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1 Symplectic structures on moduli of sheaves

In this section we will outline a more general construction of a symplectic struc-
ture on the moduli of sheaves. Our main references for this section are [Muk84]
and [HL97]. In the following S will always denote a smooth projective surface
over C, even though we can work in a more general setting. We fix a polarization
h on S.

Recall, a sheaf E on S is called simple if Hom(E,E) ∼= C. In particular,
h-stable sheaves are simple.

Fact 1.1. The moduli functor of simple sheaves may not be representable by a
scheme, but there exist a coarse moduli space SplS . Furthermore, the functor
is represented by an algebraic space SplS . In more concrete terms, for all
morphisms φ : B → SplS , there exists an etale cover π : B̃ → B and a sheaf
E on B̃ × S, which is flat over B̃, such that for each closed point x ∈ B̃, the
composition φ ◦ π maps x to the point corresponding to simple sheaf E|{x}×S .

1.1 Smoothness of the moduli

In this section we will make some remarks about smoothness of SplS . We
will skip details as smoothness was more or less proven in the case of K3(see
Benjamin’s lecture notes). Note in this case this easily follows from vanishing
of Ext2(E,E)0. The main theorem proven in [Muk84] is:
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Theorem 1.1. Let E0 be a simple sheaf on S. Then SplS is smooth at E0 if:

i PicS is smooth. Note this condition is immediate for S is K3 or charac-
teristic is 0(hence in our case too).

ii The natural map jE0 : H0(S, ωS)→ Hom(E0, E0 ⊗ ωS) is surjective.

Remark 1.1. The dimension can be computed easily using Grothendieck-
Riemann-Roch. We will do this later for K3 surfaces.

Remark 1.2. Smoothness roughly means that finite order infinitesimal defor-
mations of E0 can be extended to arbitrary order. Strictly speaking, Mukai
proves formal smoothness, but smoothness follows from this and local structure
of SplS .

To prove smoothness, we will start with a finite order infinitesimal deforma-
tion as mentioned above. Then, we will attempt to extend it to higher order
on the affine pieces of S. This is possible, but for a global deformation, these
local deformations should match in the intersections. The failure to match will
give us (Cech) cohomology classes, the obstruction classes, and we will conclude
that when it is a coboundary we can actually make corrections so that the local
deformations match to make a global one. Then, we will proceed to sketch a
proof that the obstruction class vanishes in cohomology, hence we will be done.

Before giving the obstruction classes let’s make some assumptions which
doesn’t effect generality. First, if E0 is sky-scraper, then SplS is locally isomor-
phic to S at E0, hence it is smooth. Also, twisting by ample line bundle gives
automorphisms of SplS , so we can assume E0 is generated by global sections and
has vanishing higher cohomology. In this case we have a short exact sequence:

∗0 : 0→ G0 → OnS → E0 → 0

Moreover, it can be shown that G0 is locally free(see [Muk84]). We will try to
deform short exact sequences as above.

Now, let (A,m) be an Artin local ring over C and I ⊂ A be an ideal such that
Im = 0 (for instance A = C[ε]/(εn+1) and I = (εn)). Let (A,m) = (A/I,m/I)
and let E be a deformation of E0 over A, i.e. a flat family of sheaves in SplS
over Spec(A), which restricts to E0 over the central fiber Spec(A/m) = Spec(C).
Assume E lies in a short exact sequence as above, i.e.

∗ : 0→ G→ OnSA
→ E → 0

which extends ∗0 to Spec(A).
We can define two obstruction classes: ob(G) ∈ Ext2S(G0, G0 ⊗C I), resp.

ob(∗) ∈ Ext1S(G0, E0 ⊗C I), which vanish if and only if G, resp. ∗ deform to G,
resp. ∗ : 0 → G → OnSA

→ E → 0, over SA. Thus, vanishing of ob(∗) proves

that E also deforms and finishes the proof of smoothness.
Mukai defines them by diagram chasing and states that they can be produced

by deforming G and ∗ on affine open subsets. We now outline this for ob(G).
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Choose an affine open cover {Ui} of S. Then, G|Ui andG|Uj are equal(isomorphic
by the identity map) when restricted to Ui ∩ Uj . We can deform the vector
bundle G|Ui

on (Ui)|A to a vector bundle Gi on (Ui)A and extend the isomor-

phism(identity) to gij : Gi|Ui∩Uj

∼=−→ Gj |Ui∩Uj
, so that (gij)A = id. Now to

make a vector bundle out of Gi we need the cocycle condition:

gjk ◦ gij = gik

This is a non-linear condition, but we already now that it holds over A. Hence,
this relation holds modulo an element dijk of HomOSA

(Gi|Uijk
, Gk ⊗A I|Uijk

),
where Uijk = Ui ∩ Uj ∩ Uk. Note that this is isomorphic to

HomOS
((G0)|Uijk

, (G0)⊗C I|Uijk
)

Hence, the difference defines a 2-cocyle {dijk}. As G0 is locally free, a 2-cocycles
with values in HomOS

((G0)|Uijk
, (G0)⊗C I|Uijk

) gives an element

ob(G) ∈ Ext2S(G0, G0 ⊗C I)

Clearly, it vanishes in cohomology if and only if G deforms to a vector bundle
G over SA.

One can play a similar game and try to deform ∗ on affine pieces. This time
differences gives a 1-cocycle, hence a class

ob(∗) ∈ Ext1S(G0, E0 ⊗C I)

It is slightly trickier in this case, but not much harder. Now let us state some
properties of these obstruction classes. For the proofs and details see [Muk84].

1. Let x0 : E0 → G0 be the extension class of ∗0. Then the composition

G0
ob(∗)−−−→ E0 ⊗C I[1]

x0⊗C1I−−−−−→ G0 ⊗C I[2]

is equal to ob(G). Note, it is easy to see such a relation should hold
simply because extendability of ∗ implies extendability of G (hence if ob(∗)
vanishes, then ob(G) vanishes).

2. ob(detG) ∈ Ext2S(detG0, detG0⊗CI) ∼= H2(S,OS)⊗CI is equal to tr(obG),
where tr : Ext2S(G0, G0 ⊗C I)→ H2(S,OS)⊗C I (see [HL97] if you want
to see a definition). Note this is where the condition on the smoothness
of Pic(S) is used; namely ob(detG) = 0 always.

Above remarks imply that tr ◦ (x0 ⊗ 1) sends ob(∗) to ob(detG) = 0. Hence,
it suffices to show that the composition

Ext1(G0, E0)
x0◦−−→ Ext2(G0, G0)

tr−→ H2(S,OS)

is injective. But using Serre duality we see that injectivity of the composition
above is equivalent to surjectivity of composition below

Ext1(E0, G0 ⊗ ωS)← Hom(G0, G0 ⊗ ωS)← H0(ωS)
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, where the first arrow is still the Yoneda map with respect to x0 and the second
map is the most natural one that you can imagine. We have the commutative
square

H0(ωS) Hom(G0, G0 ⊗ ωS)

Hom(E0, E0 ⊗ ωS) Ext1(E0, G0 ⊗ ωS)

But we already know the surjectivity of the left arrow in the diagram follows
from the second assumption of the theorem, which is immediate for K3 and
surjectivity of the bottom arrow is a result of a long exact sequence argument(for
details see [Muk84]). Hence, we have smoothness.

1.2 The bilinear form

We have seen that T[E0]SplS
∼= Ext1(E0, E0) (where the isomorphism can be

described explicitly as the Kodaira-Spencer map, which I will tell later). But
the classes in Extn(E0, E0) can naturally be seen as morphisms E0 → E0[n] in
the derived category. Hence, we have a composition map

Ext1(E0, E0)× Ext1(E0, E0)→ Ext2(E0, E0)

where (α, β) 7→ α ◦ β. Using the trace map E∨0
L
⊗ E0 → OS we obtain

Ext2(E0, E0)
tr−→ H2(OS)

which we again call trace map(actually we have already used this above). Serre
duality tells us H2(OS) ∼= H0(ωS)∨ and choice of a global holomorphic 2-form

α ∈ H0(ωS) gives us a map H2(OS) ∼= H0(ωS)∨
α−→ C. So by composing

Kodaira-Spencer map, ◦, tr and α, we get a bilinear map

T[E0]SplS × T[E0]SplS → C

This is the pointwise description of the symplectic form on SplS . To show that
this is ”continuous” we have to show this can be done in families. Before that
note in the case of a K3 surface choice of α is unique upto scaling but sometimes
it can effect the form that we get and even its non-degeneracy(so we would have
Poisson structures).

Now, let B be a smooth variety and E be a family of simple sheaves over S
paramerized by B (i.e. a sheaf over B × S, flat over B, simple over its closed
points). Let RHomB = RπB∗RHom, where πB is the projection B × S → B
and let ExtiB denote its cohomology sheaves. These are sheaves over B and
intuitively homs of families of sheaves parametrized by B. The Yoneda pairing
exists in this case too:

Ext1B(E , E)× Ext1B(E , E)→ Ext2B(E , E)
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Similarly trace map extends to the family

Ext2(E , E)→ R2πB∗OB×S = H2(OS)⊗C OB

Hence, choice of α as above gives a sheaf homomorphism

Ext1B(E , E)⊗OB
Ext1B(E , E)→ OB

We only need to set the isomorphism between tangent space and the ext
group over families.

Aside. Atiyah class and Kodaira-Spencer map For a given smooth com-
plex variety X we have a short exact sequence

0→ η∗Ω
1
X → OX×X/I2

∆ → O∆ → 0

where η : X → X × X is the diagonal embedding, ∆ the diagonal and I∆ its
ideal sheaf. Note this holds as η∗Ω

1
X
∼= I∆/I2

∆. Hence, we get an extension
class O∆ → η∗Ω

1
X [1] and if we denote the projection to first and second X by p

and q, then we get a natural transformation

idDb(X)( ) ' Rp∗(q∗( )⊗O∆)→ Rp∗(q
∗( )⊗ η∗Ω1

X [1]) ' ( )⊗OX
Ω1
X [1]

hence a class A(F) ∈ Ext1X(F ,F ⊗ Ω1
X). This is called the Atiyah class.

It can be described in terms of complex differential geometry as well. Note
tr(exp(A(F)) = ch(F).

Now if E → B×S as above, then as Ω1
B×S

∼= π∗BΩ1
B⊕π∗SΩ1

S, A(E) decomposes
into A(E)′ ∈ Ext1(E , E ⊗ π∗BΩ1

B) and A(E)′′ ∈ Ext1(E , E ⊗ π∗SΩ1
S). It is then

clear that A(E)′ gives a sheaf homomorphism:

TB
KS−−→ Ext1B(E , E)

We call this Kodaira-Spencer map. When the classifying map B → SplS is etale,
this is an isomorphism, by the pointwise result.

Hence, composing the Kodaira-Spencer map with the above bilinear form
over B we get a sheaf homomorphism

TB ⊗OB
TB → OB

Now, as SplS is represented by an algebraic space SplS , there exist an etale
cover π : B → SplS with a corresponding sheaf E → B × S. Above remarks tell
us how to define the form on TB, but we already have the map at a fiberwise
level on SplS hence it descends to a bilinear form

TSplS ⊗OSplS
TSplS → OSplS

. This is the form we want to show to be symplectic.
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1.3 Symplecticity

Alternating:
The idea is very simple. In general composition is not symmetric or alter-

nating. But for vector spaces we have the identity tr(A ◦B) = tr(B ◦A), which
turns into tr(A ◦ B) = (−1)|A||B|tr(B ◦ A) for super(or graded) vector spaces
and graded operators A and B. The same holds for the trace map here and as
we compose odd degree maps we get the alternating property. For more details
see [Muk84] or [HL97].

Non-degeneracy:
For this I assume ωS ∼= OS . Recall that for an n-dimensional smooth proper

variety X the Serre duality pairing is given by

Extn−i(F,E ⊗ ωX)× Exti(E,F )
tr◦Y on−−−−−→ Hn(ωX) ∼= H0(OX)∨ ∼= C

Hence, contraction of this with a global 2-form gives our bilinear pairing. But
Serre duality says this map is non-degenrate, hence our alternating form is non-
degenerate under the assumption that ωS ∼= OS (and α 6= 0).

Closedness
In the case most relevant to us the dimension of the moduli will be 2, hence

this will be immediate. But, we still want to outline an argument and refer to
[HL97] for more details.

We will use upper prime ′ (as in A(E)′) to refer to relevant part of a class
when it has a decomposition similar to that of Atiyah class of E → B × S.

Now as above A(E)′ ∈ Ext1(E , E ⊗ π∗BΩ1
B) gives rise to TB → Ext1B(E , E).

Hence taking squares

(A(E)2)′ ∈ Ext2(E , E ⊗ π∗BΩ2
B) gives Λ2TB → Ext2B(E , E)

in the same way(note to obtain a morphism out of such a map, we need to use
flat base change formula, but we prefer to stay sloppy here). Taking traces, and
taking the appropriate relevant parts, we can show that

tr(A(E)2)′ ∈ H2(OS)⊗H0(Ω2
B)

can be used to obtain a map

Λ2TB → R2πB∗OB×S ∼= H2(OS)⊗OB

Choice of an element H0(ωS) and contraction with the last line gives us our
bilinear pairing again. The reason we gave this description was to show that in
order to prove closedness, it is enough to prove that tr(A(F)k) is closed for any
k ∈ N and any sheaf F on a smooth projective variety X. One still needs to
check that De Rham differential is compatible with the relevant parts mentioned
above.
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To prove tr(A(F)k) is closed, we can assume F is a line bundle by splitting
principle. Then, choose an trivializing affine cover {Ui} and transition functions
gij ∈ O∗ for F . Then Atiyah class is the same as first Chern class and is given
by the 1-cocyle g−1

ij dgij = ”d(log(gij))”. This is closed with respect to algebraic
de Rham differential, finishing the sketch of the proof.

For other perspectives and generalizations see [Bot95] and [KM09].

2 Case of K3 surfaces

In this section, we will mainly follow [Muk87]. We specify to the case where S
is a K3 surface. Also, h will always denote a polarization on S.

Definition 2.1. Let E be a coherent sheaf or more generally an element
of Db(S) := DbCoh(S). Then, the Mukai vector, v(E) is defined to be√
td(S)ch(E) ∈ H∗(S,Q).

When S is a K3 surface
√
td(S) = 1+wS = (1, 0, 1) and v(E) = (rk, c1, ch2+

rk), where wS denote the fundamental cocycle and (r, l, s) ∈ H∗(S) denote
degree 0, 2 and 4 components respectively. Note also that evenness of the
intersection pairing for K3 surfaces implies that ch2 and hence the Mukai vector
is integral in this case.

Notation. Let v ∈ H∗(S) be a cohomology class. Then We denote the moduli
space of h-semistable sheaves with Mukai vector v by Mh(v). Also let Mh(v)s ⊂
Mh(v) denote the open locus of stable sheaves. Mh(v)s ⊂ SplS is open by
Tudor’s talk.

Recall. Mh(χ), the moduli space of h-semistable sheaves with reduced Hilbert
polynomial χ is constructed using GIT on an open subset of a Quot scheme.
Then, this implies it is quasi-projective. Hence, the following discussion on
projectivity will essentially be properness.

Remark 2.1. Given v = (r, l, s), v′ = (r′, l′, s′) ∈ H∗(S,Q) define the Mukai
pairing < v, v′ >:= ll′ − rs′ − s′r = −

∫
S
v∨v′, where v∨ = (r,−l, s). Then a

direct consequence of Grothendieck-Riemann-Roch theorem is

< v(E), v(E′) >= −χ(E,E′)

for any E,E′ ∈ Db(S). Applying this to the case E′ = O(−n), where O(1) is
the ample line bundle with first Chern class h, we obtain

χ(E(n))/rk(E) = (h2/2)n2 + (l.h/r)n+ (1 + s/r)

where v(E) = (r, l, s). Hence, the Mukai vector determines the reduced Hilbert
polynomial and (semi)stability can be checked directly from χ(E)/rk(E). This
also implies Mh(v) ⊂Mh(χ) open for some χ.

For more details on this see [Huy06] or [Muk87].
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Corollary. The dimension of Mh(v) is equal to

dimExt1(E0, E0) = 2− χ(E0, E0) = 2+ < v, v >

when there exist an E0 ∈Mh(v)s.

Mukai refers to some other paper to prove properness of Mh(v). I think this
can be easily proven using Harder-Narasimhan filtrations of families (properness
was proven in this seminar by Tudor, see section 5 of his notes). Namely take
a flat family of semistable sheaves over a formal punctured disc Bo = Spec(K),
where R is a DVR and K its field of fractions. Then, take a flat extension of
this family to B, i.e. find a sheaf E → B × S restricting to previous family over
the generic fiber. Find Harder-Narasimhan filtrations over the families, with
R-flat semistable factors, and use some semicontinuity argument to conclude
semistability at the generic fibers.(one may need to remove some torion from
the special fibers etc., check the details yourself) See references in [Muk87].

Corollary (See [Muk87]). Mh(v)s is projective if and only if every h-semistable
sheaf is stable.

Now, let us prove a numerical criteria that implies this:

Theorem 2.1. Assume v = (r, l, s) ∈ H∗(S) and gcd(r, l.h, s) = 1, then every
semistable sheaf with Mukai vector v is stable, i.e. Mh(v)s is projective.

Proof. Let E be semistable(hence torsion free) with v(E) = v and assume that
there exist 0 ( F ( E. such that

χ(E(n))/rk(E) = χ(F (n))/rk(F )

for n >> 0. Note that the left hand side cannot be strictly smaller anyways,
because of semistability. If we write v(E) = (r, l, s) and v(F ) = (r′, l′, s′), this
equation implies that

(l.h)r′ = (l′.h)r and sr′ = s′r

The assumption gcd(r, l.h, s) = 1 implies there exist a, b, c ∈ Z such that

ar + b(h.l) + cs = 1

But then multipliying this equation by r′ and using previous equalities we get

r′ = arr′ + b(h.l)r′ + cs′r = arr′ + b(l′.h)r + cs′r

Hence, r divides r′, so rk(F ) = rk(E). But then F = E, which is a contra-
diction, as the quotient E/F has to be semistable with the same phase. This
finishes the proof.

Remark 2.2. Under the assumptions of the above theorem one can also show
that the moduli space is fine and there exists a universal sheaf on it. See
[Muk87].
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Interesting applications of the above result follow from the assumption that
v2 = 0. Hence, we will assume this from now on. Note in this case, moduli
space is a surface, and if we assume gcd(r, h.l, s) = 1 then it follows that we
have a smooth projective surface Mh(v)s. There are applications, where one
starts with a given Mukai vector v and picks h generically so that this condition
holds.

Theorem 2.2. Let v2 = 0 and suppose that Mh(v)s has a proper irreducible
component. Then Mh(v)s is irreducible.

Proof. We will restrict ourselves to the case when there exists a universal family
E →Mh(v)s×S. But note this is not strictly necessary, Mukai works in a more
general setting using the so called quasi-universal families, which always exist,
the ideas are the same though. Also, let us assume that Mh(v)s is projective.

Now, let M ⊂ Mh(v)s be an irreducible component. By the smoothness, it
is also a connected component. Assume M 6= Mh(v)s. Let E be the universal
sheaf over M × S. We then have a transformation:

ΦE∨ : Db(S)→ Db(M)

such that F 7→ RHomM (E , π∗S(F )). The idea is that this functor defines a
morphism between the moduli space of sheaves on S, Mh(v), and another moduli
of sheaves, this time on M . Now, under this correspondence, we will show stable
sheaves in M will go to point, whereas stable sheaves in Mh(v) \M will go to
0. But we will show Mukai vector v determines the Mukai vector of the image
and it is different for skyscraper sheaves and 0.

Now let us take a closer look at what this does for the elements E ∈Mh(v)s.
RHomM (E , π∗S(E)) is essentially the hom set between the universal family and
the constant family that is isomorphic to E in the fibers of M × S →M .

Let us also note that if E 6= E′ ∈ Mh(v)s, then RHom(E,E′) = 0. Hence,
if E 6∈ M , it is orthogonal to any element of M and RHomM (E , π∗S(E)) = 0.
On the other hand, if E ∈ M , then RHomM (E , π∗S(E)) is supported at the
point [E] of M corresponding to E. Instead of RHom we can take RiHom and
conclude the same thing. Mukai proves that it vanishes for i = 0, 1, again when
we have E ∈ Mh(v)s (under the assumption that E is locally free this can be
seen as RπM∗ of a sheaf supported at a single fiber of M × S → M . Then he
uses a proposition proved there to conclude this result).

Now, it can be shown that the above transformation induces a map

ΦHE∨ : H∗(S)→ H∗(M)

such that v(F ) 7→ v(ΦE∨(F )) and this is just convolution with the the Mukai
vector v(E∨) of E∨ (we will elaborate more on this in the next section). Hence, it
only depends on the Mukai vector. If M 6= Mh(v)s, then v goes to 0 as v = v(E)
for some E 6∈ M . But as M 6= ∅, there exists E′ ∈ M and v(E′) 7→ v(Om),
for some m ∈M . A simple application of Grothendieck-Riemann-Roch tells us
that

td(S)ch(OS) = wS

9



the fundamental cocyle, so v(Om) is non-zero. This contradiction proves that
M = Mh(v)s, hence it is irreducible.

There is more to say about this moduli space, indeed it is a K3 surface under
above assumptions but we will prove this in the next section in the framework
of Fourier-Mukai transform.

3 Fourier-Mukai transform

In this section, we will introduce the Fourier-Mukai transform. The main refer-
ence that we are following is [Huy06]. Another good reference is [Orl97].

Recall the beautiful idea from the last section: To obtain transformations
of the derived categories, we used an object E∨ of Db(S ×M), giving rise to a
transformation between some moduli of objects. This idea can be generalized to
find non-trivial (exact, will always be exact) functors between derived categories.
More precisely:

Definition 3.1. Let X and Y be smooth projective varieties and let P be an
object of Db(X ×Y ). Denote the projections from X ×Y to X and Y by q and
p respectively. Then define the Fourier-Mukai transform

ΦP : Db(X)→ Db(Y )

by ΦP ( ) = Rp∗(q
∗( )

L
⊗ P ). P is called the kernel of the twist.

Examples:

1. The functor RHomM (E , π∗S( )) can be seen as a Fourier-Mukai transform
with kernel E∨, the derived dual.

2. Identity functor is a Fourier-Mukai tranform with kernel O∆. Similarly
translation by 1, is of this type with kernel O∆[1]

3. More generally if f : X → Y is a morphism of varieties, then both Lf∗

and Rf∗ are of this type where the kernel is given by the structure sheaf
of the graph of f(but the direction of the functor defined is changing, i.e.
when taking Lf∗ one must flip the roles of X and Y in the definition)

4. Let L be a line bundle. Then ( )⊗L is a Fourier-Mukai transform(where
the kernel is the push-forward of L to diagonal).

5. Composition of the Fourier-Mukai transforms are also Fourier-Mukai. Sim-
ilarly, they always have Fourier-Mukai type right and left adjoint, whose
kernel have explicit descriptions.

Note. This should convince you that most functors coming from geometry and
algebra are of this type, although there are pathological counter-examples. In
particular, every fully faithful exact functor is of this type, see [Orl97]. There
are more general theorems about them being the functors lifting to dg enhance-
ments, see [Kel06].
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Remark 3.1. Fourier-Mukai transforms can be seen as the categorified version
of the convolution in K-theory and cohomology. In particular they induce maps

ΦKP : K(X)→ K(Y )

which is just the induced map between Grothendieck groups(hence convolution
with [P ] ∈ Db(X × Y )) and

ΦHP : H∗(X)
p∗(q

∗( ).v(P ))−−−−−−−−−→ H∗(Y )

the convolution with the Mukai vector of P . Note this map sends v(F ) to

v(ΦP (F )) and the maps commute with K(X)
v( )−−→ H∗(X) etc. These are both

applications of Grothendieck-Riemann-Roch. For more details see [Huy06].

3.1 Derived categories of K3 surfaces

Both Fourier-Mukai transform and the moduli theory of the previous sections
have applications to each other.

We first wish to show that under the assumptions of projectivity and v2 = 0,
Mh(v)s = Mh(v) = M is K3 surface. We already know it is a smooth, projective
surface with an algebraic symplectic structure on it(hence its canonical bundle
is trivial). Hence, it only remains to show that H1(Mh(v)) = 0.

We already know that we have a map ΦHE : H∗(M) → H∗(S) (which is
inverse to map ΦHE∨ of the previous section, but we skip this for the moment).
This map is not preserving the degree, for instance it maps v(Om) = (0, 0, 1)
to v. But, as v(E) is a sum of classes of type (p, p), we know that

⊕
p−q=iH

p,q

should be preserved under ΦHE , when we fix i. So if we can prove injectivity of
ΦHE , then we would get h1,0(M) ≤ h1,0(S) = 0 giving us what we want.

Now to prove injectivity, one can proceed in two ways:

1. One can show that ΦE is fully faithful. A cheap way of doing this using
the theorem below

Theorem 3.1 ([Orl97]). A functor ΦP : Db(X) → Db(Y ) as above is
fully faithful if and only if

RHomi(ΦP (Ox),ΦP (Oy)) =


0 x 6= y

0 i 6∈ [0, dim(X)]

C x = y, i = 0

A slightly weaker form of this theorem follows from the fact that the
scyscraper sheaves generate the derived category as a triangulated cat-
egory, hence, fully faithfullness can essentially be checked on them. To
weaken the assumptions on the degree, requires more work, see [Huy06].
Once we know this theorem, we are essentially done: ΦHE sends points to
stable shaves and the assumptions of the theorem follow easily from the
remarks in the proof of Theorem 2.2.
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2. One can show ΦHE is an isometry: There is an analogous Mukai pairing
on M and it is a simple calculation to check that the map preserves the
pairing. This also shows the result.

Ending remarks for the subsection:

1. One can indeed show that ΦE as above is an equivalence.

2. In general ΦHP is between the rational cohomologies. But when one has
two K3 surfaces, it can be shown that v(P ) is integral, hence there is an
induced map between integral cohomologies.

3. As mentioned before the degree or the Hodge structure is not preserved.
But one can define a weight 2 Hodge structure on H∗(S,Z) =: H̃(S)
such that H̃(S)1,1 = H0 ⊕ H1,1 ⊕ H4. Then if you have equivalences of
derived categories of two K3 surfaces, the induced cohomological transform
preserve this Hodge structure and it is a Hodge isometry.

4. One can then ask the inverse question: If H̃(S1) and H̃(S2) are Hodge iso-
metric for two K3 surfaces S1 and S2, are their derived categories equiva-
lent? The answer is yes. Indeed if we know that the isometry sends (0, 0, 1)
to ±(0, 0, 1) then it gives a Hodge isometry of H2(S1,Z) and H2(S2,Z),
hence they are indeed isomorphic. If (0, 0, 1) is sent to v = (r, l, s) with
r 6= 0, then one needs to fix it with another Hodge isometry interchanging
(0, 0, 1) with v that is induced by a derived equivalence. That is exactly
given by the transformation between Db(Mh(v)) and Db(S2) as above.
One still needs to choose h generically etc. For details again see [Huy06]
or [Orl97].

5. This does not say anything about lifting an Hodge isometry though, we
start with one, modify it on the way and then lift. One then wonders when
one can lift and this question is deeper than it looks. A linear algebraic
assumption on the effect of the isometry on positive four dimensional
subspaces of H̃, whose quadratic form has signature (4, 20), can be shown
to be sufficient for lifting, see [Huy06]. The converse is much harder, but
it is shown, see [HMS09] for or [MS08].

3.2 Spherical Twist

We want to understand the autoequivalence group of derived categories and first
thing to do is to produce non-trivial automorphisms of them, that are not of
the type above. The main references for this section are [ST01] and [Huy06].

Intuition for such a thing can be taken from homological mirror symmetry
conjecture, namely symplectomorphisms on the symplectic side should give rise
to autoequivalences of the derived categories of coherent sheaves on the mirror.
A simple symplectomorphism, that is not a priori in the identity component of
the automorphism group is the Dehn twist and homological characterization of
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it gives rise to an example of a non-trivial equivalence in a more general setting,
which works for derived categories of coherent sheaves as well. See [ST01].

Definition 3.2. Let X be a smooth projective variety and P ∈ Db(X). Then
P is called spherical if:

1. P ⊗ ωX ∼= P

2. Hom(P, P [i]) =

{
C i = 0, dim(X)

0 otherwise

i.e. Hom∗(P, P ) is isomorphic to cohomology of Sdim(X) as a graded
vector space.

Remark 3.2. Condition 1. always holds when X is K3 or abelian.

Examples:

1. Line bundles on K3 surfaces are spherical.

2. If X is polarized K3 and C is a (−2)-curve, then OC(n) is spherical.

3. Skyscraper sheaves on smooth curves are spherical.

4. OE for an elliptic curve E is spherical.

Now given this definition we can introduce spherical twist:

Definition 3.3 ([ST01],[Huy06]). Let X be smooth, projective and P ∈ Db(X)
be spherical. Then define spherical twist functor TP : Db(X)→ Db(X) to be

TP = Cone
(
RHom(P, ( ))

L
⊗ P )→ ( )

)
where the map is the natural evaluation map. If you decide to complain about
lack of naturality of cones, you can take this to be the Fourier-Mukai transform
with kernel

Cone((q∗P∨ ⊗ p∗P )→ O∆)

Theorem 3.2 ([ST01], [Huy06]). If X is as above and P is spherical then TP
is an autoequivalence.

Note. This actually works in a more general setting, as soon as one has some
extra assumptions such as the non-degeneracy of certain pairings, which we have
due to Serre duality. See [ST01].
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Effect of TP on cohomology As mentioned above, there is cohomological
transform THP y H∗(X). But given that TP is a cone of id and RHom(P, ( )),
we get THP to be the diffrence of the corresponding transforms. idH = id is pretty
clear. The effect of RHom(P, ( )) on the cohomology, as can be predicted by
looking its effect on the Mukai vectors, is multiplication by v(P )∨. Thus, one
can see that

THP : v 7→ v+ < v(P ), v > v(P )

Note we are using generalized Mukai pairing <,>, here, which is just as before
when X is K3. See [Huy06].

Example 3.1. If X is K3 and C ⊂ X is a (−2)-curve, then v(OC(−1)) =
(0, [C], 0). Hence,

TOC(−1)(v) = s[C](v) = v+ < [C], v > [C]

is a reflection. Note this sort of reflection has its geometric importance as they
can be used to move elements in the positive cone into ample cone. So, they
can be used in problems related to lifting Hodge isometries. See [Huy06] and
[MS08].
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