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1. Introduction
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The main goal of this talk is to explain Soergel’s approach to Kazhdan-Lusztig’s conjecture
[KL79|. This conjecture expresses the multiplicities of simple objects in standard ones in the
principal block Oy of category O in terms of the values of certain polynomials in Z[v*!] at
v = 1. These polynomials arise from Hecke algebras - certain algebras H over Z[v*!] with the
basis indexed by the elements of a Weyl group W and relations deforming those of Z[W]. The
transition matrix from the standard basis to a certain basis (called Kazhdan-Lusztig’s basis) is
uni-triangular with non-diagonal entries in v Z>o[v]. The matrix coefficients evaluated at v = 1
give the multiplicities of simple objects in standard ones in the principal block Oy of category

O. The precise formulations are given in Theorem 2.3.
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The first proof was provided independently by Beilinston-Bernstein in [BB81] and Brylinski-
Kashiwara in [BK81|, using the machinery of D-modules and perverse sheaves in the beginning
of 1980-s. A decade later Soergel in [S0e90] and [Soe92| suggested a different approach via
bimodules over the polynomial ring R = R[h], where b is the Cartan subalgebra of g. The

independent proof using Soergel’s ideas was completed recently by Elias and Williamson in

The structure of the notes is as follows. In Section 2 we recall the generalities on Hecke
algebras associated with finite Weyl groups, introduce the Kazhdan-Lusztig basis and verify its
existence and uniqueness. The pivotal point of this section is the statement of Theorem 2.3
(known as the Kazhdan-Lusztig conjecture).

Soergel’s approach to the conjecture starts to unravel in Section 3, culminating in Soergel’s
categorification theorem. In Section 5 we explain the connection of Bott-Samelson modules
and bimodules to cohomology and equivariant cohomology of Bott-Samelson varieties.

2. Hecke Algebras

Definition 2.1. Let (W, S) be a Weyl group. The Hecke algebra H is the algebra over the ring
Z[v*!] with the generators given by the symbols { H,|s € S} and relations
(2.1)
H?2=(@w'-v)H,+1& (H;+v)(H,—v ) =0Vse S (quadratic relations)
HHH,...=HHH,.. VsteS (braid relations).

Vv
Mst Mst

For any element x € W and a reduced expression © = s;, ... s;,, define H, := Hy, ... H
We set H, to be the unit.

&

Remark 2.1. As any two reduced expressions of an element x € W can be obtained from
one another by a sequence of braid moves, the element H, does not depend on the choice of a
reduced expression of x.

Remark 2.2. The elements (H, ), generate H as Z[v=!]-module. One can show that they
form a basis.

Exercise 2.1. Check that H;! = H, + v — v~!. Therefore, H, is invertible for any x € W.

There is a ring involution 7 on H, given by 7: v+ v~' and 7: H, — H, := Hz_,ll.
Definition 2.2. Let w;, wy be in W. Then w; < wy in the Bruhat order if wy = sg;, .. . Sp;, W1
and E(Sﬁik,]— L8 W) > 6(55ikij71 ...sg,wi) for all j € {1,...,k — 1}, where sg;; are some
(not necessarily simple) reflections in W.

Proposition 2.1. There exists a basis (the Kazhdan-Lusztig basis) (by)eew of H uniquely
characterized by two properties:

T(by) = by;
(2.2) by = H, + Z CoyHy,

yeWy=<z
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where each ¢, € VZ[v].

Remark 2.3. As the transition matrix from {H, },ew to {b;}zew is upper-triangular with 1’s
on the diagonal, the elements {b,},cw, indeed, form a basis of H.

Definition 2.3. The polynomials p, , = vf(m)_é(y)cw are called the Kazhdan-Luzstig polyno-
maals.

Exercise 2.2. The elements b, := {Hs + v}ss are self-dual with respect to 7. Check that
b2 = (v+v1)b,.

Now we present the proof of Proposition 2.1.

Proof. We first show the existence of a basis, satisfying the required properties, arguing by
induction on the Bruhat order. Thus, we set b, := 1 and b; := Hs + v for s € S (these are
self-dual due to Exercise 2.2) and suppose that b,, exist for w < z. It is direct to verify that

A {st +uH,, ((z) < ((s2)

(2.3) Hyp + v Hy l(2) > {(s1).

Next, to find b,, we use that there exists s € S, such that st < x. Hence, using the

assumption that by, exists and formulas (2.3), one can conclude that bbs, = H, + > h,H,
Y=<z

for some h, € Z[v] (the containment follows from the existence of by, = Hy, + >, h,H, with

Z=<8sT
h(z) € vZ[v*'], formulas (2.3) show that the degrees of monomials in &, are at most one less
than the degrees of monomials in polynomials h, it is derived from), i.e. some of the h,’s might

have constant terms. However, subtracting ) h,(0)b,, we obtain the element b,, which is fixed
y=<x
by 7 (as a Z-linear combination of fixed elements), whose coefficients are polynomials in vZ[v].

Now we show that b, is unique. Indeed, if we have two elements ¢ = H,+...and ¢ = H,+. . .,

both satisfying (2.2), then ¢ — ¢ is also stable under 7 and ¢ — ¢ € ) vZ[v|H,. Now the
yeWy=z
result follows from Lemma 2.2 below. O

Lemma 2.2. Ifh € > vZ[v|H, and 7(h) = h, then h = 0.

yeWw

Proof. Let z be one of the maximal elements (in the Bruhat order) in the expression of h in
the lemma, i.e. we can write

h = szz + ZpyHya
YLz
for some polynomials p, and p,’s in vZ[v]. Now H, € b, + Y Z[v*']b; (for some 7-invariant
=<z
bs’s, the existence of which was already established). Hence, 7(H,) € b, + > Z[vFlb; C
f=<z
H, + > Z[v*'1H;. But then 7(h) = h implies 7(p.) = p., and we obtain a contradiction with
f=z
the assumption p, € vZ[v]. O



4 BORIS TSVELIKHOVSKY

Example 2.1. Let us find the Kazhdan-Lusztig basis for the dihedral group W = (s,t) with
2

s2 =t = e and sts... = tst.... Clearly, b, = H.,by = H, +v and b, = H, +v. Next,
T e

bsby = Hy + v(H, + H;) + v? satisfies the conditions 2.2, so we put by = byb;, similarly,

bis = bibs. Using formulas (2.3), we find byby, = Hyps + v(Hg + Hys) + vHZ +0*(Hy + 2H,) + 03,

AsvH? =v((v™ ' —v)Hs+1) = v Hy+ Hy +v, we set bys = bsbys — bs = Hgs +v(Hg + Hys) +

vH? + v?(H; + H,) + v®. In general,

(2.4) by = Hy+ 3 /-0,

r<w

Indeed, assume that 2.4 holds for b,,,w’ < w. Then, either sw < w or tw < w. Arguing
similarly to the proof of Proposition 2.1, one can easily verify the formula for b,, (w.l.o.g. assume
w' = sw < w):
(2.5)
boby = Hy+vHy+ Z ,Uf(w’)—é(m)st+vé(w/)—€(x)+lﬂz+ Z Ué(w/)—é(x)HSI—F’UZ(w/)_e(m)_le,

r=<w',z=t... r=<w' x=s...

which is by, + by

Remark 2.4. In particular, the Weyl groups of types Ay, By and G, are dihedral for m = 3,4
and 6. Hence, the Kazhdan-Lusztig basis is given by Example 2.1.

The following result and subsequent remark were conjectured in [KL79] and are proved by
now. Theorem 2.3 is known as the Kazhdan-Lusztig conjecture.

Theorem 2.3. (Kazhdan-Lusztig conjecture) The multiplicity [P(x - 0) : Ay - 0)] is given by
the specialization of ¢, at v =1 (using BGG-reciprocity [A(y - 0)] : L(x - 0)] equals ¢y ylp=1 as
well).

Remark 2.5. (1) The polynomials h, , from 2.2 are in Zsq[v].
(2) If we write byby, = > piZ b, then i € Zso[v™].

3. Soergel bimodules

Let (W,S) be a Coxeter system. For any two simple reflections s,¢ € S, the order of the
element st € W will be denoted by mg € {2,3,...00}.

Definition 3.1. An ezpression of w € W is a word w = s;, . ..s;,. The expression w is called
reduced if {(w) = k.

Next, we fix a vector space h over R, s.t. there exist subsets of linearly independent elements
{a)}ses C b and {as}ses C b* with the following properties:

(3.1) as(ay) = —2Cos( T

) Vs, t €8

Mt
(3.2) s-v=0v—al(v)a, Vs € S;v € h.



SOERGEL BIMODULES, HECKE ALGEBRAS, AND KAZHDAN-LUSZTIG BASIS 5

We choose h) of minimal dimension with the above properties. Let R = R[h] be the coordinate
ring of h. We define the grading on R by setting deg(a) = 2 for any o € h*. In case W is a
Weyl group, by is a real part of the Cartan subalgebra, the ay’s are the roots and «;'’s are the
coroots. The augmentation ideal (ideal of nonconstant polynomials) of R will be denoted by

R*.

We consider the abelian category of finitely generated graded R-bimodules. All morphisms
preserve the grading (in other words, are homogeneous of degree 0).

Definition 3.2. For any simple reflection s € S set By := R ®ps R(1). We denote by (n)
the shift of grading by the corresponding number, i.e. R ®gs R(1) means that the degree of
1®1is —1, etc. The Bott-Samelson bimodule associated to an expression w = Si...S,, is
BS(Q) = le ®R N ®R Bsm = R®R51 R ®ng Ce ®Rsm R(n)

By the Bott-Samelson module we will understand BS(w) ®r R.

Definition 3.3. The operator R — R given by 04(r) := %“(7") is called the Demazure operator.
Notice that 0, is R*-linear.

Exercise 3.1. The elements ¢y ;= 1® 1 and ¢, := %(045 ® 14+ 1® a,) (of degrees —1 and 1)
form a basis of By as a left (or right) R-module. One has relations

(3.3) CsT = TCq
(3.4) rCia = Cigs(1) + 0s(1)cs,
Remark 3.1. In general, one can check, that the elements ¢, := ¢, ® ... ®c¢, , where € =

Si, - .. S;, runs through all subexpressions of w form a basis of BS(w) as a left (or right) R-
module.

Notation 3.1. Henceforth we abbreviate
B B ::BS¢1®R~--®RB

Sip TS Sig

We provide an example of an easy calculation of the product of two Bott-Samelson bimodules.
Example 3.1. Using, R = R*® R°a; = R* ® R*(—2) (the equality of By-bimodules), we write
BSBS — R@R? R®R9 R == R@Re (RS @ RS(_2)) ®R§ R =
= Bs(1) ® Bs(—1),

which is analogous to the relation
b2 = (v+v b,
in H (see Exercise 2.2).

Lemma 3.1. In Ezample 5.1 (W = Ay), the Bott-Samelson bimodule BS(s15281) decomposes
into the direct sum Bg,s,s, ® Bs,, where By s,s, = R Qpw R(3) is the submodule generated by
1®1I®l.

Proof. Let us verify this decomposition. The main ingredient of the proof is to produce a
nontrivial idempotent of degree 0 in End(BS(s1s251)). For this we define some morphisms
between bimodules:

ms € Hom(Bs, R) : p® q — pq
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m¢ € Hom(R,Bs) : 1 — a, ® 1+ 1® ag

Js € Hom(BsBs, Bs) : p® h ® q — pds(h) ® q
jo € Hom(Bs, BsBs) :p®q—p®1®aq.

Notice, that the morphisms m, and m? have degree 1, while the the degree of the morphisms

Js and j§ is —1. Next, let us introduce e := —mg_j¢ js,ms, € End(By, By, By,) : By, B, By, Ty
By, By, gl By, et B, By, i Bg, Bs, Bs, and claim that e is an idempotent. Indeed, this follows

from the equality jo,me,m? j¢ € Hom(B.,, By,) : By, = By By, —% By By,B., ~% B, B,, =
B, = —id shown below:

jg mg ms .s
PRI PR1IRG S PO (e @1 +10 ) O q 2 2(p® ey @ ) I —p D .

The last transition follows from the equality s1(as,) = s, + a5, and Definition 3.3. Hence,
e is a projector. As the first two maps in the definition of e are surjective and the last -
injective and the chain of maps is B, By, Bs, — B, Bs, — Bs, = B, Bs, — By, Bs,Bs,, we
see that e is the projector onto B,. Next, the morphism 1 — e is a projection as well, so,
By, B, Bs, = im(e) @ im(1 —e). We first show that B, B,, B, is generates by two elements
I®1®1®land 1®r; ®1®1, where R = Rz, 29, 23, 24]. Indeed, as (z1+22)(101®1®1) =
1® (z1+22) ®1®1 (as (x1 + x2) is invariant under s;), we have 1 ® o ® 1 ® 1 and, thus
1@ —22)®1®1=1®a;, ®1®1 is in the submodule, generated by 1 ® 1 ® 1 ® 1 and
12011 Next, 1210101 =10107®1land 1123031 =(101®1® 1)x;
and 1®1® (xr; —x2) ® 1, thus, 1®1® (z2 —23) ® 1 =1® 1 ® a,, ® 1 are in the submodule
as well. Similarly can be shown that the submodule contains 1 ® o, ® a,, ® 1 and, therefore,
by Remark 3.1 generates the module.

The calculations above, in particular, show that dim(R ®gBs, Bs,Bs;, ®g R) = 2. The fact
that dim(R ® g Bs, Bs, Bs, ® g R) = 2 implies that there are only two indecomposable summands
in the decomposition of BSj,s,s, -

Now define a map of R-bimodules
v: R®pw R(3) = BSs, sys

by
PRg—PR1IRI®q.

Since as left R-modules BSy,s,s, = R(—3) & R(—1)®* & R(1)® & R(3) (see Remark 3.1) and
R®pw R(3) 2 R(—3)® R(—1)** @ R(1)** ® R(3), im(1 — e) and R ®pzw R(3) have the same
graded dimensions as vector spaces over R, it suffices to show that the map + is surjective. As
l1-e)(l1®1l®lel) =111 1 (follows from 0s(1) =0),and 1 ® 1 ® 1 ® 1 € im(y) as
well, it suffices to show that im(1 — e) is generated by 1 ® 1 ® 1 ® 1. For this we need to show
that the submodule, generated by 1 ® 1 ® 1 ® 1 contains im(1l —e)(1 ® 217 ® 1 ® 1) First we
compute —e(l @ x; @ 1 ® 1):

ms js 1 ..lsl m.(sl
1®2:®181 vF 1oz;01 13 S(1e1) M o(101e1) o = (18 (22—23)@1R1+ 1010 (1 —15)1).

N | —
N | —
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So,(1-e)(102101®1) =105;,01Q01+ (10 (22— 23) ®1®1+101® (z2 —3) @ 1). Now
we show that this element lies in the submodule generated by 1 ® 1 ® 1 ® 1. For this we write
10719101 = 1(1921®101+1®1®2;®1) and show that (1021 91Q1+1® (22 —23)®1®1)
is in the submodule (for 3(1®1®2;®1+1®1® (25 —23) ® 1) the computation is completely
analogous):

1 1 1
5(1®I1®1®1+1®(xg—x3)®1®1) = 5(1®(9z:1+x2—yz:g)®1<z@1 = §(x1+x2—x3)®1®1®1.

This concludes the proof. O

One should notice the resemblance between the decomposition By, Bs, By, = Bs, sy, © Bs,
and the relation b, bs,bs, = bs, 5,5, + bs, derived in Example 2.1.

Remark 3.2. More generally, it can be shown that if W is a dihedral group generated by
simple reflections (s,t) and ¢(w') < ¢(w), where w' = sw, then B;B,, = B,, @ By, (compare
to (2.5)).

Definition 3.4. The category of Soergel bimodules S Bim is the full subcategory of Z-graded
R-bimodules, where the objects are the direct sums of direct summands of graded shifts of BS-
bimodules. The morphisms are grading preserving morphisms of R — R-bimodules.

Similarly, we define the category of Soergel modules SMod to be the full subcategory of
Z-graded left R-modules, where the objects are the direct sums of direct summands of graded
shifts of B.S- modules. The morphisms are grading preserving morphisms of R-bimodules.

Remark 3.3. Notice that BSy, BSy, = BSu,w, implies that the category SBim is closed w.r.t

the tensor product. As fg1 ®psi, Ga@psi - - - Qpsin Gn = g1 Qpsis G2 @ psiy - - - Qpgsin g f for f € RV
every Soergel bimodule is actually an R ® zpw R-module.

Definition 3.5. An additive category is said to be Krull-Schmidt if every object is isomorphic
to a direct sum of indecomposable objects and such decomposition is unique up to isomorphism
and permutation of summands.

Proposition 3.2. The category of Soergel bimodules s Krull-Schmadt.

Proof. We notice that the category SBim is closed under taking direct summands (by its
definition). Since the bimodule Hompggr(M, N) between any two finitely generated graded
bimodules M and N is graded and finitely generated, the degree 0 part is a finite-dimensional
space. Thus, the additive category SBim is closed under taking direct summands and has
finite-dimensional Hom-spaces. It is a standard fact that such categories are Krull-Schmidt. [J

Next we explain what we mean by the split Grothendieck group Ko(SBim) of the category
SBim. This is the abelian group generated by symbols [B] for all objects B € SBim subject
to the relations [B] = [B'] + [B"] whenever B = B’ & B” in SBim. We make Ky(SBim)
into a Z[v*!]-module via v{[M] = [M](i) and [M] € Ko(SBim). The tensor product on SBim
endows Ko(SBim) with multiplication, thus, making it a Z[v*!]-algebra. Moreover, K (S Bim)
is a free Z[v*!] - module, whose basis consists of indecomposable objects (we take one up to a
grading shift).

We can now formulate the main theorem.
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Theorem 3.3. (Soergel’s categorification theorem) There is an isomorphism of Z[v*']-algebras
H — Ko(SBim), sending b to [By].

Corollary 3.4. (Weak form of Soergel’s categorification theorem). There exists a unique ho-
momorphism of rings ¢ : H — Ko(SBim), s.t. ¢(bs) = Bs.

Proof. The quadratic relation was checked in Example 3.1 and the braid relations - in Lemma
3.1 (for the simply laced case) and stated in Remark 3.2 for the general case. The uniqueness
of ¢ is obvious, since it is defined on a generating set. 0

4. Soergel’s categorification theorem

Next we would like to present the classification of indecomposable Soergel bimodules and give
a prove of the main theorem. We will use the following proposition (see Section 4 of [Soe92|).

Proposition 4.1. For two Soergel bimodules By, By, the canonical map G : Hompggr(B1, B2)®r
R — Homg(B; ®r R, B, ®g R) is an isomorphism.

Corollary 4.2. The map 6 : M — M ®rR induces an embedding of indecomposable objects in
SBim into indecomposable objects in SMod.

Proof. We first show that the image of an indecomposable module M is indecomposable.
Indeed, if §(M) would decompose as M; & M, there would be a degree zero idempotent
er, € Endg(M ®g R), but since Endg(d(M)) = Endrgr(M) ®g R, this implies the exis-
tence of a degree zero idempotent (there exists a lift - this is a standard fact, which can be
shown by constructing the lifts modulo (R)™ for every n € N and (R;)"Endggr(M) has no
degree 0 elements for n large enough) ¢ € Endggr(M) ®r R, which (as M =eM & (1 —e)M
and € # 1) contradicts our assumption that M is indecomposable.

Next we check that d maps non isomorphic indecomposables to non isomorphic ones. Assume
the contrary and let M, My € SBim be indecomposable and §(M;) = 6(My) = M € SMod.
Then there exist a &« € Hompgr(Mi, M;) and f € Hompgr(M,, M), s.t. G(ao () is invertible.
The application of graded Nakayama’s lemma implies . o 5 is invertible:

[eXe 6(M2) + R+M2 = M2

R My My
Taof(My)  aoB(Ms)
gives My = avo (Ms). So a0 [ is surjective, hence invertible. O

Theorem 4.3. Each Bott-Samelson bimodule BS(w) contains a unique indecomposable sum-
mand By, which does not appear in BS(x) for x < w depends only on w, but not on the reduced
ETPression.

Proof. Recall from Dmytro’s talk (Corollary 5.9) that, for a reduced w, the module BS(w) ®@zR
contains a unique graded indecomposable summand, S,,, that does not appear in BS(w') ® g R
for shorter w’ and that depends only on w. In fact, in Dmytro’s talk the claim was proved
over C but one can show it holds over R as well. So BS(w) @g R = S, & @, Su (d;)®™
where the sum is taken over w’ < w. Let BS(w) = By @ ... ® By, be the decomposition into
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indecomposables. By Corollary 4.2 | there is a unique index i (say i=1 to be definite) such that
By ®gr R = S, and then B; g R = S,/ (dy) for i > 1. We set By, := By. Our claim follows
from the induction on the length of w and Corollary 4.2.

O

Corollary 4.4. The indecomposable Soergel bimodules are in bijection with the elements of
W x Z.

Proof. The result follows from the observation that grading shifts preserve indecomposability.

U
The above results allow us to prove the main theorem (Theorem 3.3).

Proof. We choose one reduced expression w = sy . .. s, for every element w € W, then it follows
from Theorem 4.3 that the classes of the corresponding BS(w)’s form a basis of Ko(SBim)
(each [BS(w)] contains the indecomposable [B,,] as a summand with coefficient 1 and it is not
hard to show by induction on the Bruhat order that there exists a Z[v*!]-linear combination
of [BS(w')],w < w that, being subtracted from [BS(w)], gives [B,]). Then the corresponding
elements by, ...bs, € H are also a basis (again, using induction on the Bruhat order analogously

*YSm

to the proof of Proposition 2.1, we show that b, is bs, ... bs, minus a Z[vil]—linear combination

b,
of by, ...bs, forw =s; ...s; <w). O
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