussion by briefly recalling a few facts about the moduli space of marked
genus zero curves. Historically, the first space which was taken into account was the moduli
space Mg, g ≥ 2, of smooth Riemann surfaces C of genus g over C. It can be constructed
using various approaches (e.g. Teichmuller theory, Hodge theory, GIT) and it has several
interesting properties:

1) It is a non-compact quasi-projective algebraic variety;

2) Locally, in a neighborhood of each point [C], it looks like the quotient of an open ball
in C3g−3 by the automorphism group Aut(C), therefore dimMg = 3g − 3;

3) if we look at the space Cg = {(C, p) | C ∈Mg, p ∈ C}, we may notice that it naturally
maps to Mg by forgetting the point p. In fact, Cg may look at first glance like the
universal curve overMg, but on a closer examination we see that this is true only over
the open subset M0

g consisting of automorphism-free curve, precisely because the set-
theoretic fiber of Cg over a point [C] in Mg is the quotient C/Aut(C). Therefore the
moduli spaceMg in general cannot be a fine moduli space.

4) From 2), it is evident that Mg does not exist for g = 0, 1. This is also intuitive: in
order to have a nice geometric object, even if we cannot hope for something smooth, we
need each curve C to have a finite automorphism group so we can have only orbifold
singularities. If C is a genus zero or a genus one curve, we know that its automorphism
group will never be finite. However, if a curve C has genus g ≥ 2, there is an upper
bound of 84(g − 1) for the order of the automorphism group of C, which ensures the
existence of the moduli spaceMg as an algebraic variety with orbifold singularties.

Since we are mainly interested in the genus zero case, we must find a way to fix the problem.
The easiest way is to rigidify the problem by marking a certain number of distinct points
on our curves and allowing only those automorphisms which leave them fixed. In this way,
we get a new moduli space which we will call Mg,n, whose elements are n-pointed curves
[(C, p1, ..., pn)] modulo automorphisms. It has similar properties asMg:

1) It is a quasi-projective algebraic variety (again, it is not compact);

1



2) Each marked point will increase the dimension by one, therefore dimMg,n = 3g−3+n;

3) We can now identify the universal curve Cg overMg with the moduli spaceMg,1 and,
analogously, we get that the universal curve over the moduli space Mg,n will be the
spaceMg,n+1:

Mg,n+1

π

��
Mg,n;

Notice that this is not a real universal family over the moduli space, since it is not fine:
it will be a universal family only when we consider our moduli space as a stack, or for
g = 0.

4) If we allow enough marked points, our moduli spaceMg,n will now exist also for g = 0, 1.
For dimensional reasons (and also intuitively) it appears clear that the minimum number
of markings we need to allow in the genus zero case is three: with only one marking
we can still spin our sphere around, and the same holds with two antipodal markings.
Analogously, we need one marking in the genus one case. It is therefore clear thatMg,n,
if n is big enough, is a fine moduli space: no nontrivial automorphisms will fix n points
on a curve if n is large enough.

5) The spacesMg,n naturally come with forgetful morphisms: f n1 > n2, there is a natural
forgetful morphism, which forgets the first n1 − n2 markings:

M0,n1

φn1−n2−→ M0,n2

[(C, p1, ..., pn)] 7→ [(C, pn1−n2+1, pn1−n2+2..., pn)] .

Clearly, this morphism only exists if the space on the right exists: for example, there is
no forgetful morphismM0,7 −→M0,0.

The only problem we now have to deal with is that our moduli spaceMg,n is still not compact:
intuitively, the limit of a one parameter family of smooth curves will be, in general, a singular
curve. There are several compactifications ofMg,n, but the one we want to take into account
(and also the most popular and intuitive) is the Deligne-Mumford compactification, and in
order to explain what it consists of we need to introduce the notion of stable curve.

Definition 1.1. A stable n-pointed curve is a complete connected curve with n marked points
that has only nodes as singularities and has only finitely many automorphisms fixing each of
the marked points.

In view of the connectedness of C, its automosphism group can fail to be finite only if C
contains irreducible components of genus zero or one. Thus, the finiteness condition can be
equivalently reformulated as:

2



Definition 1.2. A stable curve is a complete connected curve with n marked points that has
only nodes as singularities and such that every smooth rational component contains at least
three special points (and by special points we mean either marked or nodal points).

This reformulation allows us to depict what a stable curve is: in the genus zero case, for
instance, each element of the compactified moduli space will be a tree of P1’s, such that each
irreducible component has at least three points among the markings and the points it shares
with the other components.

(a) Stable genus zero curve (b) Unstable genus zero curve

With this notion of stability, we can now set up our moduli functor:

M0,n : SchC −→ Sets
S 7→ {families of stable genus zero

curves over S} / isomorphism.

When n ≥ 3, this functor admits a fine moduli space,M0,n.
Notice that we have a universal curve also on the compactified space, now with n well-defined
sections giving the markings in each fiber:

Mg,n+1

π
��

Mg,n.

JJCC

p̃1,...,p̃n

<<

Example 1.3. When n = 3, every curve in the moduli space must be smooth, since there are
not enough markings to allow multiple components. Therefore, there is only one genus zero
curve modulo (no nontrivial) automorphisms, and henceM0,3

∼= pt.

Example 1.4. When n = 4, each curve in the moduli space is smooth, or it has two com-
ponents. If it is smooth, three out of the four markings can be taken by some automorphism
to {0, 1,∞}, therefore the curve is entirely determined, up to automorphisms, by the fourth
marking, which is free to vary on the entire curve minus those three points, since the markings

3



must be distinct. Hence, M0,4
∼= P1 \ {0, 1,∞}. It is not hard to guess what the compacti-

fied space must be, since there are only three distinct (up to isomorphism) curves with two
components:
hence, obviously,M0,4

∼= P1.

The boundary structure of M0,n is worth mentioning. It consists of divisors of the form
D(A|B), where A and B form a partition of {1, ..., n}, and contain each at least two elements.
A generic point of D(A|B) is represented by two lines meeting at a node, with marked points
labelled by A on one side and by B on the other:

Notice that the forgetful morphisms defined in 5) for the noncompactified moduli space extend
to its compactified version:

M0,n1

φn1−n2−→ M0,n2

[(C, p1, ..., pn)] 7→ [(C, pn1−n2+1, pn1−n2+2..., pn)] .

On these boundary points, the forgetful maps behaves subtly. Even though it is obvious what
it does on the smooth locus, on the boundary it may happen that it sends a stable component
in an unstable one: in this case, the unstable component gets contracted as shown in the
picture (here the forgetful morphism is the one that forgets the fifth marked point):
In particular, for any subset {i, j, k, l} ⊂ {1, ..., n}, the inverse image of a point P (i, j|k, l)
consisting of two components with markings i, j on one side and k, l on the other via the
forgetful morphismM0,n −→M0,{i,j,k,l} is a divisor onM0,n. More precisely, it is a sum of
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divisors of the form D(A|B) with i, j ∈ A and k, l ∈ B. Since the three boundary points in
M0,{i,j,k,l} ∼= P1 are all linearly equivalent, it implies that their inverse images in M0,n are
linearly equivalent, as well. Hence:∑

i,j∈A
k,l∈B

D(A|B) =
∑
i,k∈A
j,l∈B

D(A|B) =
∑
i,l∈A
j,k∈B

D(A|B).

These relations will be important later on, as they will admit a generalization in the setting
of stable maps.

2 The moduli space of stable maps

The main object of our discussion, following what we briefly said in the introduction, will be
a powerful generalization of the moduli space of pointed curves. The objects of our interest
will from now on live on this space, therefore it will be important for us to understand its
geometric structure and its main features. Let us take X to be a smooth projective variety
(although later on we will want to impose stronger conditions). We want to consider all the
maps µ : (C, p1, ....pn)→ X, where (C, p1, ..., pn) is a smooth genus zero, n-pointed curve and
the map µ is represented by a certain fixed cycle in X, i.e. µ∗[C] = β ∈ H2(X,Z). We also
need to specify what an isomorphism between two such objects is:

Definition 2.1. An isomorphism between two n-pointed maps (C, p1, ..., pn, µ) and (C ′, p′1, ..., p
′
n, µ

′)
is an isomorphism between the underlying n-pointed curves τ : (C, p1, ..., pn)→ (C ′, p′1, ..., p

′
n)

such that the diagram

(C, p1, ..., pn)
τ //

µ
%%LL

LLL
LLL

LLL
(C, p1, ..., pn)

µ′
yyrrr

rrr
rrr

rr

X

commutes.

In analogy to the case of curves, we have the notion of a family of maps.
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Definition 2.2. A family of genus zero, n-pointed morphisms to X of class β parametrized
by a scheme S is a flat, projective map π : C −→ S together with n sections p1, ..., pn such
that each geometric fiber (Cs, p1(s), ..., pn(s))→ X is a genus zero, n-pointed map:

C
µ //

π
��

X

S.

HHAA

p1,...,pn

::

We can now set up our moduli functor:

M0,n(X,β) : SchC −→ Sets
S 7→ {stable families of maps over S

from genus zero, n-pointed curves to X
representing the class β} / isomorphism

Theorem 2.3. The moduli functor described above admits a coarse moduli spaceM0,n(X,β),
which is actually a fine moduli space when n ≥ 3.

As before, it is quite easy to see that this moduli space is not compact for the same reason as
the moduli space of curves. In order to compactify it, we need to introduce a suitable notion
of stability that should possibly match the stability we have in the case of curves. Therefore,
we want to allow domain curves with nodal singularities plus some restrictions.

Definition 2.4. A genus zero, n-pointed map µ : (C, p1, ..., pn) −→ X is stable if every
component of C that gets contracted by µ is stable in the sense of pointed curves, i.e., if it
contains at least three special points.

Notice that this condition is equivalent, as before, to the automorphism groups of the map
being finite, which is exactly what we need to have a well-behaved moduli space. Indeed,
for dimensional reasons, on each irreducible component of C our map µ is either a branched
cover of its image, and then the group Aut(µ) consists precisely of the automorphisms of the
branched cover (whose number is finite), or it contracts everything to a point, and in this case
its automorphisms are precisely the automorphisms of the connected component itself. If we
modify the moduli functor accordingly, we will find out that it admits a projective, coarse
moduli spaceM0,n(X,β) (these spaces are not generally fine, not even if n ≥ 3).

Example 2.5. If β = 0, then the fibers of the map µ have strictly positive dimension,
therefore the map is constant. This implies that M0,n(X, 0) ∼=M0,n ×X and when X is a
point we actually recover the moduli spaceM0,n.

Example 2.6. When X = Pr, the class β must be a multiple of the class of a line, since
H2(Pr,Z) ∼= Z. If β = d[line], we will just writeM0,n(Pr, d). A basic example isM0,0(Pr, 1),
which is just the moduli space of lines in Pr, i.e. M0,0(Pr, 1) ∼= Gr(2,m+ 1).

Let us now list and discuss the main properties of the newly constructed moduli space.

1) The moduli space M0,n(X,β) is compact (this is a consequence of the semistable re-
duction theorem).
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2) We can identify the non-compactified moduli spaceM0,n(X,β) ⊂M0,n(X,β) with the
open locus corresponding to maps from non-singular curves.

3) There are n natural evaluation maps:

M0,n(X,β)
evi−→ X

[(C, p1, ..., pn, µ)] 7→ µ(pi) .

4) If n1 > n2, there is a natural forgetful morphism, which forgets the first n1−n2 markings:

M0,n1(X,β)
φn1−n2−→ M0,n2(X,β)

[(C, p1, ..., pn, µ)] 7→ [(C, pn1−n2+1, pn1−n2+2..., pn, µ)] .

Notice that this morphism only exists if the space on the right exists: for example, there
is no forgetful morphismM0,7(X, 0) −→M0,0(X, 0).

5) In analogy to the case of curves, we have a notion of universal map (here C̃ will be a
stack):

C̃
µ̃ //

π
��

X

M0,n(X,β).

HHBB

p̃1,...,p̃n

;;

We can identify our universal curve with the space M0,n+1(X,β): the map π will be
therefore identified with the forgetful morphism φ1 and the map µ̃ with the evaluation
morphism ev1.

6) (Expected dimension). We now want to compute the expected (or virtual) dimen-
sion of our moduli space. The expected dimension comes from counting the moduli
naively: what can vary in our problem is the curve, or the map when the curve is
fixed. We already know that the curve can vary in its moduli space M0,n, whose di-
mension is n − 3. To understand how the map can vary, we will need to compute its
first order deformation space. The deformation long exact sequence around a point
[(C, p1, ..., pn, µ)] ∈M0,n(X,β) is:

0 −→ Aut(C, p1, ..., pn, µ) −→Aut(C, p1, ..., pn) −→
−→ Def(µ) −→ Def(C, p1, ..., pn, µ) −→Def(C, p1, ..., pn) −→
−→ Ob(µ) −→ Ob(C, p1, ..., pn, µ) −→ 0

which we can roughly think of as the long exact sequence in cohomology associated to
the short exact sequence:
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0 −→ TC(−p1 − ...− pn) −→ µ∗TX −→ NC/X −→ 0,

therefore we can identify the two spaces:

Def(µ) ∼= H0(C, µ∗TX),

Ob(µ) ∼= H1(C, µ∗TX).

Notice that in the case when Ob(µ) = 0 for each genus zero map µ, the deformations
are unobstructed, therefore our moduli space is nonsingular when viewed as a stack, and
the dimension of the space giving the variation of the map is just h0(C, µ∗TX). This
justifies the following definition:

Definition 2.7. A smooth projective variety X is convex if for any genus zero map
µ : C −→ X we have

H1(C, µ∗TX) = 0.

We have, therefore, the following lemma.

Lemma 2.8. Let X be a convex, projective variety. Then the virtual dimension of the
moduli spaceM0,n(X,β) is

vdimM0,n(X,β) = dimX +

∫
β
c1(X) + n− 3.

Proof. By counting the moduli, following the discussion above, we can conclude that
the virtual dimension of the moduli spaceM0,n(X,β) at a given point [(C, p1, ..., pn, µ])
is :

vdimM0,n(X,β) = n− 3︸ ︷︷ ︸
how the pointed curve varies

+ h0(C, µ∗TX)︸ ︷︷ ︸
how the map varies

.

Now, since we have assumed our target variety X to be convex, we have that

h0(C, µ∗TX) = χ(C, µ∗TX)

and, by Riemann-Roch:

χ(C, µ∗TX) = deg(µ∗TX)− rk(µ∗TX)(g(C)− 1)

= deg(µ∗TX) + rk(µ∗TX)

=

∫
C
c1(µ

∗TX) + rk(TX)

=

∫
C
µ∗c1(TX) + dimX
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=

∫
µ∗[C]

c1(X) + dimX

=

∫
β
c1(X) + dimX,

hence the result.

The following lemma provides us an ample class of examples of convex varieties.

Lemma 2.9. Suppose X is an n-dimensional variety such that the vector bundle µ∗TX
is generated by its global sections for any genus zero map µ. Then X is convex.

Proof. For µ : C −→ X, consider the short exact sequence

0 −→ K −→ H0(C, µ∗TX)⊗ OC −→ µ∗TX −→ 0

where K is the kernel of the natural evaluation map. We have a long exact sequence
in cohomology:

0→ H0(C,K )→ H0(C,O⊕nC )→ H0(C, µ∗X)→
→ H1(C,K )→ H1(C,O⊕nC )→ H1(C, µ∗TX)→ 0.

The sequence obviously ends after the first cohomology groups because we are on a
curve. Moreover, since the genus of C is zero, we have that by Serre dualityH1(C,OC) ∼=
H0(C,ωC) = H0(C,OC(−2)) = 0, hence H1(C, µ∗TX).

This shows, for instance, that all the homogeneous varieties are examples of convex
varieties and hence the moduli spaceM0,n(X,β) with X homogeneous is well-behaved.

7) (Boundary divisors) When X is convex, the spaces M0,n(X,β) have fundamental
boundary divisors analogous to the divisors D(A|B) onM0,n. Let n ≥ 4. Let A∪B be
a partition of {0, ..., n}. Let β1 + β2 = β be a sum in H2(X,Z). There is a divisor on
M0,n(X,β) determined by

D(A,B;β1, β2) =M0,A∪{•}(X,β1)×XM0,B∪{•}(X,β2)

D(A,B;β1, β2) ⊂M0,n(X,β).

A moduli point in D(A,B;β1, β2) corresponds to a map with reducible domain C =
C1 ∪ C2 where µ∗[C1] = β1 and µ∗[C2] = β2. The points labeled by A lie on C1 and
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the points labeled by B lie on C2. The curves C1 and C2 are connected at the points
labeled •.
Finally, the fiber product in the definition ofD(A,B;β1, β2) corresponds to the condition
that the maps must take the same value in X on the marked point • in order to be
glued. For i, l, k, l distinct in {1, ..., n}, set

D(i, j|k, l) =
∑

A∪B={1,...,n}, i,j∈A, k,l∈B
β1,β2∈H2(X,Z), β1+β2=β

D(A,B;β1, β2).

Using the projection M0,n(X,β) −→ M0,{i,j,k,l} ∼= P1, the fundamental linear equiva-
lences

D(i, j|k, l) = D(i, k|j, l) = D(i, l|j, k) (1)

onM0,n(X,β) are obtained via pullback of the 4-point linear equivalences onM0,{i,j,k,l}
as in the case of pointed curves. These relations among the boundary divisors are
fundamental to prove the associativity of the quantum product that we will introduce
later.

Moreover, we have the following:

Theorem 2.10. Let X be a nonsingular, projective, convex variety. The boundary of
M0,n(X,β) is a divisor with normal crossing (up to a finite group quotient).

3 Gromov-Witten invariants

From now on, we will always work in the setting when the genus of our pointed maps is
zero and the target variety X is convex, unless otherwise stated. As we saw in the previous
sections, the moduli space of stable mapsM0,n(X,β) has a natural compactification, namely
the Deligne-Mumford compactification M0,n(X,β). Now that we have a compact space, we
can integrate top cohomology classes. We have also seen that the moduli space M0,n(X,β)
comes equipped with n natural evaluation morphisms:
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M0,n(X,β)
evi−→ X

[(C, p1, ..., pn, µ)] 7→ µ(pi) .

Given an arbitrary ordered n-tuple γ1, ..., γn ∈ H∗(X), we can pullback each γi by the i-th
evaluation morphisms, obtaining a well defined class ev∗i (γi) ∈ H∗(M0,n(X,β)), and then
integrate the class given by the cup product of them all. The number

〈γ1 · · · γn〉X0,β =

∫
[M0,n(X,β)]

ev∗1(γ1) ∪ ... ∪ ev∗n(γn)

is called genus g, n-point Gromov-Witten invariant. Before proceeding further, we can draw
a few first glance properties:

• The hypotheses we set at the beginning of the section, i.e. genus zero and convex target
space, ensure us that we are integrating over a physical fundamental class rather than
on the virtual fundamental class of our moduli space: as we saw before, in this case the
first order deformations are unobstructed, therefore our moduli space (now seen as a
stack) is smooth and therefore the virtual and the actual fundamental class coincide.

• Even though we began by choosing an ordered n-tuple of cohomology classes, it follows
from the definition that the number 〈γ1 ···γn〉X0,β is invariant up to re-ordering the classes
γi (and up to Koszul signs): each element σ in the group of permutations Sn induces an
automorphism of the moduli spaceM0,n(X,β) by simply permuting the marked points.

• Since a homogeneous class γ ∈ H2i(X) is Poincaré dual to some cycle of (complex)
codimension i and pullback in cohomology preserves the degree, the form ev∗1(γ1)∪ ...∪
ev∗n(γn) is a top form iff

n∑
i=1

2|γi| = dimM0,n(X,β) = dimX +

∫
β
c1(X) + n− 3. (2)

• If n = 0, the only invariant we have is the 0-point invariant: it occurs when dimM0,0(X,β) =
0, i.e. when

dimX +

∫
β
c1(X) = 3. (3)

Now, while if dimX = 0 then it must be the case that
∫
β c1(X) = 0 while if dimX = 3,

then β must be nonzero, otherwise the moduli space would be empty: since the map is
constant, every irreducible component gets contracted and there are no marked points
to stabilize them, therefore every map becomes unstable. Now, suppose that dimX > 0
and β 6= 0. Then we have the following

Lemma 3.1. Let µ : P1 −→ X be a nonconstant morphism to a nonsingular, convex
projective space X. Then

∫
µ∗[P1] c1(X) ≥ 2.
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Proof. Consider the differential

dµ : TP1 −→ µ∗TX .

Since TP1
∼= OP1(2), each section will be a homogeneous degree 2 polynomial and we can

pick some generic s ∈ TP1 which vanishes at two distinct points p1 and p2. Now, since
the differential is nonzero because of the non constancy of µ and s is generic, we can
further assume that dµ(s) 6= 0. Moreover, every vector bundle on P1 splits into direct
sum of line bundles, i.e. µ∗(TX) ∼=

⊕
O(di) with di ≥ 0 for each i, since TX is globally

generated: this implies that dµ(s), a section which vanishes at two points at least, must
be a homogeneous polynomial of degree at least two, i.e., that di ≥ 2 for some i.

By the Lemma, we get that (3) holds only when dimX = 1 and
∫
β c1(X) = 2, hence it

only occurs when X ∼= P1 and, in that case, I1 = 1 is the unique 0-point invariant.

Warning: the proof of the Lemma above only holds when X is convex. There are some
cases of great interest, in which X is not convex, where n = 0 and either dimX = 2 and∫
β c1(X) = 1 or dimX = 3 and

∫
β c1(X) = 0.

Now, let us try to give a geometrical interpretation of Gromow-Witten invariants. We can
intuitively think of the class ev∗1(γ1) ∪ ... ∪ ev∗n(γn) as being the Poincaré dual of the locus of
stable maps sending each marking to the support of the corresponding class γi: the invariant
〈γ1 · · · γn〉X0,n will then count how many such maps occur. We thus understand that Gromov-
Witten theory is somehow connected to enumerative geometry. To further clarify this idea,
let us examine a very specific case.

Example 3.2. Suppose now that X ∼= P2. Then, since H2(P2) ∼= Z[line], it must be that
β = d[line] for some d, and equation (2) becomes:

n∑
i=1

codim(γi) = dimP2 + d

∫
[line]

c1(TP2) + n− 3

= 2− d
∫
[line]

c1(OP2(−3)) + n− 3

= 2 + 3d+ n− 3

= n+ 3d− 1

We can now choose γi = [pt] for each i, so the equation above becomes 2n = n+ 3d− 1 and
hence the integral does not vanish only if n = 3d− 1. Now, the number

Nd =

∫
[M0,3d−1(X,d)]

ev∗1(pt) ∪ ... ∪ ev∗n(pt)
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counts exactly the number of degree d maps from P1 to P2 which send each of the 3d − 1
markings to the corresponding number of general points in P2. Since the class of the image of
each such map is a degree d curve in P2, what we are actually counting is the number of degree
d curves passing through 3d− 1 general points in P2 . The low degree cases were already well
known several decades ago: N1 = N2 = 1, since there is just one line passing through two
general points and only one conic passing through five general points in the plane; the degree
three case can be easily solved by hand to find out that there are N3 = 12 (possibly nodal)
cubics passing through eight general points in the plane, and the degree four case was first
done in 1870’s by Zeuthen, who showed that there were 620 possibly nodal quadrics passing
through eleven general points in the plane. The general case has been unknown until 1993,
when Ruan and Tian proved Kontsevich’s formula using Gromov-Witten theory: by using
fundamental relations among boundary components of the moduli space M0,3d−1(X, d), is
can be fairly easily proved that:

Nd =
∑

d1+d2=d, d1,d2>0

Nd1Nd2

(
d21d

2
2

(
3d− 4

3d1 − 2

)
− d31d2

(
3d− 4

3d1 − 1

))
.

This amazing recursive algorithm was a complete surprise, and led Gromov-Witten theory to
a period of wide popularity.

Let us now examine three basic properties of Gromov-Witten invariants.

(1) β = 0. As we saw in the previous sections, in this case the map µ is constant, the moduli
spaceM0,n(X, 0) is therefore isomorphic toM0,n×X and the canonical evaluation maps
are all equal to projection p :M0,n×X → X onto the second factor. The corresponding
the Gromov-Witten invariant becomes:

〈γ1 · · · γn〉X0,β =

∫
[M0,n×X]

ev∗1(γ1) ∪ ... ∪ ev∗n(γn)

=

∫
[M0,n×X]

p∗(γ1 ∪ ... ∪ γn)

=

∫
p∗[M0,n×X]

γ1 ∪ ... ∪ γn.

Now, if n < 3, the moduli space is empty, therefore the integral is zero. If n ≥ 4, then
the spaceM0,n has positive dimension, therefore the fibers of the projection morphism
p have positive dimension and the push forward of the fundamental class is thus zero.
The only case in which the integral is possibly nonzero is when n = 3 and in that case

〈γ1 ∪ γ2 ∪ γ3〉X0,0 =
∫
X
γ1 ∪ γ2 ∪ γ3

is the 3-point invariant, containing all the triple intersections on X.
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(2) One of the classes, say γ1, is the unit: γ1 = 1 ∈ H0(X). In this case, for the Gromov-
Witten invariant to be non vanishing it must be β = 0 , and we are back to the first case.
Indeed, if β 6= 0, then the cohomology class ev∗1(γ1)∪...∪ev∗n(γn) = ev∗1(γ2)∪...∪ev∗n(γn)
"does not see" the first marking, and it is therefore the pullback of some class ω in
M0,n−1(X,β) via the forgetful map we described previously:

φ1: M0,n(X,β) −→ M0,n−1(X,β)
[(C, p1, ..., pn, µ)] 7→ [(C, p2, ..., pn, µ)].

Therefore:

〈1 · γ2 · · · γn〉X0,β =

∫
[M0,n(X,β)]

φ∗1ω

=

∫
φ1,∗[M0,n(X,β)]

ω

= 0

because the fibers of φ1 have positive dimension. If β = 0, on the other hand, we are
back to case (a), and hence it must also be n = 3. The only surviving invariant is,
therefore, 〈1 · γ2 · γ3〉X0,0 =

∫
X γ2 ∪ γ3.

(3) One of the classes, say γ1, is in H2(X). Then:

〈γ1 · · · γn〉X0,β =

(∫
β
γ1

)
· 〈γ2 · · · γn〉X0,β

since the number
(∫

β γ1

)
counts precisely how many choices we have for the first mark-

ing to lie in the support of γ1, since γ1 is Poincaré dual to a hypersurface.

Historically, properties (2) and (3) together are called "divisor axiom".

Example 3.3. TakeX = P3, d = 1. Then the Gromov-Witten invariant 〈line, line, line, line〉P3

0,4

counts the number of lines that intersect four generic lines in the space. This number can be
computed via intersection theory, and it is known to be equal to 2. Therefore

〈line, line, line, line〉P3

0,4 = 2.

4 Quantum Cohomology

We now want to define a new "cohomology theory", whose multiplicative structure will be
a deformation of the usual cup product in cohomology. How to deform the intersection
product in a meaningful way? The answer to this question is suggested by Gromov-Witten
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theory. Remember that when we considered Gromov-Witten invariants on the moduli space
M0,n(X,β) with β = 0 we found that the only surviving invariant was the three point
invariant, namely

〈γ1γ2γ3〉X0,0 =
∫
X
γ1 ∪ γ2 ∪ γ3.

Actually, the three-point invariant allows us to express the cup product of any two cycles. To
see this, let us fix a basis {T0, ..., Tm} for the cohomology ring H∗(X,Z) such that T0 = 1 ∈
H0(X,Z), {T1, ..., Tp} is a basis for the Kähler part H1,1(X,Z) (= H1,1(X) ∩H2(X,Z)) and
{Tp+1, ..., Tm} is a homogeneous basis for the other cohomology groups. Let us call (gij) the
intersection matrix, namely

gij =

∫
X
Ti ∪ Tj

and let (gij) denote its inverse matrix. Now, notice that for each i, j ∈ {0, ...,m} we can
express the cup product Ti ∪ Tj as

Ti ∪ Tj =
∑
k,h

(∫
X
Ti ∪ Tj ∪ Tk

)
ghkTh,

that is

Ti ∪ Tj =
∑
k,h

〈TiTjTk〉X0,0 ghkTh.

Since the three-point invariant occurs when the class β is equal to zero, we can deform the
cup product by allowing nonzero classes: we will though need to balance somehow the growth
of the invariant 〈γ1γ2γ3〉X0,β when the class β varies. Fix a Kähler class ω ∈ H1,1(X), and
define a new product, the quantum product as:

Ti ∗ Tj =
∑
k,h

∑
β

e−
∫
β ω〈TiTjTk〉X0,β ghkTh = Ti ∪ Tj +

∑
k,h

∑
β 6=0

e−
∫
β ω〈TiTjTk〉X0,β ghkTh (4)

Notice that when ω →∞ in the Kähler cone, we have that∑
k,h

∑
β 6=0

e−
∫
β ω〈TiTjTk〉X0,β ghkTh −→ 0,

therefore Ti ∗ Tj −→ Ti ∪ Tj . There are several convergence assumptions we can make about
(4).

A) There exist only finitely many effective β satisfying (2).

This is the case when X is Fano.

B) The previous condition is not satisfied, but the sum in (4) converges, at least for large
ω.

Conjecturally, this is the case for Calabi-Yau manifolds.
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Notice that with this definition we have a family of products, hence a family of rings (H∗(X,C), ∗ω)
parametrized by the Kähler cone. If we modify the module structure of our ring, though,
we can incorporate the dependence of the product on the Kähler class ω in it. Let ω =
y1T1 + ...+ ypTp. Then our product becomes

Ti ∗ Tj = Ti ∪ Tj +
∑
k,h

∑
β 6=0

e−y1
∫
β T1 · · · e−yp

∫
β Tp〈TiTjTk〉X0,β ghkTh

and, by setting qi = e−yi for each i = 1, ..., p:

Ti ∗ Tj = Ti ∪ Tj +
∑
k,h

∑
β 6=0

q

∫
β T1

1 · · · q
∫
β Tp
p 〈TiTjTk〉X0,β ghkTh.

We now have q1, ..., qp as formal variables.

Definition 4.1. The ring

QH∗s (X) = (H∗(X,C)⊗C
̂C[q±11 , ..., q±1p ], ∗)

where the hat stands for a suitable completion, is the small quantum cohomology ring of X.

Notice that when the variety X is Fano, as we said before, it actually becomes a polynomial
ring since the sum in (4) is finite.
We can now observe three basic facts:

1) The quantum product is obviously graded commutative, since the usual cup product is.

2) The class T0 = 1 is a unit for the quantum product: indeed, we have that

T0 ∗ Tj = T0 ∪ Tj +
∑
k,h

∑
β 6=0

q

∫
β T1

1 · · · q
∫
β Tp
p 〈T0TjTk〉X0,β ghkTh,

but by property 2) of Gromov-Witten invariants, if T0 = 1 then β must be equal to
zero, hence the big sum on the right disappears and we are left with

T0 ∗ Tj = T0 ∪ Tj = Tj .

3) The quantum product is associative: we are not going to prove this in details, but the
proof strongly relies on the relations (1) among the boundary divisors of the moduli
spaceM0,n(X,β).

We now want to examine two examples of interest.

Example 4.2. (Quantum cohomology of the projective space)

Let X = Pr. Then, since H1,1(X) ∼= C·[T ] where T = T1 is the hyperplane class, we have only
one variable, namely q = q1. Moreover, since Pr is Fano, the small quantum cohomology ring
is actually a polynomial ring. As a basis, we will take {Ti}i=0,...,r such that Ti = Poincaré dual
of a linear subspace of codimension i. With this basis, the intersection matrix (gij) becomes:
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
0 1

1
· · ·

1
1 0

 ,

which coincides with its own inverse, therefore gij = gij for each i, j. Remember that in
general the number 〈Tn1

1 · · · Tnmm 〉X0,β is nonzero only if∑
i

ni(codimTi − 1) = dimX +

∫
β
c1(X)− 3,

hence we have that 〈TiTjTk〉X0,d 6= 0 only if i+j+k−3 = r+d(r+1)−3, i.e. i+j+k = r+d(r+1).
Since i, j, k vary from zero to r, this can only happen when d = 0 or when d = 1 and in both
cases 〈TiTjTk〉X0,d = 1. It follows that:

(i) If i + j ≤ r, then it must be d = 0 because k = 0, ..., r and if d = 1 we would have
i+ j + k = 2r + 1. This implies that the sum over β 6= 0 in the definition of quantum
product disappears, and we have Ti ∗ Tj = Ti ∪ Tj = Ti+j ;

(ii) If r+1 ≤ i+ j ≤ 2r, then it must be d = 1, therefore k = 2r+1− i− j. Now, the only
terms surviving in the definition of quantum product are:

Ti ∗ Tj = Ti ∪ Tj︸ ︷︷ ︸
=0

+ gk,r−k︸ ︷︷ ︸
=1

q
∫
[line] T︸ ︷︷ ︸
=q

Tr−k = qTr−(2r+1−i−j) = qTi+j−r−1.

Now, the quantum cohomology ring has additively the same structure of the ordinary coho-
mology, therefore it is linearly generated by the Ti’s (i.e, by the powers of T with respect to
the ordinary cup product). Multiplicatively, we need to understand what the relations are.
From (i), we get that all the powers of T up to T r are in the subring generated by T . From
(ii), we get that T r+1 = q. Therefore the small quantum cohomology ring, as a C[q]−module,
is a quotient of C[q][T ]. The kernel is exactly (T r+1 − q): indeed, it is enough to consider
a polynomial of minimum degree in the quantum ring. Its degree cannot be less than r + 1
since the Ti’s are linearly independent, and if its degree is greater than r+1, then it is q from
(ii). Now, even though C[T, q] is not a PID, it is enough to use the euclidean division (since
the polynomial T r+1 − q is monic) to show that it actually generates the entire kernel. This
proves that the quantum cohomology ring of Pr is:

QHsPr = C[T, q]/(T r+1 − q).

Example 4.3. (Quantum cohomology of the flag manifold)

Consider the complex flag manifold F = Fl(Cn+1). As we all know, it has a natural complex
structure and it comes with distinguished line bundles Li −→ F , such that the fiber of Li
over a point [E] = {0 ⊂ E1 ⊂ ... ⊂ En ⊂ Cn+1} ∈ F is the vector space Ei+1/Ei for each
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i = 0, ..., n. Also in this case we can chose the Schubert cycles as a basis and, for simplicity,

we want to call qi = q

∫
β Ti
i . Set

ui = c1(Li)

for each i. We obviously have that

c(L0 ⊕ ...⊕ Ln) = (1 + u0) · · · (1 + un) = σ0(u) + ...+ σn(u)

where σi(u) is the elementary i-th symmetric polynomial in the ui’s. It is known that the
cohomology ring of the flag manifold is:

H∗(F,C) = C[u0, ..., un]/〈σ0(u), ..., σn(u)〉.

Now, Givental and Kim proved that:

QH∗s (F )
∼= C[u0, ..., un, q1, ..., qn]/I

where I is the ideal generated by the coefficients of the characteristic polynomial of the matrix



u0 q1

−1 . . . . . .
. . . . . . . . .

. . . . . . qn
−1 un


.

Notice that if qi = 0, the coefficients of the characteristic polynomial become the elementary
symmetric polynomials, and therefore we recover the classical cohomology. We are not going
to prove this, but we can say a few words about the quadratic relation. In the standard
cohomology ring, we have that u20 + ... + u2n = 0. Here, we claim than u∗20 + ... + u∗2n =
2(q1, ..., qn). Indeed, let us introduce some auxiliary variables pi such that

pi = −u0 − ...− ui.

Notice that the sum 2(p1 + ... + pn) represents the anti-canonical class of the flag manifold.
Now, it is clear that pi∗pj must be equal to pi∪pj plus a linear combination of the qi’s. We can
interpret the coefficients of this linear combination as being the number of holomorphic curves
passing through 0, 1 and +∞ to the divisors pi, pj and the generic point of F . Therefore, It
must be

pi ∗ pj = pi ∪ pj + δijqi

which yields:

∑
i

u∗2i
2

=
∑
i

(pi−1 − pi)∗2

2
=
∑
i

p∗2i +
∑
i

pi−1 ∗ pi =
∑
i

qi.
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