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1 Introduction

We consider the moduli space of rank r coherent torsion-free sheaves E on P2 with fixed trivialization on
the line l∞, i.e. El∞

∼= O⊕r (this implies c1(E) = 0 as H2(P2,Z) is generated by l∞) and c2(E) = n, up to
isomorphisms. This moduli space will be denoted by Mr,n. Our goal is to explain an isomorphism of Mr,n

with Nakajima quiver variety

Cn Cr

x

y

j

i

Mr,n
∼=

[x, y, i, j] ∈ (End(Cn)⊕2 ×Hom(Cr,Cn)×Hom(Cn,Cr))

∣∣∣∣∣∣∣
[x, y] + ij = 0;

Stability: there is no subspace S ⊂ Cn,
such that x(S), y(S) ⊂ S and im(i) ⊂ S


/

GLn(C),

where g(x, y, i, j) = (gxg−1, gyg−1, gi, jg−1).

This notes are mostly based on lectures [1] and chapter 2.3 of book [2].
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2 Beilinson Spectral Sequence and Monad Description

First, we describe a construction which allows to study torsion-free sheaves using linear algebra, namely,
the sheaf is presented as a monad, which is a complex presented below, with ker(a) = coker(b) = 0 and
E ∼= ker(b)/im(a)

0→ A
a−→ B

b−→ C → 0.

2.1 Resolutions of Coherent Sheaves on Pn

Let us remind the construction of Beilinson. We take the following resolution of the diagonal 4 ⊂ Pn × Pn.
Define Q from the SES

0→ OPn(−1)→ O⊕n+1
Pn → Q→ 0

Notation. For coherent sheaves F,G on Pn we set F �G := pr∗1F ⊗ pr∗2G as sheaves on Pn × Pn, where

Pn × Pn Pn

Pn
pr2

pr1

OPn(1)�Q := Hom(pr∗1(OPn(−1)), pr∗2(Q)).

Next, define the section s of this bundle, which over a point (x, y) ∈ Pn × Pn, corresponding to the lines
l, v ∈ Cn+1, is s(x,y) ∈ HomC(OPn(−1)x, Qy), l 7→ [l] - the class of l in the factor space Cn+1/Cv = Q(y).
Clearly, the diagonal is the kernel of this map, i.e. 4 = s−1(0). We produce the other terms the same way as
for the Koszul resolution:

0→ Λn(OPn(−1)�Q∨)→ · · · → Λ2(OPn(−1)�Q∨)→

→ OPn(−1)�Q∨
s−→ OPn×Pn → O4 → 0

Now we tensor this sequence with pr∗2E to obtain

0→ OPn(−n)� (E ⊗ ΩnPn(n))→ · · · → OPn(−2)� (E ⊗ Ω2
Pn(2))→ OPn(−1)� (E ⊗ Ω1

Pn(1))→ OPn � E → 0.

Fix notation: C−i := OPn(−i)� (E ⊗ ΩiPn(i)), C• denotes the complex above.

2.2 Beilinson Spectral Sequence

Construct an injective (i.e. Cech with an appropriate cover of Pn×Pn) resolution of each term of C• to come
up with a double complex I••.
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· · ·

I(−n,1) · · · I(−2,1) I(−1,1) I(0,1)

I(−n,0) · · · I(−2,0) I(−1,0) I(0,0)

Our next goal is to compute cohomology of the total complex pr1∗(I
••) using (separately) two spectral

sequences ′E and ′′E. The E2-terms are

′Epq2 = Hp(Rqpr1∗(C
•))

′′Epq2 = Rppr1∗(H
q(C•))

Consider the following obvious identity: for a coherent sheaf E on P2

pr1∗(pr
∗
2E ⊗O4) = E.

This helps us to figure out that

′′Epq2 = Rppr1∗(H
q(C•)) =

{
E (p, q) = (0, 0)

0, otherwise
.

2.3 Application to Coherent Sheaves on P2

We will need the following technical results, the proofs of which are explained in Appendix A.

Theorem 1. Let G,F be coherent sheaves on a compact variety X, moreover, F is locally free. Then
Rpr1∗(F �G) ∼= F ⊗H•(G).

Theorem 2. Let E be a torsion-free coherent sheaf on P2 , locally free on l∞, then{
Hq(P2, E(−p)) = 0, p = 1, 2, q = 0, 2

Hq(P2, E(−1)
⊗
Q∨) = 0, q = 0, 2

.

Notice that Λ2Q∨ ∼= OP2(−1), therefore, E(−1) ⊗ Λ2Q∨ ∼= E(−2). So if we take E(−1) instead of E, the
first page of the Beilinsion spectral sequence provides us with

0→ OP2(−2)⊗Hq(P2, E(−2))
a
′
q−→ OP2(−1)⊗Hq(P2, E(−1)⊗Q∨)

b
′
q−→ OP2 ⊗Hq(P2, E(−1))→ 0,

which, according to Theorem 2, is nonzero if and only if q = 1. It follows that the spectral sequence ′E also
degenerates on the second page. As

⊕
p+q=0

′
Ep,q2 =

⊕
p+q=0

′′
Ep,q2 = E(−1) and

⊕
p+q 6=0

′
Ep,q2 =

⊕
p+q 6=0

′′
Ep,q2 = 0, we

see that ker a = coker b = 0, E(−1) ∼= ker b
′

1/im a
′

1. We tensor the monad for E(−1) with OP2(1) to obtain
the monad for E.
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The next step is to use the monad description of E for identification with the one provided by Nakajima
quiver variety. From the first page of Beilinson spectral sequence ′E, we have the sequence

0→ OP2(−1)⊗ V a−→ OP2⊗
∼
W

b−→ OP2(1)⊗ V
′
→ 0,

where ker a = coker b = 0 and E ∼= ker b/im a, V := H1(P2, E(−2)), V
′

:= H1(P2, E(−1)) and
∼
W :=

H1(P2, E(−1)⊗Q).

Lemma. dimV = dimV
′

= c2(E), dim
∼
W= 2c2(E) + rk(E).

Proof. We demonstrate the calculation of dimV , the other two equations are derived analogously. Use the

splitting principle: E = E1 ⊕ E2 ⊕ · · · ⊕ Er, where each Ei is a line bundle. Then c(E) =
r∏
i=1

(1 + c1(Ei)),

E(−2) = E1 ⊗O(−2)⊕ E2 ⊗O(−2)⊕ · · · ⊕ Er ⊗O(−2). The following formula is due to Hirzebruch:

χ(E) = Ch(E)Td(TX)n (*),

where Ch(E) =
r∑
i=1

eαi , Td(E) =
r∏
i=1

αi
1−e−αi , αi = c1(Ei) and the subscript n corresponds to the component of

degree n (each αi has degree 1). From the Euler exact sequence

0→ OP2 → O⊕3P2 (1)→ TP2 → 0

c(TP2) = 1 + 3H + 3H2,

where H is the class of hyperplane. From the formula for Td(E) it is not hard to see that

Td0(E) = 1,

Td1(E) =
c1(E)

2
,

Td2(E) =
c21(E) + c2(E)

12
,

so Td1(TP2) = 3H
2 , Td2(TP2) = H2.

Ch0(E) = rk(E),

Ch1(E) = c1(E),

Ch2(E) =
c21(E)− 2c2(E)

2
,

Ch1(E(−2)) = c1(E(−2)) =

r∑
i=1

(αi − 2) =

r∑
i=1

αi − 2r = c1(E)− 2r = −2r

c2(E(−2)) = coefficient of H2 in

r∏
i=1

((αi − 2)H) = n+ 4

(
r

2

)
, Ch2(E(−2)) = n+ 2r

Applying the formula (∗) and using Theorem 2, we get

−dimV = −n+ 2r − 3

2
· 2r + r = −n.

4



We now take a ∈ Hom(OP2(−1) ⊗ V,OP2⊗
∼
W ) ∼= OP2(1) ⊗ Hom(V,

∼
W ). In coordinates [z0 : z1 : z2] on P2,

a = z0a0 + z1a1 + z2a2, where ai ∈ Hom(V,
∼
W ), similarly, b = z0b0 + z1b1 + z2b2, bi ∈ Hom(

∼
W,V

′
) . Recall that

ba = 0, which gives us six equations: 
b0a0 = 0, b0a1 + b1a0 = 0,

b1a1 = 0, b1a2 + b2a1 = 0,

b2a2 = 0, b0a2 + b2a0 = 0.

Next, we restrict the monad to l∞:

0→ Ol∞(−1)⊗ V
a|l∞−−−→ Ol∞⊗

∼
W

b|l∞−−−→ Ol∞(1)⊗ V
′
→ 0,{

a|l∞ = z1a1 + z2a2

b|l∞ = z1b1 + z2b2
.

Proposition. Consider the SES 0 → Ol∞(−1) ⊗ V
a|l∞−−−→ ker bl∞ → E|l∞ → 0. Then H0(l∞, ker bl∞) '

H0(l∞, E|l∞), H1(l∞, ker b|l∞) = 0.

Proof. From the long exact sequence

0→ H0(l∞,Ol∞(−1))⊗ V → H0(l∞, ker b|l∞)→ H0(l∞, E|l∞)

→ H1(l∞,Ol∞(−1))⊗ V → H1(l∞, ker b|l∞)→ H1(l∞, E|l∞)→ 0,

using that
H0(l∞,Ol∞(−1)) = H1(l∞,Ol∞(−1)) = 0,

we see {
H0(l∞, ker b|l∞) ' H0(l∞, E|l∞)

H1(l∞, ker b|l∞) ' H1(l∞, E|l∞).

Furthermore, E|l∞ ' O⊕r, which implies H1(l∞, ker b|l∞) ' H1(l∞, E|l∞) = 0 and H0(l∞, ker b|l∞) '
H0(l∞, E|l∞) is a vector space of dimension r.

Corollary. There exists an exact sequence

0→ H0(l∞, ker b|l∞)→
∼
W→ V

′
⊕ V

′
→ 0.

Proof. From the SES 0→ ker b|l∞ → Ol∞⊗
∼
W→ Ol∞(1)⊗V ′ → 0, obtain long exact sequence of cohomology:

0→ H0(l∞, ker b|l∞)→ H0(l∞,Ol∞)⊗
∼
W→ H0(l∞,Ol∞(1)⊗ V

′
)

→ H1(l∞, ker b|l∞)→ H1(l∞,Ol∞)⊗
∼
W→ H1(l∞,Ol∞(1)⊗ V

′
)→ 0.

As H1(l∞, ker b|l∞) = 0, H0(l∞,Ol∞) ∼= C and H0(l∞,Ol∞(1)) ∼= Cz1 ⊕ Cz2, the assertion holds.
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Set W := H0(l∞, ker b|l∞). The corollary, in particular, shows that dim W = 2r + n− 2r = n.

Next, consider the dual to our monad, restricted to l∞, namely,

0→ Ol∞(−1)⊗ V
′∗ bt|l∞−−−→ Ol∞⊗

∼
W
∗ at|l∞−−−→ Ol∞(1)⊗ V ∗ → 0.

Performing manipulations similar to the above, we come up with the SES

0→ H0(ker at|l∞)→
∼
W
∗ (at1,a

t
2)−−−−→ V ∗ ⊕ V ∗ → 0,

so (a1, a2) : V ⊕ V →
∼
W is injective. Also, 0 = im a1 ∩ ker b2, thus, b2a1 = −b1a2 : V ' V

′
are isomorphisms

(they are injective, the dimensions of V and V
′

are equal).

The six equations derived from ba = 0 enable us to give the presentation a0 =

x

y

j

 a1 =

 idV

0

0

 a2 =

 0

−idV
0

 and b0 = (−y x i), b1 = (0− idV 0), b2 = (idV 0 0).

The monad can now be put in the more convenient form

V ⊗OP2(−1) −−−−−−−−−−−→

a=


z0x− z1
z0y − z2
z0j



V ⊗OP2

⊕
V ⊗OP2

⊕
W ⊗OP2

−−−−−−−−−−−−−−−−−→
b=(−(z0y−z2) z0x−z1 z0i)

V ⊗OP2(1)

To establish the isomorphism of our moduli space of sheaves on P2 with Nakajima quiver variety, it remains
to prove the following lemma.

Lemma. Suppose the quadruple (x, y, i, j) satisfies the equation [x, y] + ij = 0. For a and b constructed as
above

(1)ker a = 0

(2)b is surjective if and only if the stability condition holds, namely, there is no S ⊂ Cn, such that x(S), y(S) ⊂
S and im(i) ⊂ S.
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Proof. It follows from the discussion above, that a is injective and b surjective on l∞. To prove (1), notice that
if there is a v ∈ V , such that v ∈ ker a for a point (z1, z2) ∈ C2 = P2\l∞, then

xv = z1v

yv = z2v

z2jv = 0,

which can clearly happen only for a finite number of points (z1, z2) and, therefore, a is injective, when restricted
to any open neighborhood of any point in C2.

Suppose b is surjective, but there exists S ⊂ Cn, contradicting the assertion. We look at the dual operators
xt, yt, it, jt acting on Cn∗ and Cr∗, and introduce S⊥ := {φ ∈ Cn∗|φ(S) = 0}. The condition im(i) ⊂ S is
equivalent to S⊥ ⊂ ker it. It is not hard see that the equation [x, y] + ij = 0 induces [xt, yt] + jtit = 0. Thus
it follows that xt and yt commute on S⊥ (it is preserved by xt and yt, because x(S), y(S) ⊂ S) and, therefore
have a common eigenvector ϕ with eigenvalues (λ1, λ2) ∈ C, so bt is not injective at the point (λ1, λ2), dually,
b is not surjective at some point, hence, not surjective.

To prove the converse, just reverse the above argument and take S = ker ϕ.

3 Torus Action on Mr,n

3.1 Torus Action on Hilbert Scheme of Points

Let us remind that for the Hilbert scheme of n points on C2, which consists of ideals I ⊂ C[x, y] of codimension n,
the 2-dimensional torus action comes from the action on C2, defined by (t1, t2) ∈ (C∗)2 : (z1, z2) 7→ (t1z1, t2z2).
Thus, the only invariant point is 0 ∈ C2 and invariant points of the Hilbert scheme are ideals supported on 0.
It is not hard to see that such ideals are generated by monomials. It is convenient to encode them with Young
diagrams.

3.2 Fixed Points Set for Torus Action on Mr,n

To find the fixed points set for the torus T×(C∗)2 (T is maximal torus in GL(W )) action onMr,n, we decompose
W = W1⊕W2⊕ · · ·⊕Wr as the sum of weight spaces with respect to T -action. The torus fixed points are then

(M1,n1
)(C
∗)2 × · · · × (M1,nr )

(C∗)2 ,
r∑
i=1

ni = n, and can be encoded via multipartitions.

4 Appendix A

Theorem 1. Let G,F be coherent sheaves on a compact variety X, moreover, F is locally free. Then
Rpr1∗(F �G) ∼= F ⊗H•(G).

Proof. Choose a Cech resolution C• of G, it will be of finite length, because X is compact. Using that G is quasi
isomorphic to C• in Db(X), the functors ⊗F and pr∗2 are exact, we get that F �G ∼= F � C• in Db(X ×X),
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thus, Rpr1∗(F � G) ∼= Rpr1∗(F � C•)
(1)∼= F ⊗ H0(C•) ∼= F ⊗ H•(G), where (1) follows from the projection

formula.

Theorem 2. Let E be a torsion-free coherent sheaf on P2 , locally free on l∞, then{
Hq(P2, E(−p)) = 0, p = 1, 2, q = 0, 2

Hq(P2, E(−1)
⊗
Q∨) = 0, q = 0, 2

.

Proof. Introduce coordinates [z0 : z1 : z2] on P2 and consider the exact sequence

0→ OP2(−1)
z0−→ OP2 → Ol∞ → 0,

tensor it with E(−k) to come up with

0→ E(−k − 1)→ E(−k)→ E(−k)|l∞ → 0.

This gives the long exact sequence

0→ H0(P2, E(−k − 1))→ H0(P2, E(−k))→ H0(l∞, E(−k)|l∞)

→ H1(P2, E(−k − 1))→ H1(P2, E(−k))→ H1(l∞, E(−k)|l∞)

→ H2(P2, E(−k − 1))→ H2(P2, E(−k))→ 0.

As E|l∞ ∼= O⊕r, we get {
H0(l∞, E(−k)|l∞) = 0, k > 1

H1(l∞, E(−k)|l∞) = 0, k 6 1

Thus from the exact sequence we see that{
H0(P2, E(−k − 1)) ∼= H0(P2, E(−k)), k > 1

H2(P2, E(−k − 1)) ∼= H2(P2, E(−k)), k 6 1

By Serre vanishing theorem H2(P2,E(n)) = 0 for n ∈ N large enough, while duality asserts that H0(P2,E(−n)) ∼=
H2(P2,E∨(n)⊗KP2

) ∼= H2(P2,E∨(n− 3)) ∼= 0.{
H0(P2, E(−1)) ∼= H0(P2, E(−2)) ∼= · · · = 0

H2(P2, E(−2)) ∼= H2(P2, E(−1)) ∼= · · · = 0.

The proof of the second assertion of the theorem is similar (see [1]): consider the sequence

0→ E(−k − 1)⊗Q∨ → E(−k)⊗Q∨ → (E(−k)⊗Q∨)|l∞ → 0,

Q|l∞ ∼= O|l∞ ⊕O|l∞(1).
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