Chiral differential operators 2

1) Homomorphism $V_{R}(g) \rightarrow C D O\left(N_{+}\right) \otimes V_{R(m)}\left(m_{n}\right)$
1.1) Homomorphism $U(g) \rightarrow D\left(N_{+}\right) \otimes U\left(m_{n}\right)$

Let G be a connected simple algebraic group, $P^{+} \subset G$ be a parabolic subgroup with Levi decomposition $P_{=}^{+} M \propto N^{+}$

Let $N^{-} \subset C$ be the opposite unipotent group \& $P^{-}=M \propto N^{-}$so that $G^{0}=N^{+} P^{-}=P^{+} N^{-}$is an open affine subset of G. Our goal here is to recover the homomorphism $U(g) \rightarrow D\left(N_{+}\right) \otimes U(m)$ from Kenta's lecture in a somewhat different way.

Note that the action of G on G from the left gives rise to $U(g) \rightarrow D(G)$. Then we have the restriction homomorphism $D(G) \rightarrow D\left(G^{\circ}\right)=D\left(N^{+}\right) \otimes D\left(P^{-}\right)$. The image of the composition $X(g) \rightarrow D\left(G^{\circ}\right)$ lies in the subalgebre of P^{-}-invariants $\left(D\left(N^{+}\right) \otimes D\left(P^{-}\right)\right)^{P^{-}}=D\left(N_{+}\right) \otimes U\left(\beta^{-}\right)$. Note that $\beta^{-} \rightarrow \beta^{-} / \hbar^{-} \simeq m$, so we get the projection $U\left(\beta^{-}\right) \rightarrow U(m)$. Therefore we 1
get a homomorphism $U(g) \rightarrow D\left(N^{+}\right) \otimes U(m)$

Exerase: Check that it coincides with the homomorphism constructed by Kente.
1.2) Recap of CDO's.

Now let G be a connected algebraic group $/ \mathbb{C}, n \in S^{2}\left(g^{*}\right)^{S}$ We write $R_{g} \in S^{2}\left(g^{*}\right)^{G}$ for the Killing form on of.

In part 1 of this notes we have defined a vertex algebra $C D O_{R}(G)$ as $I_{n} \alpha_{g[[t]] \oplus \mathbb{I} \mathbb{I}}^{\hat{g}_{R}} \mathbb{C}[J G]$ with respect the action of $J_{g}=g[[t]]$ on $\mathbb{C}[J G]$ from the left (by right invariant vector fields). We have vertex algebra embeddings

$$
\mathbb{C}[J G] \hookrightarrow C D O_{R}(G), \quad V_{R}(g) \hookrightarrow C D O_{R}(G)
$$

Recall that $V_{R}(g)=I_{n} \alpha_{g(t)] \oplus \mathbb{C} 0}^{\hat{g}_{e}}$ triv and the ind embedding above is induced by tiv $\rightarrow \mathbb{C}[J G]$ (the constant functions). Note that the right action of $J G$ on itself gives rise to an action of $J G$ on $\subset D O_{k}(G)$ by \hat{g}_{k}-linear automorphisms. The
 21

In Section 1.4 of part 1 we have also produced a map $l: g t^{-1} \rightarrow C D D_{R}(G)$ that we claimed has the following two properties:

- It gives rise to a vertex algebra homomorphism

$$
V_{-k-k_{g}}(g) \longrightarrow C D O_{R}(G)
$$

- The image commutes w. that of $V_{R}(g)$.

Note that this homomorphism makes $C D O_{R}(G)$ into a $\hat{g}_{-R-R}{ }_{g}$ module. Informally, the following claim holds 6/c both left \& right invariant vector fields form bases in $\operatorname{Vect}(G)$.

$$
\begin{equation*}
\text { Ind } \underset{g[(t)] \oplus \mathbb{I}-1}{\hat{g}-k-k_{g}} \mathbb{C}[J G] \leadsto C D O_{R}(G) \tag{1}
\end{equation*}
$$

Note that we can construct a natural vertex algebra structure on the left hand side (compare to Sec 1.1 in part 1).
(1) becomes a vertex algebra isomorphism.
1.3) Decomposition of $C D O_{R}\left(G^{0}\right)$

Now we want to emulate the construction from Sec 1.1 in the affine setting. The notation is as in Sec 1.1.

Recall (Sec 1.2 in part 1) that we have a localization $C D O_{k}\left(G^{0}\right)$ of $C D O_{k}(G)$. Note that $\mathbb{C}\left[J G^{0}\right] \subset C D O_{R}\left(G^{e}\right)$ decomposes as $\mathbb{C}\left[J N^{+}\right] \otimes \mathbb{C}\left[J P^{-}\right]$.

Our goal now is to establish an analog of the Lecomposition $D\left(G^{0}\right)=D\left(N^{+}\right) \otimes D\left(P^{-}\right)$. First, we need analogs of subalgebras $D\left(N^{+}\right), D\left(P^{-}\right)$in $C D O_{R}\left(G^{0}\right)$. Consider two vertex subalgebras in $C D O_{r e}\left(G^{\circ}\right)$.

- The subalgebre generated by $\mathbb{C}\left[J N^{+}\right]$\& $x t^{-1}$ for $x \in h^{+}$ As a subspace, it coincides with $\operatorname{In} \alpha{ }_{\hbar(t(t))}^{\hbar^{+}(())} \mathbb{C}\left[J N^{+}\right]$and as a vertex algebre it is $\operatorname{CDO}\left(N^{+}\right)$.
- The subalgebra generated by $\mathbb{C}\left[J p^{-}\right]$\& $\left(y t^{-1}\right)$ for $y \in \beta^{-}$. As a subspace it coincides w. Ind $\alpha_{\beta^{-}[(t)] \oplus \mathbb{R} \boldsymbol{R}}^{-1} \mathbb{C}\left[J P^{-}\right]$(for the right $J \beta^{-}$-action of $\left.\mathbb{C}\left[J P^{-}\right]\right)$. So, as a vertex algebra, it is $C D O_{R^{\prime}}\left(P^{-}\right)$, where $R^{\prime} \in S^{2}\left(\beta^{-*}\right)^{P^{-}}$is such that

$$
-R^{\prime}-R_{p^{-}}=\left.\left(-R-R_{\sigma}\right)\right|_{p^{-}} \Leftrightarrow R^{\prime}=\left.R\right|_{\beta^{-}}+\left.R_{g}\right|_{\beta^{-}}-R_{\beta}
$$

Note that R^{\prime} is lifted from in via $\beta^{-} \rightarrow$ in \&

$$
R^{\prime}(x, y)=R(x, y)+t r_{k^{+}}(a \alpha(x) Q \alpha(y)) .
$$

equivalently R^{\prime} is lifted from $\left.\left(R-R_{c}(g)\right)\right|_{m}+R_{c}(m)$. We conclude 4
that the subalgebre in question is $C D O_{R^{\prime}}\left(P^{-}\right)$.

Exerase: $C D O\left(N^{+}\right) \& C D O_{R^{\prime}}\left(P^{-}\right)$commute.

So we get a vertex algebra homomorphism

$$
C D O\left(N^{+}\right) \otimes C D O_{R^{\prime}}\left(P^{-}\right) \rightarrow C D O_{R}\left(G^{0}\right)
$$

Premium exerase: This homomorphism is en isomorphism. Hints: it is surjective $6 / c$ the generators, $\mathbb{C}\left[J G^{\circ}\right]$ \& $g t^{-1}$, lie in the image (note that left-invariant vector fields can be expressed Via right invariant ones and vice versa). To show it's injective check that $C D O(N)$ has no nontrivial vertex algebra ideals, \&, move generally, every vertex algebra ideal in $C D O\left(N^{+}\right) \otimes$? is the product of $C D O\left(N^{+}\right)$\& a vertex algebra ideal in?

Remark: Weill need equivariance properties of

$$
\begin{equation*}
C D O\left(N^{+}\right) \otimes C D O_{R^{\prime}}\left(P^{-}\right) \xrightarrow{\sim} C D O_{R}\left(G^{\circ}\right) \tag{2}
\end{equation*}
$$

First note that $I P^{-}$acts from the right \& the isomorphism 5

15 equivariant by the construction. Also JP^{+}acts from the left: JM acts diagonally, while $J N^{+}$acts on the first factor only. (2) is JP-equivariant as well.
1.4) Parabchc free field realization map

Using (2) \& its equiveriance properties we ave ready to construct a "parabolic free field realization map"

$$
V_{R}(g) \longrightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}(m)
$$

Namely, consider the inclusion $V_{k}(g) \hookrightarrow C D O_{R}(G)$ (from the left) and compose with the inclusion $C D O_{R}(G) \hookrightarrow C D O_{R}\left(G^{\circ}\right)$ The image is contained in the JP-invariants. Note that the action of JP^{-}on $\operatorname{CDO}\left(\mathrm{N}^{+}\right)$is trivial. And the invariants in $C D O_{R^{\prime}}\left(P^{-}\right)$is $V_{R}\left(\beta^{-}\right)$(see Sec 1.2). So we get an inclusion $V_{R}(g) \hookrightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(\beta^{-}\right)$. Now note that we have a vertex algebra epimorphism $V_{R^{\prime}}\left(\beta^{-}\right) \rightarrow V_{R^{\prime}}\left(l_{m}\right)$ induced by $\beta^{-} \rightarrow m$. So we get a vertex algebra homomorphism

$$
V_{R}(g) \hookrightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(\beta^{-}\right) \rightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}(m)
$$

Exercise: $V_{R}(g) \rightarrow C D O\left(N^{+}\right) \otimes V_{R}\left(m_{m}\right)$ is IP-equivariant.
1.5) Homomorphism $z\left(V_{k}(g)\right) \longrightarrow z\left(V_{k\left(m_{1}\right)}(m)\right)$

Note that $z\left(V_{R}(g)\right)=V_{R}(g)^{I G}$. Consider the inclusion

$$
\begin{equation*}
V_{k}(g)^{J C} \hookrightarrow V_{k}(g)^{J p^{t}} \tag{3}
\end{equation*}
$$

The to Exerase in Sec 1.4, the parabohc free field realization map restricts to

$$
\begin{equation*}
\left.V_{R}(g)\right)^{9 p^{+}} \longrightarrow\left(C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(m_{n}\right)\right)^{J p^{+}} \tag{4}
\end{equation*}
$$

We claim that the target of (4) is $z\left(V_{R^{\prime}}(m)\right)$. First, consider the invariants of $J N^{+}$. It's $V\left(\hbar^{+}\right) \otimes V_{R^{\prime}}(m)$. The target of (4) is the $J M$-invariants in the latter vertex algebra. Note that $Z(M)^{\circ} \subset M \subset J M$ acts trivially on the Zn factor, while the invariants in the $V\left(n^{+}\right)$is \mathbb{C} for weight reasons. So the target of (4) is $V_{R^{\prime}}(m)^{J M}=z\left(V_{R^{\prime}}\left(m_{n}\right)\right)$. Composing (3) \& (4) we get a required map $z\left(V_{k}(g)\right) \longrightarrow z\left(V_{R^{\prime}}(m)\right)$.
1.6) Formulas

Now we discuss how to write formulas for 7

$$
V_{R}(g) \xrightarrow{f f r_{p^{+}}} C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(m_{n}\right)
$$

In short, we can write some kind of formulas for the images of $x t^{-1}, y t^{-1}$, where $x \in \kappa^{+}$and $y \in m$.

By the construction, fffrp $\left(x t^{-1}\right)=x t^{-1} \otimes 1$, where in the r.h.s. we abuse the notation and write $x t^{-1}$ for the image of this element in $C D O\left(N^{+}\right)$under the natural map $V\left(n^{+}\right) \rightarrow C D O\left(N^{+}\right)$ We then can express the elements $x t^{-1} \in C D O\left(N^{+}\right)$vie the constant vector fields similarly to $\operatorname{Sec} 1.3$ of part 1 . In the case when $P^{+}=B^{+}$we get formulas as in Sec 4 of Zeyu's talk.

Now let's sketch how to compute the images of $y t^{-1} w . y \in m$. In the finite setting, we have $y \in m \mapsto y_{N^{+}} \otimes 1+1 \otimes y$, where $y_{N^{+}} \in \operatorname{Vect}\left(N_{+}\right)$ is the image of y under the map corresponding to the adjoint action of M on N^{+}. Similarly, the image of $y t^{-1}$ is $\left(y t^{-1}\right)_{N+} \otimes 1+1 \otimes y t^{-1}$, where $\left(y t^{-1}\right)_{N^{+}}$is obtained from $y_{N^{+}}$by replacing all coordinate functions $a_{\alpha}^{*} w . a_{\alpha, 0}^{*}$ and all constant vector fields $a_{\alpha} w . a_{\alpha,-1}$ (cf. Zeyu's Section 4).

Premium exeruse: Prove the claim in the previous sentence Clint: this is a computation in $\left.V_{R}\left(\beta^{+}\right)=\operatorname{In} \alpha_{\beta[c t]) \oplus \mathbb{\beta} \mathbb{1}}^{\hat{\beta}_{R}} \mathbb{C}\left[J \rho^{+}\right]\right)$. 8
1.7) Transitivity

Let B^{+}be a Bored in P^{+}st. $B_{M}=B^{+} \cap M$ is a Bored in M. Choose $H \subset B_{M}$ Let $\tilde{N}^{+}=R_{u}\left(B^{+}\right), \widetilde{N}^{-}=R_{u}\left(B^{-}\right)$(where B^{-}is the aposite Bored containing $H), N_{M}^{ \pm}=\widetilde{N}^{ \pm} \cap M$ so that $\tilde{N}^{+} \simeq N^{+} \times N_{M}^{+}$\& $\widetilde{N}^{-} \simeq N_{M}^{-} \times N^{-}$(vie the multiplication maps)

We have the following vertex algebra homomorphisms:

$$
f_{f r_{B^{+}}}: V_{R}(g) \longrightarrow C D O\left(\tilde{N}^{+}\right) \otimes V_{R-R_{C}}(\xi)
$$

ff r $\mathrm{p}^{+}: V_{R}(g) \longrightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}(m)$
ff r $_{\mathrm{B}_{M}^{+}}: V_{R^{\prime}}(m) \rightarrow C D O\left(N_{M}^{+}\right) \otimes V_{R-R_{c}}(\xi)$
Also note that we can identify $C D O\left(\tilde{N}^{+}\right) w . C D O\left(N^{+}\right) \otimes C D O\left(N_{M}^{+}\right)$, the to $\tilde{N}^{+} \leftarrow N^{+} \times N_{M}^{+}$, cf. Sec 1.3

The following claim is whet we mean by the transitivity, of. the end of Sec 1.1 in Kente's talk.

Proposition: The following diagram is commutative

9

Sketch of proof:
Consider the inclusions

$$
\tilde{N}^{+}{B^{-}}^{-} N^{+}\left(N_{M}^{+} H N_{M}^{-}\right) N^{-} \hookrightarrow N^{+} M N^{-}=N^{+} P^{-} \hookrightarrow G
$$

They give rise to localization homomorphisms of vertex algebras $C D O_{k}(G) \hookrightarrow C D O_{k}\left(N^{+} P^{-}\right) \hookrightarrow C D O_{k}\left(\tilde{N}^{+} B^{-}\right)$ that, in turn give rise to inclusions

$$
\begin{align*}
& V_{R}(g) \hookrightarrow C D O_{R}\left(N^{+} P^{-}\right)^{S P^{-}}=C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(\beta^{-}\right) \\
& \longrightarrow C D O_{R}\left(\widetilde{N}^{+} B^{-}\right)^{J B^{-}}=C D O\left(\tilde{N}^{+}\right) \otimes V_{R-R_{c}}\left(\sigma^{-}\right)= \tag{5}\\
& C D O\left(N^{+}\right) \otimes\left(C D O\left(N_{\mu}^{+}\right) \otimes V_{R-\mathcal{R}_{r}}\left(G^{-}\right)\right)\left({ }_{(* *)}\right.
\end{align*}
$$

The homomorphism from $(*) t_{0}(* *)$ is the tensor product of the identity on $\mathrm{CDO}\left(\tilde{N}^{+}\right)$\& the homomorphism

$$
\begin{align*}
C D O_{R^{\prime}}\left(P^{-}\right)^{J P^{-}} & =V_{R^{\prime}}\left(p^{-}\right) \longleftrightarrow C D O\left(N_{\mu}^{+}\right) \otimes V_{R^{-} R_{c}}\left(G^{-}\right) \tag{6}\\
& =C D O_{R^{\prime}}\left(N^{+} \times N_{M}^{+} \times B^{-}\right)^{J B^{-}}
\end{align*}
$$

Using the epimorphisms $V_{R^{\prime}}\left(\xi^{-}\right) \rightarrow V_{R^{\prime}}\left(m_{n}\right) \& V_{R-R_{c}}\left(b^{-}\right) \longrightarrow$ $V_{R-R_{c}}\left(\sigma_{M}^{-}\right)$from (6) we get:

$$
\begin{gather*}
C D O_{R^{\prime}}(M)=V_{R^{\prime}}(m) \rightarrow C D O\left(N_{M}^{+}\right) \otimes V_{R-R_{C}}\left(\sigma_{M}^{-}\right)= \tag{7}\\
C D O_{R}\left(N_{M}^{+} B_{M}^{-}\right)^{J B_{M}^{-}}
\end{gather*}
$$

Composing (7) w. $\quad \alpha_{C D O\left(N_{M}^{+}\right)} \otimes\left[V_{R-R_{c}}\left(b_{M}^{-}\right) \longrightarrow V_{R-R_{c}}\left(\xi^{\nu}\right)\right]$ we recover ff $_{B_{M}}$. So we get the following commutative diagram

$$
\begin{align*}
& V_{R}(g) \rightarrow C D O\left(N^{+}\right) \otimes V_{R^{\prime}}\left(\beta^{-}\right) \\
& \text {for }_{p^{+}} \searrow \quad \downarrow^{/ \kappa^{-}} \tag{5}\\
& C D O\left(N_{+}\right) \otimes V_{R^{\prime}}\left(m_{m}\right) \\
& C D O\left(N^{+}\right) \otimes C D O\left(N_{\mu}^{+}\right) \otimes V_{R-R_{c}}\left(G^{-}\right) \\
& i d \otimes f f r_{B_{M}^{+}} \\
& \Downarrow / \tilde{h}^{-} \\
& C D O\left(N^{+}\right) \otimes C D O\left(N_{\mu}^{+}\right) \otimes V_{R-R_{c}}(\xi) \\
& \text { s } \\
& C D 0\left(\widetilde{N}^{+}\right) \otimes V_{R-R_{c}}(\xi)
\end{align*}
$$

To finish the proof it remains to note that the composition

is nothing else but Afr B $^{+}$

