Gieseker Moduli Space of Bundles on \mathbb{P}^{2} as Nakajima Quiver Variety

Boris Tsvelikhovsky

Contents

1 Introduction 1
2 Beilinson Spectral Sequence and Monad Description 2
2.1 Resolutions of Coherent Sheaves on \mathbb{P}^{n} 2
2.2 Beilinson Spectral Sequence 2
2.3 Application to Coherent Sheaves on \mathbb{P}^{2} 3
3 Torus Action on $\mathcal{M}_{r, n}$ 7
3.1 Torus Action on Hilbert Scheme of Points 7
3.2 Fixed Points Set for Torus Action on $\mathcal{M}_{r, n}$ 8
4 Appendix A 8

1 Introduction

We consider the moduli space of rank r coherent torsion-free sheaves E on \mathbb{P}^{2} with fixed trivialization on the line l_{∞}, i.e. $E_{l_{\infty}} \cong \mathcal{O}^{\oplus r}$ (this implies $c_{1}(E)=0$ as $H^{2}\left(\mathbb{P}^{2}, \mathbb{Z}\right)$ is generated by $\left.l_{\infty}\right)$ and $c_{2}(E)=n$, up to isomorphisms. This moduli space will be denoted by $\mathcal{M}_{r, n}$. Our goal is to explain an isomorphism of $\mathcal{M}_{r, n}$ with Nakajima quiver variety

$\mathcal{M}_{r, n} \cong\left\{[x, y, i, j] \in\left(\operatorname{End}\left(\mathbb{C}^{n}\right)^{\oplus 2} \times \operatorname{Hom}\left(\mathbb{C}^{r}, \mathbb{C}^{n}\right) \times \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{r}\right)\right) \left\lvert\, \begin{array}{l}{[x, y]+i j=0 ;} \\ \text { Stability: there is no subspace } S \subset \mathbb{C}^{n}, \\ \text { such that } x(S), y(S) \subset S \text { and im }(i) \subset S\end{array}\right.\right\} / G L_{n}(\mathbb{C})$, where $g(x, y, i, j)=\left(g x g^{-1}, g y g^{-1}, g i, j g^{-1}\right)$.

This notes are mostly based on lectures [1] and chapter 2.3 of book [2].

2 Beilinson Spectral Sequence and Monad Description

First, we describe a construction which allows to study torsion-free sheaves using linear algebra, namely, the sheaf is presented as a monad, which is a complex presented below, with $\operatorname{ker}(a)=\operatorname{coker}(b)=0$ and $E \cong \operatorname{ker}(b) / \operatorname{im}(a)$

$$
0 \rightarrow A \xrightarrow{a} B \xrightarrow{b} C \rightarrow 0 .
$$

2.1 Resolutions of Coherent Sheaves on \mathbb{P}^{n}

Let us remind the construction of Beilinson. We take the following resolution of the diagonal $\triangle \subset \mathbb{P}^{n} \times \mathbb{P}^{n}$. Define Q from the SES

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus n+1} \rightarrow Q \rightarrow 0
$$

Notation. For coherent sheaves F, G on \mathbb{P}^{n} we set $F \boxtimes G:=p r_{1}^{*} F \otimes p r_{2}^{*} G$ as sheaves on $\mathbb{P}^{n} \times \mathbb{P}^{n}$, where

Next, define the section s of this bundle, which over a point $(x, y) \in \mathbb{P}^{n} \times \mathbb{P}^{n}$, corresponding to the lines $l, v \in \mathbb{C}^{n+1}$, is $s_{(x, y)} \in \operatorname{Hom}_{\mathbb{C}}\left(\mathcal{O}_{\mathbb{P}^{n}}(-1)_{x}, Q_{y}\right), l \mapsto[l]$ - the class of l in the factor space $\mathbb{C}^{n+1} / \mathbb{C} v=Q(y)$. Clearly, the diagonal is the kernel of this map, i.e. $\triangle=s^{-1}(0)$. We produce the other terms the same way as for the Koszul resolution:

$$
\begin{gathered}
0 \rightarrow \Lambda^{n}\left(\mathcal{O}_{\mathbb{P}^{n}}(-1) \boxtimes Q^{\vee}\right) \rightarrow \cdots \rightarrow \Lambda^{2}\left(\mathcal{O}_{\mathbb{P}^{n}}(-1) \boxtimes Q^{\vee}\right) \rightarrow \\
\rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \boxtimes Q^{\vee} \xrightarrow{s} \mathcal{O}_{\mathbb{P}^{n} \times \mathbb{P}^{n}} \rightarrow \mathcal{O}_{\triangle} \rightarrow 0
\end{gathered}
$$

Now we tensor this sequence with $p r_{2}^{*} E$ to obtain
$0 \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-n) \boxtimes\left(E \otimes \Omega_{\mathbb{P}^{n}}^{n}(n)\right) \rightarrow \cdots \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-2) \boxtimes\left(E \otimes \Omega_{\mathbb{P}^{n}}^{2}(2)\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \boxtimes\left(E \otimes \Omega_{\mathbb{P}^{n}}^{1}(1)\right) \rightarrow \mathcal{O}_{\mathbb{P}^{n}} \boxtimes E \rightarrow 0$.
Fix notation: $C_{-i}:=\mathcal{O}_{\mathbb{P}^{n}}(-i) \boxtimes\left(E \otimes \Omega_{\mathbb{P}^{n}}^{i}(i)\right), C^{\bullet}$ denotes the complex above.

2.2 Beilinson Spectral Sequence

Construct an injective (i.e. Cech with an appropriate cover of $\mathbb{P}^{n} \times \mathbb{P}^{n}$) resolution of each term of C^{\bullet} to come up with a double complex $I^{\bullet \bullet}$.

Our next goal is to compute cohomology of the total complex $\operatorname{pr}_{1_{*}}\left(I^{\bullet \bullet}\right)$ using (separately) two spectral sequences ${ }^{\prime} E$ and ${ }^{\prime \prime} E$. The E_{2}-terms are

$$
\begin{aligned}
& { }^{\prime} E_{2}^{p q}=H^{p}\left(R^{q} p r_{1_{*}}\left(C^{\bullet}\right)\right) \\
& { }^{\prime \prime} E_{2}^{p q}=R^{p} p r_{1_{*}}\left(H^{q}\left(C^{\bullet}\right)\right)
\end{aligned}
$$

Consider the following obvious identity: for a coherent sheaf E on \mathbb{P}^{2}

$$
p r_{1 *}\left(p r_{2}^{*} E \otimes \mathcal{O}_{\triangle}\right)=E
$$

This helps us to figure out that

$$
{ }^{\prime \prime} E_{2}^{p q}=R^{p} p r_{1_{*}}\left(H^{q}\left(C^{\bullet}\right)\right)=\left\{\begin{array}{ll}
E & (p, q)=(0,0) \\
0, & \text { otherwise }
\end{array} .\right.
$$

2.3 Application to Coherent Sheaves on \mathbb{P}^{2}

We will need the following technical results, the proofs of which are explained in Appendix A.
Theorem 1. Let G, F be coherent sheaves on a compact variety X, moreover, F is locally free. Then $R p r_{1 *}(F \boxtimes G) \cong F \otimes H^{\bullet}(G)$.

Theorem 2. Let E be a torsion-free coherent sheaf on \mathbb{P}^{2}, locally free on l_{∞}, then

$$
\begin{cases}H^{q}\left(\mathbb{P}^{2}, E(-p)\right)=0, & p=1,2, q=0,2 \\ H^{q}\left(\mathbb{P}^{2}, E(-1) \otimes Q^{\vee}\right)=0, & q=0,2\end{cases}
$$

Notice that $\Lambda^{2} Q^{\vee} \cong \mathcal{O}_{\mathbb{P}^{2}}(-1)$, therefore, $E(-1) \otimes \Lambda^{2} Q^{\vee} \cong E(-2)$. So if we take $E(-1)$ instead of E, the first page of the Beilinsion spectral sequence provides us with

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2) \otimes H^{q}\left(\mathbb{P}^{2}, E(-2)\right) \xrightarrow{a_{q}^{\prime}} \mathcal{O}_{\mathbb{P}^{2}}(-1) \otimes H^{q}\left(\mathbb{P}^{2}, E(-1) \otimes Q^{\vee}\right) \xrightarrow{b_{q}^{\prime}} \mathcal{O}_{\mathbb{P}^{2}} \otimes H^{q}\left(\mathbb{P}^{2}, E(-1)\right) \rightarrow 0
$$

which, according to Theorem 2, is nonzero if and only if $q=1$. It follows that the spectral sequence ' E also degenerates on the second page. As $\bigoplus_{p+q=0}^{\prime} E_{2}^{p, q}=\bigoplus_{p+q=0}^{\prime \prime} E_{2}^{p, q}=E(-1)$ and $\bigoplus_{p+q \neq 0}^{\prime} E_{2}^{p, q}=\bigoplus_{p+q \neq 0}{ }^{\prime \prime} E_{2}^{p, q}=0$, we see that ker $a=$ coker $b=0, E(-1) \cong \operatorname{ker} b_{1}^{\prime} /$ im a_{1}^{\prime}. We tensor the monad for $E(-1)$ with $\mathcal{O}_{\mathbb{P}^{2}}(1)$ to obtain the monad for E.

The next step is to use the monad description of E for identification with the one provided by Nakajima quiver variety. From the first page of Beilinson spectral sequence ${ }^{\prime} E$, we have the sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1) \otimes V \xrightarrow{a} \mathcal{O}_{\mathbb{P}^{2}} \otimes \tilde{W} \xrightarrow{b} \mathcal{O}_{\mathbb{P}^{2}}(1) \otimes V^{\prime} \rightarrow 0
$$

where ker $a=$ coker $b=0$ and $E \cong \operatorname{ker} b /$ im $a, V:=H^{1}\left(\mathbb{P}^{2}, E(-2)\right), V^{\prime}:=H^{1}\left(\mathbb{P}^{2}, E(-1)\right)$ and $\tilde{W}:=$ $H^{1}\left(\mathbb{P}^{2}, E(-1) \otimes Q\right)$.

Lemma. $\operatorname{dim} V=\operatorname{dim} V^{\prime}=c_{2}(E), \operatorname{dim} \tilde{W}=2 c_{2}(E)+r k(E)$.
Proof. We demonstrate the calculation of $\operatorname{dim} V$, the other two equations are derived analogously. Use the splitting principle: $E=E_{1} \oplus E_{2} \oplus \cdots \oplus E_{r}$, where each E_{i} is a line bundle. Then $c(E)=\prod_{i=1}^{r}\left(1+c_{1}\left(E_{i}\right)\right)$, $E(-2)=E_{1} \otimes \mathcal{O}(-2) \oplus E_{2} \otimes \mathcal{O}(-2) \oplus \cdots \oplus E_{r} \otimes \mathcal{O}(-2)$. The following formula is due to Hirzebruch:

$$
\chi(E)=C h(E) T d\left(T_{X}\right)_{n}\left(^{*}\right)
$$

where $C h(E)=\sum_{i=1}^{r} e^{\alpha_{i}}, T d(E)=\prod_{i=1}^{r} \frac{\alpha_{i}}{1-e^{-\alpha_{i}}}, \alpha_{i}=c_{1}\left(E_{i}\right)$ and the subscript n corresponds to the component of degree n (each α_{i} has degree 1). From the Euler exact sequence

$$
\begin{gathered}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}_{\mathbb{P}^{2}}^{\oplus 3}(1) \rightarrow T_{\mathbb{P}^{2}} \rightarrow 0 \\
c\left(T_{\mathbb{P}^{2}}\right)=1+3 H+3 H^{2},
\end{gathered}
$$

where H is the class of hyperplane. From the formula for $\operatorname{Td}(E)$ it is not hard to see that

$$
\begin{gathered}
T d_{0}(E)=1 \\
T d_{1}(E)=\frac{c_{1}(E)}{2} \\
T d_{2}(E)=\frac{c_{1}^{2}(E)+c_{2}(E)}{12}
\end{gathered}
$$

so $T d_{1}\left(T_{\mathbb{P}^{2}}\right)=\frac{3 H}{2}, T d_{2}\left(T_{\mathbb{P}^{2}}\right)=H^{2}$.

$$
\begin{gathered}
C h_{0}(E)=r k(E), \\
C h_{1}(E)=c_{1}(E), \\
C h_{2}(E)=\frac{c_{1}^{2}(E)-2 c_{2}(E)}{2}, \\
C h_{1}(E(-2))=c_{1}(E(-2))=\sum_{i=1}^{r}\left(\alpha_{i}-2\right)=\sum_{i=1}^{r} \alpha_{i}-2 r=c_{1}(E)-2 r=-2 r \\
c_{2}(E(-2))=\text { coefficient of } H^{2} \text { in } \prod_{i=1}^{r}\left(\left(\alpha_{i}-2\right) H\right)=n+4\binom{r}{2}, C h_{2}(E(-2))=n+2 r
\end{gathered}
$$

Applying the formula (*) and using Theorem 2, we get

$$
-\operatorname{dim} V=-n+2 r-\frac{3}{2} \cdot 2 r+r=-n
$$

We now take $a \in \operatorname{Hom}\left(\mathcal{O}_{\mathbb{P}^{2}}(-1) \otimes V, \mathcal{O}_{\mathbb{P}^{2}} \otimes \tilde{W}\right) \cong \mathcal{O}_{\mathbb{P}^{2}}(1) \otimes \operatorname{Hom}(V, \tilde{W})$. In coordinates $\left[z_{0}: z_{1}: z_{2}\right]$ on \mathbb{P}^{2}, $a=z_{0} a_{0}+z_{1} a_{1}+z_{2} a_{2}$, where $a_{i} \in \operatorname{Hom}(V, \tilde{W})$, similarly, $b=z_{0} b_{0}+z_{1} b_{1}+z_{2} b_{2}, b_{i} \in \operatorname{Hom}\left(\tilde{W}, V^{\prime}\right)$. Recall that $b a=0$, which gives us six equations:

$$
\begin{cases}b_{0} a_{0}=0, & b_{0} a_{1}+b_{1} a_{0}=0, \\ b_{1} a_{1}=0, & b_{1} a_{2}+b_{2} a_{1}=0, \\ b_{2} a_{2}=0, & b_{0} a_{2}+b_{2} a_{0}=0\end{cases}
$$

Next, we restrict the monad to l_{∞} :

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{l_{\infty}}(-1) \otimes V \stackrel{\left.a\right|_{\infty}}{\longrightarrow} \\
& \mathcal{O}_{l_{\infty}} \otimes \tilde{W} \xrightarrow{\left.b\right|_{l_{\infty}}} \mathcal{O}_{l_{\infty}}(1) \otimes V^{\prime} \rightarrow 0, \\
&\left\{\begin{array}{l}
\left.a\right|_{l_{\infty}}=z_{1} a_{1}+z_{2} a_{2} \\
\left.b\right|_{l_{\infty}}= \\
z_{1} b_{1}+z_{2} b_{2}
\end{array}\right.
\end{aligned}
$$

Proposition. Consider the SES $0 \rightarrow \mathcal{O}_{l_{\infty}}(-1) \otimes V \xrightarrow{\left.a\right|_{l_{\infty}}}$ ker $\left.b_{l_{\infty}} \rightarrow E\right|_{l_{\infty}} \rightarrow 0$. Then $H^{0}\left(l_{\infty}\right.$, ker $\left.b_{l_{\infty}}\right) \simeq$ $H^{0}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right), H^{1}\left(l_{\infty}\right.$, ker $\left.\left.b\right|_{l_{\infty}}\right)=0$.

Proof. From the long exact sequence

$$
\begin{gathered}
0 \rightarrow H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(-1)\right) \otimes V \rightarrow H^{0}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \rightarrow H^{0}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right) \\
\rightarrow H^{1}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(-1)\right) \otimes V \rightarrow H^{1}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \rightarrow H^{1}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right) \rightarrow 0,
\end{gathered}
$$

using that

$$
H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(-1)\right)=H^{1}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(-1)\right)=0
$$

we see

$$
\left\{\begin{array}{l}
H^{0}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \simeq H^{0}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right) \\
H^{1}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \simeq H^{1}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right)
\end{array}\right.
$$

Furthermore, $\left.E\right|_{l_{\infty}} \simeq \mathcal{O}^{\oplus r}$, which implies $H^{1}\left(l_{\infty}\right.$, ker $\left.\left.b\right|_{l_{\infty}}\right) \simeq H^{1}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right)=0$ and $H^{0}\left(l_{\infty}\right.$, ker $\left.\left.b\right|_{l_{\infty}}\right) \simeq$ $H^{0}\left(l_{\infty},\left.E\right|_{l_{\infty}}\right)$ is a vector space of dimension r.

Corollary. There exists an exact sequence

$$
0 \rightarrow H^{0}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \rightarrow \tilde{W} \rightarrow V^{\prime} \oplus V^{\prime} \rightarrow 0 .
$$

Proof. From the SES $0 \rightarrow$ ker $\left.b\right|_{l_{\infty}} \rightarrow \mathcal{O}_{l_{\infty}} \otimes \tilde{W} \rightarrow \mathcal{O}_{l_{\infty}}(1) \otimes V^{\prime} \rightarrow 0$, obtain long exact sequence of cohomology:

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \rightarrow H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}\right) \otimes \tilde{W} \rightarrow H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(1) \otimes V^{\prime}\right) \\
& \rightarrow H^{1}\left(l_{\infty}, \text { ker }\left.b\right|_{l_{\infty}}\right) \rightarrow H^{1}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}\right) \otimes \tilde{W} \rightarrow H^{1}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(1) \otimes V^{\prime}\right) \rightarrow 0 .
\end{aligned}
$$

As $H^{1}\left(l_{\infty}\right.$, ker $\left.\left.b\right|_{l_{\infty}}\right)=0, H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}\right) \cong \mathbb{C}$ and $H^{0}\left(l_{\infty}, \mathcal{O}_{l_{\infty}}(1)\right) \cong \mathbb{C} z_{1} \oplus \mathbb{C} z_{2}$, the assertion holds.

Set $W:=H^{0}\left(l_{\infty},\left.\operatorname{ker} b\right|_{l_{\infty}}\right)$. The corollary, in particular, shows that $\operatorname{dim} W=2 r+n-2 r=n$.

Next, consider the dual to our monad, restricted to l_{∞}, namely,

$$
0 \rightarrow \mathcal{O}_{l_{\infty}}(-1) \otimes V^{\prime} * \xrightarrow{\left.b^{t}\right|_{l_{\infty}}} \mathcal{O}_{l_{\infty}} \otimes \tilde{W}^{*} \xrightarrow{\left.a^{t}\right|_{l_{\infty}}} \mathcal{O}_{l_{\infty}}(1) \otimes V^{*} \rightarrow 0
$$

Performing manipulations similar to the above, we come up with the SES

$$
0 \rightarrow H^{0}\left(\left.\operatorname{ker} a^{t}\right|_{l_{\infty}}\right) \rightarrow \tilde{W}^{*} \xrightarrow{\left(a_{1}^{t}, a_{2}^{t}\right)} V^{*} \oplus V^{*} \rightarrow 0
$$

so $\left(a_{1}, a_{2}\right): V \oplus V \rightarrow \tilde{W}$ is injective. Also, $0=i m a_{1} \cap$ ker b_{2}, thus, $b_{2} a_{1}=-b_{1} a_{2}: V \simeq V^{\prime}$ are isomorphisms (they are injective, the dimensions of V and V^{\prime} are equal).

The six equations derived from $b a=0$ enable us to give the presentation $a_{0}=\left(\begin{array}{c}x \\ y \\ j\end{array}\right) a_{1}=\left(\begin{array}{r}i d_{V} \\ 0 \\ 0\end{array}\right) a_{2}=$ $\left(\begin{array}{r}0 \\ -i d_{V} \\ 0\end{array}\right)$ and $b_{0}=\left(\begin{array}{lll}-y & x & i\end{array}\right), b_{1}=\left(\begin{array}{ll}0-i d_{V} & 0\end{array}\right), b_{2}=\left(\begin{array}{lll}i d_{V} & 0 & 0\end{array}\right)$.

The monad can now be put in the more convenient form

$$
V \otimes \mathcal{O}_{\mathbb{P}^{2}}(-1) \xrightarrow{V \otimes\left(\begin{array}{c}
z_{0} x-z_{1} \\
z_{0} y-z_{2} \\
z_{0} j
\end{array}\right)} \begin{gathered}
\\
\\
\\
W \otimes \mathcal{O}_{\mathbb{P}^{2}} \\
W \otimes \mathcal{O}_{\mathbb{P}^{2}} \xrightarrow{\oplus=\left(-\left(z_{0} y-z_{2}\right) z_{0} x-z_{1} z_{0} i\right)}
\end{gathered}
$$

To establish the isomorphism of our moduli space of sheaves on \mathbb{P}^{2} with Nakajima quiver variety, it remains to prove the following lemma.

Lemma. Suppose the quadruple (x, y, i, j) satisfies the equation $[x, y]+i j=0$. For a and b constructed as above
(1) ker $a=0$
$(2) b$ is surjective if and only if the stability condition holds, namely, there is no $S \subset \mathbb{C}^{n}$, such that $x(S), y(S) \subset$ S and $i m(i) \subset S$.

Proof. It follows from the discussion above, that a is injective and b surjective on l_{∞}. To prove (1), notice that if there is a $v \in V$, such that $v \in k e r$ a for a point $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}=\mathbb{P}^{2} \backslash l_{\infty}$, then

$$
\left\{\begin{array}{l}
x v=z_{1} v \\
y v=z_{2} v \\
z_{2} j v=0
\end{array}\right.
$$

which can clearly happen only for a finite number of points $\left(z_{1}, z_{2}\right)$ and, therefore, a is injective, when restricted to any open neighborhood of any point in \mathbb{C}^{2}.

Suppose b is surjective, but there exists $S \subset \mathbb{C}^{n}$, contradicting the assertion. We look at the dual operators $x^{t}, y^{t}, i^{t}, j^{t}$ acting on $\mathbb{C}^{n *}$ and $\mathbb{C}^{r *}$, and introduce $S^{\perp}:=\left\{\phi \in \mathbb{C}^{n *} \mid \phi(S)=0\right\}$. The condition $i m(i) \subset S$ is equivalent to $S^{\perp} \subset \operatorname{ker} i^{t}$. It is not hard see that the equation $[x, y]+i j=0$ induces $\left[x^{t}, y^{t}\right]+j^{t} i^{t}=0$. Thus it follows that x^{t} and y^{t} commute on S^{\perp} (it is preserved by x^{t} and y^{t}, because $x(S), y(S) \subset S$) and, therefore have a common eigenvector φ with eigenvalues $\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}$, so b^{t} is not injective at the point $\left(\lambda_{1}, \lambda_{2}\right)$, dually, b is not surjective at some point, hence, not surjective.

To prove the converse, just reverse the above argument and take $S=\operatorname{ker} \varphi$.

3 Torus Action on $\mathcal{M}_{r, n}$

3.1 Torus Action on Hilbert Scheme of Points

Let us remind that for the Hilbert scheme of n points on \mathbb{C}^{2}, which consists of ideals $I \subset \mathbb{C}[x, y]$ of codimension n, the 2 -dimensional torus action comes from the action on \mathbb{C}^{2}, defined by $\left(t_{1}, t_{2}\right) \in\left(\mathbb{C}^{*}\right)^{2}:\left(z_{1}, z_{2}\right) \mapsto\left(t_{1} z_{1}, t_{2} z_{2}\right)$. Thus, the only invariant point is $0 \in \mathbb{C}^{2}$ and invariant points of the Hilbert scheme are ideals supported on 0 . It is not hard to see that such ideals are generated by monomials. It is convenient to encode them with Young diagrams.

3.2 Fixed Points Set for Torus Action on $\mathcal{M}_{r, n}$

To find the fixed points set for the torus $T \times\left(\mathbb{C}^{*}\right)^{2}(T$ is maximal torus in $G L(W))$ action on $\mathcal{M}_{r, n}$, we decompose $W=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{r}$ as the sum of weight spaces with respect to T-action. The torus fixed points are then $\left(\mathcal{M}_{1, n_{1}}\right)^{\left(\mathbb{C}^{*}\right)^{2}} \times \cdots \times\left(\mathcal{M}_{1, n_{r}}\right)^{\left(\mathbb{C}^{*}\right)^{2}}, \sum_{i=1}^{r} n_{i}=n$, and can be encoded via multipartitions.

4 Appendix A

Theorem 1. Let G, F be coherent sheaves on a compact variety X, moreover, F is locally free. Then $R p r_{1 *}(F \boxtimes G) \cong F \otimes H^{\bullet}(G)$.

Proof. Choose a Cech resolution C^{\bullet} of G, it will be of finite length, because X is compact. Using that G is quasi isomorphic to C^{\bullet} in $D^{b}(X)$, the functors $\otimes F$ and $p r_{2}^{*}$ are exact, we get that $F \boxtimes G \cong F \boxtimes C^{\bullet}$ in $D^{b}(X \times X)$,
thus, $\operatorname{Rpr}_{1 *}(F \boxtimes G) \cong \operatorname{Rpr}_{1 *}\left(F \boxtimes C^{\bullet}\right) \stackrel{(1)}{\cong} F \otimes H^{0}\left(C^{\bullet}\right) \cong F \otimes H^{\bullet}(G)$, where (1) follows from the projection formula.

Theorem 2. Let E be a torsion-free coherent sheaf on \mathbb{P}^{2}, locally free on l_{∞}, then

$$
\begin{cases}H^{q}\left(\mathbb{P}^{2}, E(-p)\right)=0, & p=1,2, q=0,2 \\ H^{q}\left(\mathbb{P}^{2}, E(-1) \otimes Q^{\vee}\right)=0, & q=0,2\end{cases}
$$

Proof. Introduce coordinates $\left[z_{0}: z_{1}: z_{2}\right]$ on \mathbb{P}^{2} and consider the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1) \xrightarrow{z_{0}} \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}_{l_{\infty}} \rightarrow 0
$$

tensor it with $E(-k)$ to come up with

$$
\left.0 \rightarrow E(-k-1) \rightarrow E(-k) \rightarrow E(-k)\right|_{l_{\infty}} \rightarrow 0
$$

This gives the long exact sequence

$$
\begin{gathered}
0 \rightarrow H^{0}\left(\mathbb{P}^{2}, E(-k-1)\right) \rightarrow H^{0}\left(\mathbb{P}^{2}, E(-k)\right) \rightarrow H^{0}\left(l_{\infty},\left.E(-k)\right|_{l_{\infty}}\right) \\
\rightarrow H^{1}\left(\mathbb{P}^{2}, E(-k-1)\right) \rightarrow H^{1}\left(\mathbb{P}^{2}, E(-k)\right) \rightarrow H^{1}\left(l_{\infty},\left.E(-k)\right|_{l_{\infty}}\right) \\
\rightarrow H^{2}\left(\mathbb{P}^{2}, E(-k-1)\right) \rightarrow H^{2}\left(\mathbb{P}^{2}, E(-k)\right) \rightarrow 0
\end{gathered}
$$

As $\left.E\right|_{l_{\infty}} \cong \mathcal{O}^{\oplus r}$, we get

$$
\begin{cases}H^{0}\left(l_{\infty},\left.E(-k)\right|_{l_{\infty}}\right)=0, & k \geqslant 1 \\ H^{1}\left(l_{\infty},\left.E(-k)\right|_{l_{\infty}}\right)=0, & k \leqslant 1\end{cases}
$$

Thus from the exact sequence we see that

$$
\begin{cases}H^{0}\left(\mathbb{P}^{2}, E(-k-1)\right) \cong H^{0}\left(\mathbb{P}^{2}, E(-k)\right), & k \geqslant 1 \\ H^{2}\left(\mathbb{P}^{2}, E(-k-1)\right) \cong H^{2}\left(\mathbb{P}^{2}, E(-k)\right), & k \leqslant 1\end{cases}
$$

By Serre vanishing theorem $\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathrm{E}(n)\right)=0$ for $n \in \mathbb{N}$ large enough, while duality asserts that $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathrm{E}(-n)\right) \cong$ $\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathrm{E}^{\vee}(n) \otimes K_{\mathbb{P}_{2}}\right) \cong \mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathrm{E}^{\vee}(n-3)\right) \cong 0$.

$$
\left\{\begin{array}{l}
H^{0}\left(\mathbb{P}^{2}, E(-1)\right) \cong H^{0}\left(\mathbb{P}^{2}, E(-2)\right) \cong \cdots=0 \\
H^{2}\left(\mathbb{P}^{2}, E(-2)\right) \cong H^{2}\left(\mathbb{P}^{2}, E(-1)\right) \cong \cdots=0
\end{array}\right.
$$

The proof of the second assertion of the theorem is similar (see [1]): consider the sequence

$$
\begin{gathered}
\left.0 \rightarrow E(-k-1) \otimes Q^{\vee} \rightarrow E(-k) \otimes Q^{\vee} \rightarrow\left(E(-k) \otimes Q^{\vee}\right)\right|_{l_{\infty}} \rightarrow 0 \\
\left.\left.\left.Q\right|_{l_{\infty}} \cong \mathcal{O}\right|_{l_{\infty}} \oplus \mathcal{O}\right|_{l_{\infty}}(1)
\end{gathered}
$$

References

[1] Hiraku Nakajima. Lectures on Hilbert schemes of points on surfaces. AMS, 1991.
[2] Spindler H. Okonek C., Schneider M. Vector bundles on complex projective spaces. Birkhauser, 2011.

