S7.3\&8.1: Screening operators, contd
\& describing the center of the affine vertex algebra

Review of the big picture thus for:
We have warred hard to give a "free field realization" homomorphism of vertex algebras

$$
\omega_{k_{c}}: V_{k_{c}}(o g) \longrightarrow M_{g} \otimes V_{0}(h)
$$

where

- $M_{g}=\mathbb{C}_{1}\left[a_{\alpha, n}, a_{o c, m}^{*}\right]_{n<0, m \leq 0}$ is the Fock representation of the Weyl algebra A.
- $V_{0}(h)=$ commutative vertex alghera associated to Lh

This is the vertex algebra version of the affine analogue of the map

$$
\tilde{\rho}: U(g) \longrightarrow \mathbb{C}\left[h^{*}\right]_{\mathbb{C}}^{\otimes} D\left(N_{t}\right)
$$

Recall in the fin. dim. cause, this $\tilde{\rho}$ can be used to describe the ceter, by showing $\tilde{\rho}(z(\mathrm{~g}))$ lands in the first factor, and also in its W-invariants. (See Exercise 2.11 (1) in Daishi's notes.)

Now bade to the affine case. Frankel sets up in $\$ 7.1$ the following plan, which Dancil reviewed for us:
Done by \rightarrow STEP 1: Show $\omega_{k_{c}}$ is injective.

$$
\text { Daniel } \rightarrow \text { STEP 2: Show } z(\hat{g}) \subset V_{K_{c}}(g) \text { maps to } V_{0}(h) \subset M_{g} \otimes V_{0}(h)
$$

(related to the operator \widetilde{S}_{k} Constructed in David's
talk)
Our (STEP 3: Weill Construct the Screening operators $\bar{S}_{i} i=1$, l
focus from $W_{0, k_{c}}=M_{g} \otimes V_{0}(h)$ to some other modules, which will be commute with the action of $\hat{\jmath_{k}}$.
Steps
$3 \& 4$ STEP 4 We'll show $\omega_{k_{c}}\left(V_{k_{c}}(g)\right)$ is contained in

$$
\bigcap_{i=1}^{l} \operatorname{ker}\left(\overline{S_{i}}\right) g \Rightarrow \omega_{k_{c}}(z(\hat{o g})) \subset \bigcap_{i=1}^{l} \operatorname{ker}\left(\bar{V}_{i}[i]\right)
$$

also work
toward to be
Step 5, to STEP 5 Show above inclusion (1) is equality.
Varia's STEP 6 use Miura opers to identify RHS of (1) tale. with Fun Oplo(D).

Important ingredients from previous talks:
Daniil constructed a "Screening operator of the first kind"

$$
S_{R}: W_{0, k} \longrightarrow W_{-2, k}
$$

along with other "screening operators of the second teind" \widetilde{S}_{R}.
We will extend this s_{2} statement to arbitrary of with Steps 3 \& 4 above as our goal.

Recall also that Kenta's talk gives the following:
For poof parabolic with Levi m, there is on exact fundor between smooth modules for \hat{m} and $\hat{o f}$ sending

$$
\begin{aligned}
& \text { This will allow us to produce homomorphisms on the RHS }
\end{aligned}
$$ from those on the LHS.

7.3.1 (Goal here: use screening operators for \hat{s}_{2} to build ones for $\hat{g}_{k}!$) For $i \in\{1, \ldots, l\}$, let

$$
\begin{aligned}
& s l_{2}^{(i)}=\left\langle e_{i}, h_{i}, f_{i}\right\rangle \subset o g \\
& p^{(i)}=\left\langle b-, e_{i}\right\rangle c o g \\
& m^{(i)}=s l_{2}^{(i)} \oplus h_{i}^{1}=\text { Lev subaly of } p^{(i)} .
\end{aligned}
$$

orthogacel complement of h_{i} in h
Real semi-infinite parabolic induction:

The conditions on $k \& k_{0}:\left(k-k_{c}\right)\left(h_{i}, h_{i}\right)=2(k+2)$

$$
k_{0}=\left.k\right|_{h_{i}^{1}} .
$$

For R a smooth $\hat{s l}_{2}$-module of level k,
L a smooth \hat{h}_{k}^{1}-module,
$M_{o f, p}{ }^{(i)} \otimes R \otimes L$ is a smooth $\hat{ण}_{k+k_{c}}$-module.
Letting R be the Wationoto module W_{λ}, k over sk,
L the Fock rep. $\pi_{\lambda_{0}}^{k}$,
the corresponding \hat{o}_{k}-module is ism. to $\frac{\left.W\left(\lambda, \lambda_{0}\right), k+k_{0}\right)}{r \text { weight of } g \text { built }}$ from $\lambda \& \lambda_{0}$.
so we have:
Prop. Any intertwining operator $a: W_{\lambda_{1}, k} \rightarrow W_{\lambda_{2}, k}$ over $\widehat{\mathrm{Sl}}_{2}$ gives an intertwining operdor

$$
W_{p^{(2)}}^{\text {g }}(a): W_{\left(\lambda_{1}, \lambda_{0}\right), k+k_{c}} \longrightarrow W_{\left(\lambda_{2}, \lambda_{0}\right), k+k_{c}} \text { over } \hat{o g}_{k+k_{c}}
$$ for any weight λ_{0} of h_{i}^{\perp}.

we will also need the following formula.
Recall from Sec 1.3 of Ivan's $1^{\text {st }}$ CDO Note, the morphism
$L: V\left(\eta_{+}\right) \rightarrow C D O\left(N_{+}\right) \quad\binom{$ corresp. to the right action }{ of N_{+}on itself }
For all i, let $e_{i,-1}^{R}$ be the image of $e_{i,-1}$ under this map.
Def Let $e_{i}^{R}(z)=Y\left(e_{i,-1}^{R}, z\right)$, a field for the vertex alg. $\operatorname{CDO}\left(N_{+}\right)$. (Alternatively, in Frenteel: $e_{i}^{R}(z)=w^{R}\left(e_{i}(z)\right.$), where $w^{R}: L n_{+} \rightarrow A_{\leq 1, l o c}^{\circ}$ induced by right aston of n_{+}on N_{+}).

Exercise: Show that for a general coordinate system on N_{+}, we have

$$
e_{i}^{R}(z)=a_{a_{i}}(z)+\sum_{\beta \in \Delta+} P_{\beta}^{R_{i i}}\left(a_{\alpha}^{*}(z)\right) a_{\beta}(z)
$$

(C.f. The 6.2.1 an Reyu's notes!)
7.3.2 If h is any abelian Lie alg. with nondegeerate inner prod. K, we can identify $h \simeq h^{*}$ via K. Then let \hat{h}_{k} be the Heisenberg Lie dog, $\pi_{\lambda}^{k} \lambda \in h^{*} \simeq h$ its Face reps. Then for any $X \in h^{*}$, we can $\operatorname{dofine} V_{x}^{k}(z): \pi_{0}^{k} \rightarrow \pi_{x}^{k}$ by

Def For $k \neq k_{c}$, let

$$
S_{i, k}=e_{i}^{R}(z) V_{-\alpha_{i}}^{k-k_{c}}(z): W_{0, k} \rightarrow W_{-a_{i, k}}
$$

$$
\left(=Y_{w_{0, k}, w_{-\alpha \alpha_{i, k}}}\left(e_{i,-1}^{R}\left|-\alpha_{i}\right\rangle, z\right)\right.
$$

in the notation of Daniel's talk).
And let

$$
S_{i, k}=\int S_{i, k}(z) d z: W_{0, k} \longrightarrow W_{-\infty}, k
$$

$$
\begin{aligned}
& \text { "the eth screening } \\
& \text { operator of }
\end{aligned}
$$

the first find"

By Proposition 2.4 in Daniel's talk, $S_{i, k}$ is induced by the screening operator S_{k} for the $i^{\text {th }} \hat{S l}_{2}$ scbalgebra, with k salsfyng $\left(k-k_{c}\right)\left(h_{i}, h_{i}\right)=2(x+2)$. It also implies:
[Proposition $S_{i, k}$ is an intertwining gerator between $W_{0, k}$ and $W_{-\alpha_{i}, k}$ for each $i=1, \ldots, l$.

We wont use this next result, but it's useful for intuition as a step toward our main result later:
[Preposition For generic $k, V_{k}(g)$ is equal to the intersection of the kernels of $S_{i, k} i=1, \ldots, l$.
7.3.3 We now approach defining screening oferotors of the second kind for of. To do so, we'll need to make sense of $\left(e_{i}^{R}(z)\right)^{\gamma}$ for $\gamma \in \mathbb{C}$.

First, fixing i, we can choose coorduars in N_{+}st. $e_{i}^{R}(z)=a_{o \alpha_{i}}(z)$ (we can get this naturally if we define Wakimoto modules over of via seniiuntinite parabolic induction from the $\left.i^{\text {th }} \hat{s_{\ell_{2}}}\right)$. Concretely, we choose cords $\left\{y_{a}\right\}_{\sigma 6 \in \Delta+}$ on N_{+} such that $\rho^{R}\left(e_{i}\right)=\partial / \partial y_{\circ} c_{i}$ where $\rho^{R}: n_{+} \rightarrow D_{\leq 1}\left(N_{+}\right)$corresp. to $N_{+} g n_{+}$. rigtacation
Now, recall the Friedan-Martmec-Shenteer bosonization of the Weyl algebra generoded by $a_{a_{i, n},} a_{a_{i}, n}^{*} n \in \mathbb{Z}$.

Def let

$$
\widetilde{W}_{0,0, k}^{(i)}=\operatorname{Wak}_{p}^{(i)}\left(\widetilde{W}_{0, \gamma, k}\right)
$$

which is a \hat{g}_{k}-module containing $W_{\lambda, k}$ if $\gamma=0$, via homomorphism $V_{k}(0 g) \xrightarrow{w_{k i}} M g g \otimes_{\otimes} \pi_{0} \rightarrow M_{g}^{(i)} \otimes \widetilde{W}_{0,0, k}$.
More generally, by replacing the force represctation Π_{0} with $\pi_{\gamma} \quad \gamma \in \mathbb{G}$ and π_{0}^{k} with π_{λ}^{k}, we get a modified \hat{g}-action give rise to a module $\widetilde{W}_{\lambda, \gamma, k}^{(i)}$ for all λ, γ.

Def Let $\beta=\frac{1}{2}\left(k-k_{c}\right)\left(h_{i}, h_{i}\right)$ and define

$$
\widetilde{S}_{i, k}(z)=\left(e_{i}^{R}(z)\right)_{j}^{-\beta} V_{\substack{\tilde{a}_{i}}}(z): \widetilde{W}_{0,0, k}^{(i)} \rightarrow \widetilde{W}_{-\beta, \beta \alpha, k}^{(i)} .
$$

$\left(\right.$ well defined as a map $\left.\pi_{0} \rightarrow \pi_{-\beta}\right) \begin{gathered}\check{\alpha}_{i}=h_{i} \in h \\ \text { att }\end{gathered}$
(by def of F-M-S bosowzation) it coroct of of

Let $\widetilde{S}_{i, k}=\int \widetilde{S}_{i, k}(z) d z$.
As for $S_{i, k}, \widetilde{S}_{i, j e}$ is induced by \widetilde{S}_{R} for the it $\widehat{S_{2}}$, where $k=\left(k-k_{c}\right)\left(h_{i}, h_{i}\right)=2(k+2)$

Prop. The operator $\widetilde{S}_{i, k}$ is an intertwining operator of $\hat{J}_{k}^{- \text {-modules }} \widetilde{W}_{0,0, k}^{(i)} \longrightarrow \widetilde{W}_{-\beta, \beta \breve{a}_{i, k}}^{(i)}$

Prof. For genera $k, V_{k}(g)$ is the intersection of the Revels of $\widetilde{S}_{i, k}: W_{0, k} \rightarrow \widetilde{W}_{-\beta, \beta \check{o s}_{i, k}}^{(i)} \quad i=1, \ldots, l$.

Again, we wan't use or prove this.
Exercise. Show that this intersection is a vertex subalgebra of $W_{0, k}$.
7.3.4 We now wont to define the limit of $\widetilde{S}_{i, k}$ as $\not \approx \underset{\sim}{\sim} K_{c}$. We will start in the case $g=S l_{2}$, defining $\lim _{R \rightarrow-2} \widetilde{S}_{R}$.
Weill turn $k+2$ into an indeterminate variable β and mate $W_{0, R}$ and $\widetilde{W}_{-(k+2), 2(R+2), R}$ free modules over $\mathbb{C}[\beta]$,
then quotient by (β).
Def Let $\pi_{0}[\beta]$ (resp. $\pi_{2 \beta}[\beta]$) be the free $\mathbb{C}_{1}[\beta]$ - modules spanned by monomials in $b_{n} n<0$ applied to $|0\rangle$ (resp. $\mid 2 \beta>$).
$\pi_{0}[\beta]$ is a vertex algebra (by Zeyu's talk) and $\pi_{2 \beta}[\beta]$ a module over $\pi_{0}[\beta]$ (as in Daniel's talk).
we have $\left[b_{n}, b_{m}\right]=2 \beta n \delta_{n,-m}$. The quoter of $\pi_{0}[\beta]$ and $\pi_{2 \beta}[\beta]$ by $(\beta-k)(k \in \dot{C})$ are the π_{0}^{k} and $\pi_{2 k}^{k}$ introduced in Zeyu's talk.
let $W_{0}[\beta]=M \otimes \underset{\mathbb{C}}{\otimes} \pi_{0}[\beta], \quad \widetilde{W}_{0,0}[\beta]=\pi_{0}^{\otimes} \underset{\mathbb{C}}{\otimes} \pi_{0}[\beta]$, (vertex olgetoras \& free $\mathbb{C}[\beta]$-modules, w/ quotrets $W_{0, k}$ and $\widetilde{W}_{0,0, R}$ after $/(\beta-k) \quad k \in \mathbb{C}$
Now let $\Pi_{-\beta+n,-\beta+n}$ be the free $C_{i}[\beta]$-module spanned by
$P_{n}, q_{n}, n<0$ applied to $|-\beta+n,-\beta+n\rangle$,
with $\Pi_{-\beta}=\bigoplus_{n \in \mathbb{Z}} \Pi_{-\beta+n,-\beta+n}, \widetilde{W}_{-\beta, 2 \beta}=\pi_{-\beta} \otimes_{\left.\mathbb{C}_{1 \beta}^{\prime}\right][\beta]} \pi_{[\beta]}$.
Recall
whose Fourier coifs are well-defid linear operators

$$
\widetilde{W}_{0}[\beta] \rightarrow \widetilde{W}_{-\beta, 2 \beta}
$$

Write $V_{2 \beta}(z)=\sum_{n \in \pi_{4}} V_{2 \beta}[n] z^{-n}$, and define $\bar{V}[n]$ by

$$
\sum_{n \leq 0}^{1} \frac{1}{V}[n] z^{-n}=\exp \left(\sum_{m \geq 0} \frac{b-m}{m} z^{m}\right)
$$

From Formula (7.2-11) in Frenkel (see eq'n (6) in Danili'stalk), we get,

$$
V_{2 \beta}[n]=\left\{\begin{array}{l}
\bar{V}[n]+\beta(\ldots) n \leq 0 \\
\left.\beta \bar{V}[n]+\beta^{2}(\ldots) n>0\right)
\end{array}\right.
$$

$$
\bar{V}[n]=-2 \sum_{m \leq 0} \bar{V}[m] \frac{\partial}{\partial b_{m-n}}, n>0 .
$$

Similarly, are can show

$$
\tilde{a}(z)_{[n]}^{-\beta}=\left\{\begin{array}{l}
1+\beta(\ldots) n=0 \\
\beta \frac{p_{n}+q_{n}}{n}+\beta^{2}(\ldots), n \neq 0
\end{array} \quad(* *)\right.
$$

These imply

$$
\begin{aligned}
\int \tilde{a}(z)^{-\beta} V_{2 \beta}(z) d z=\beta(\bar{V}[1] & \left.+\sum_{n>0} \frac{1}{n} \bar{V}[-n+1]\left(p_{n}+q_{n}\right)\right) \\
& +\beta^{2}(\cdots) .
\end{aligned}
$$

So we define the limit of $\tilde{S}_{\beta-2}$ at $\beta=0$ $(x=-2)$
as.
[Def $\bar{S}=\bar{V}[1]+\sum_{n>0} \frac{1}{n} \bar{V}[-n+1]\left(p_{n}+q_{n}\right)$,
a map from $W_{0,-2} \rightarrow \widetilde{W}_{0,0,-2}$ intertwist the

$$
M_{\mathrm{sl}_{2} \otimes V_{0}(h)}^{\prime \prime} \Pi_{0}^{\prime \prime} \otimes V_{0}(h) \quad \hat{l}_{2} \text { action. }
$$

Mare generally, drawing from the $\hat{s l}_{2}$ case, we define
[Def For any i, let

$$
\bar{S}_{i}=\bar{V}_{i}[1]+\sum_{n>0} \frac{1}{n} \bar{V}_{i}[-n+1]\left(p_{i, n}+q_{i, n}\right) .
$$

In this defrition, $\bar{V}_{i}[n]: V_{0}(h) \rightarrow V_{0}(h)$ are giver by

$$
\begin{aligned}
& \sum_{n \leq 0}^{1} V_{i}[n] z^{-n}=\exp \left(\sum_{m>0} \frac{b_{i,-m}}{m} z^{m}\right) \\
& \left.\bar{V}_{i}[1]=-\sum_{m \leq 0} \bar{V}_{i}[m] D_{b_{i}, m-1}, \quad \text { (Formula } A\right) \\
& \text { where } D_{b_{i, m}} \cdot b_{j, n}=a_{j i} \delta_{n, m} \quad\binom{\left(a_{n l}\right)=\operatorname{cortan}}{\text { matrix for of }}
\end{aligned}
$$

(derivative in the direction of $b_{i, m}$.)
Prop. The image of $V_{k_{c}}(g)$ under $w_{k_{c}}$ is contained in the intersection of the kernels of the operators

$$
\bar{S}_{i}: W_{0, k_{c}} \longrightarrow \widetilde{W}_{0,0, k_{c}}^{(i)} \quad i=1, \ldots, l .
$$

Pf. The \bar{S}_{i} commute $w / \hat{o}_{k_{c}}$ by construction, and they each amiliede the highest-weight veoor of $W_{0, K_{c}}$. So they annibilde all of $V_{K_{c}}(g)$!
Prop. The center $z(\hat{\jmath})$ of $V_{k_{c}}(o g)$ is contained in the intersection of the Kernels of $\overline{V_{i}}[1] \quad i=1, \ldots$ il (in $V_{0}(h)$).
Pf We saw in Lemma 1.2 of Daniel's notes that $w_{k_{c}}(\xi(\hat{g}))$ lies in $\pi_{0} \subset W_{0, k_{c}}$, and so this reduces to the fact that $\left.\bar{S}_{i}\right|_{V_{0}(h)}=\bar{V}_{i}[1]: V_{0}(h) \rightarrow V_{0}(h)$.
so, step 4 from our outline is now complete! END of CH. 7 .

CHAPTER 8 Now our focus will be on completing STEP 5 from the intro, ie. showing the inclusion in the preceding proposition is equality.
8.1.1: Computing the character of $z(\hat{g})$.

Recall that $V_{K_{c}}(g)$ inherits a "PBW filtration", which then gives a filtration on $\bar{j}(\hat{0})$. We can then consider its associated graded go $z(\hat{g})$.
Recall:

Y(i.e, coming from the actual pow flat. on $U\left(\hat{g}_{\mathrm{kc}}\right)$.

Prof. 3.10 from Hamilton's Talk There is an infective map of graded C-algebras

$$
\operatorname{gr} z(\hat{g}) \hookrightarrow \mathbb{C}_{[}\left[J_{\circ}\right]^{J G G} \quad(* * *)
$$

where JGeJg* is induced by the adjoint action.
In this part, our main result will be that (***) is an isomorphism. An important ingredient in the proof will be.
The 2.3 from Kent's talk. The Waleimoto module Wo,ke is isomorphic to the Verna module $M_{0, k c}$.
Recall that $\mathbb{C}\left[J g^{*}\right]^{J G}$ is identified in Thm 1.3.1 of Ivan K.'s notes, with $\mathbb{C}_{1}[J(h / w)]$, ie. it's freely generated by the polynomials $\bar{P}_{i, n}$ (affue version of Harisicchmadrassm.). ($i=1, \ldots, l, n<0$)

Now observe that $L_{0}=-t \partial_{t}$ act on $\mathbb{C}\left[J g^{*}\right]$. This defines a \mathbb{Z}-grading on $\mathbb{C}\left[g_{\theta}^{*}\right]$ such that $\operatorname{deg} \bar{J}_{n}^{a}=-n$.

Then

$$
\operatorname{deg} \bar{P}_{i, n}=d_{i}-n \text {. So we get }
$$

graded charatis

$$
{ }^{D} \text { CHARAGER } \mathbb{C}\left[J g_{j}^{*}\right]^{J G}=\prod_{i=1}^{l} \prod_{n_{i}-d_{i}+1}\left(1-q^{n_{i}}\right)^{-1} .
$$

Now let $\tilde{b}_{+}=\left(b_{+} \otimes 1\right) \oplus(g \otimes \not \otimes \mathbb{C}[[t]]) \subset o g[[t]]$, an Inchori subulgetra. The natural surjection $M_{0, k_{c}} \rightarrow V_{k_{c}}(g)$ gives rise to:

$$
\phi:\left(M_{0, k_{c}}\right)^{\tilde{b}_{+}} \longrightarrow V_{k_{c}}(g)^{\widetilde{b}_{+}} .
$$

The PBW flit. on $U_{k_{c}}(\hat{g})$ equips each of $M_{0, k_{c}}$ and $V_{k_{c}}(g)$ with natural filtertions suit that the epimorphism $M_{0, k_{c}} \rightarrow V_{K_{c}}(g)$ is filtretion-presesering.

Since $V_{k_{c}}(g)$ is a direct sum of fin. dim. reps of $\left.g \otimes 1 \subset o g[c t]\right]$, any \tilde{b}_{+}-invariant in $V_{k_{c}}(g)$ or $g r V_{k_{c}}(g)$ is actomatradly $g[[t]]$-invoice
So, $V_{k_{c}}(g)^{\tilde{b_{+}}}=V_{k_{c}}(g)^{g[(t)]}$

$$
\left.\left(\operatorname{gr} V_{k_{c}}(g)\right)^{\tilde{b_{+}}}=\left(\operatorname{gr} V_{k_{c}}(g)\right)\right)^{g[t]]}=\mathbb{C}_{i}\left[\bar{P}_{i, m}\right]_{i=1, \ldots, m, n<0 .} .
$$

We want a description of the source of $\phi_{c l}$ similar to the description we had for $\mathbb{C}\left[\operatorname{gg}_{\theta}^{*}\right]^{G(\theta)}$.

We have $\operatorname{gr} M_{0, k_{c}}=\operatorname{Sym} \operatorname{g}((t)) / \tilde{b}_{+} \simeq \mathbb{C}\left[g^{*}[[t]](-1)\right]$
where

$$
g^{*}[[t]]_{(-1)}=\left(\left(n_{-}\right)^{*} \otimes t^{-1}\right) \oplus g^{*}[[t]] \simeq\left(g((t)) / \tilde{b}_{+}\right)^{*} \text {. }
$$

So $\phi_{c l}$ can be idetified with the map $\mathbb{C}_{[}\left[g^{*}[[t]]_{(-1)}\right] \tilde{b}_{+} \mathbb{C}_{[}\left[g^{*}[(t)]\right]^{0_{+}}$ induced by $o^{*}[[t]] \hookrightarrow g^{*}[[t]]_{(-1)}$.

Suppose we chose the basis $\left\{J^{a}\right\}$ of of as a union of a basis for b_{t} and one for $n_{\text {. . If we let }}$ \bar{J}_{n}^{a} be the polynomial on $\left.g^{*}[t]\right]$ defined by

$$
\bar{J}_{n}^{a}(A(t))=\operatorname{Res}_{t=0}\left\langle A(t), J^{a}\right\rangle t^{n} d t
$$

Then $\mathbb{C}\left[g^{*}[[t]]_{(-1)}\right]$ is generated as on all by $\bar{J}_{n}^{a} n<0$ and J_{0}^{a} for $J^{a} \in M_{\text {. }}$.

Now consider

$$
\bar{P}_{i}\left(\bar{J}^{a}(z)\right)=\sum_{m \in \pi_{m}} \bar{P}_{i, m} z^{-m-1}
$$

for $\bar{J}^{a}(z)=\sum_{n} \bar{J}_{n}^{a} z^{-n-1} \quad$ (Summing over $n<0$ if $J^{a} \in b_{+}$, over $n \leq 0$ if $\left.J^{a} \in n_{-}\right)$, which is a construction of \widetilde{b} - -inv't functions on $g^{*}[[t]]_{(-1)}$. \rightarrow smiler to the are use in $\$ 3.4$ of Howiltan's tale.
Since $\bar{J}^{a}(z)$ has nonzero z^{-1} coff. if $J^{a} \in n-$, , fro $J^{a} c n-$.
 This gives a natural homomorphism

$$
\mathbb{C}_{i}\left[P_{i, m_{i}}\right]_{i=1, \ldots l ; m_{i} \leq d_{i}} \rightarrow \mathbb{C}\left[g^{*}[[t]]_{(-1)}\right]^{\tilde{b}_{+}}
$$

Lemma This homomorphism is an isomorphism.
Pf

$$
\text { Let } \begin{aligned}
g^{*}[[t]]_{(0)} & \left.=\left(\left(n_{-}\right)^{*} \otimes 1\right) \times\left(g^{*} \otimes t \mathbb{C}[t]\right]\right) \\
& =\operatorname{tog}^{*}[[t]]_{(-1)}
\end{aligned}
$$

Multiplication by t gives rise to a \tilde{b}_{+}-equivariant isomorphism of $^{*}\left[[t]_{(-1)} \xrightarrow{\sim} g^{*}[[t]]_{(0)}\right.$, hence an isomorphism

$$
\mathbb{C}_{1}^{\prime}\left[\operatorname{g}^{*}[[t]]_{(0)}\right]^{\tilde{b}_{t}} \rightarrow \mathbb{C}\left[g^{*}[[t]]_{(-1)}\right]^{\tilde{b}_{+}} .
$$

Let $g^{*}[[t]]_{(0)}^{\text {reg }}$ be the intersection of $g^{*}[[t]]_{(0)}$ with

$$
\operatorname{Jog}_{\text {reg }}^{*}=g_{r e g}^{*} x\left(g^{*} \otimes t \mathbb{C}[[t]]\right) . \begin{aligned}
& \text { Recall } x \in g^{*} i \sin \operatorname{gim}_{\text {rag }}^{*} \\
& \text { if }
\end{aligned}
$$

So $g^{*}[[t]]_{(0)}^{\text {reg }}=\left(\left(n_{-}\right)^{*, \text { reg }} \otimes 1\right) \oplus\left(g^{*} \otimes t \mathbb{C}[[t]]\right)$ $\tau_{\text {open } \& \text { dense in }(n-)^{*} \text {, so }}$
$\hat{n}_{+}^{\text {reg }}$ is open \& lase in \hat{n}_{+}.
Recall Jp: Jo ${ }_{\text {reg }}^{*} \rightarrow$ Spec $\mathbb{C}_{i}\left[\bar{P}_{i, n}\right]_{i=1}, \ldots, \ell, n c o\left(\operatorname{asin} \operatorname{Iram} K^{\prime} s t a k\right)$ the jet homomorphism corresponding to $p: g_{\text {reg }}^{*} \rightarrow g / G \simeq \operatorname{spec}\left[\bar{P}_{i}\right]_{i=1}$, ,el.
The group $G[[t]]$ acts tronsitnely along the fibers of J_{p}.
One can also show that \widetilde{B}_{t}, the subgroup of $G[(t)]$ corresponding to $\tilde{b}_{+} \subset \sigma[[t]]$, acts transitively on the fibers of $J_{p} \lg ^{*}[[t]]_{(0)}^{\mathrm{reg}}$:

The group $J G=G[[t]]$ acts transitively on the fibers of Jp. For any $x \in g^{*}[[t]]_{(0)}$ reg \widetilde{B}_{+}is the subgroup of all elements $g \in G[[t]]$ such that $g \cdot x \in g^{*}[[t]]_{(0))}^{\text {reg }} 80$ it acts transitively as stated.
This implies that the ring of $\widetilde{B}_{+}-$must polynomial on $g^{*}[t t]_{(0)}^{r e g}$ is functions on the image $J_{p}\left(g^{*}[[t]]_{(0)}^{\text {reg }}\right)$.
This image is the subspace determined by

So the ring of $\tilde{b}_{+}-$invt polynamuds on $g^{*}[[t]]_{(o)}^{r e y}$ is $=$

$$
\mathbb{C}_{i}\left[\bar{P}_{i}, m_{i}\right]_{i=1, \ldots, l, m_{i}<-1}
$$

By dusty of $\left.g^{*}[t t]\right]_{(0)}^{\text {res }}$ in $g^{*}[[t]]_{(0)}$, we can erase "reg" and this statement is still true.

Do pass back from $g^{*}[[t]]_{(0)}$ to $g^{*}[[t]]_{(-1)}$, we shift $\bar{J}_{n}^{a} \mapsto \bar{J}_{n+1}^{a}$, so get $\bar{P}_{i, m_{i}} \mapsto \bar{P}_{i}, m_{i}+d_{i}+1$.
Corollary. The map \oint_{cl} is surjective.
Pf The map $\phi_{c l}$ corresponds to taking the quotient of $\mathbb{C}\left[P_{i, m_{i}}\right], i=1, \ldots, l, m_{i}<d_{i}$ by $\left(P_{i, m_{i}}\right) i=1, \ldots, l, 0 \leq m_{i}<d_{i}$.

Theorem "The center $Z(g)$ is as large as possible"." gr $z(\hat{0})=\mathbb{C}\left[J g^{*}\right]^{J G}$, so there exist central elenets $S_{i} \in \xi(\hat{\sigma}) \subset V_{k_{c}}(o g)$ whose symbols ore $\bar{P}_{i,-1} i=1, \ldots, l$ so that

$$
\xi(\hat{g})=\mathbb{C}\left[S_{i,(n)}\right]_{i=1, \ldots, l ; n<0}|0\rangle
$$

where the $S_{i,(n)}$ are Fourer coeffs of $Y\left(S_{i, z}\right)$.
Pf We have $\operatorname{deg} \bar{P}_{i, m}=d_{i}-m$, so the Lemma gives

$$
\begin{equation*}
\operatorname{ch}\left(\operatorname{gr} \mathbb{M}_{0, k_{c}}\right)^{\tilde{b}_{+}}=\prod_{m>0}\left(1-q^{m}\right)^{-l} \tag{*}
\end{equation*}
$$

Now recall by The 2.3 of Kenta's talk that $\mathbb{M}_{0, k_{c}} \simeq W_{0, k_{c}}^{+}$. In his notes, we have $\left(W_{0}^{+}, k_{c}\right)^{\tilde{b}_{+}}=\pi_{0}$, whose character is also as in (\$).
To see this, note that $\mathbb{M}_{0, k_{c}}^{\widetilde{b}_{c}} \simeq E_{n d}\left(M_{0, k_{c}}\right)$, and the following.
Exercise π_{0}, thought of as a comurtative algebra, acts faithfully by endomorphisms of $W_{0, k_{c}}$ when acting on the right.

This gives the bound $c h\left(\pi_{0}\right) \leq \operatorname{ch}\left(W_{0, k_{c}}\right)^{\tilde{b}_{+}}$. Now
sure we have the
natural embedding $\operatorname{gr}\left(M_{0, k_{c}}^{\tilde{b}_{+}}\right) \rightarrow\left(\operatorname{gr} M_{0, k_{c}}\right)^{\tilde{b}_{+}}$, this gives the opposite bound and proves equality of the chavaders, so $\left(W_{0}+k_{c}\right)^{b_{+}} \pi_{0}$.

So the natural embedding $\operatorname{gr}\left(M_{0, k_{c}}^{\tilde{b}_{+}}\right) \rightarrow\left(\operatorname{gr} M_{0, k_{c}}\right)^{\tilde{b}_{+}}$ is an isomorphism.

In the diagram

$$
\begin{aligned}
& \operatorname{gr}\left(M_{0, k_{c}}^{\tilde{b}_{+}}\right) \longrightarrow \operatorname{gr}\left(V_{k_{c}}(g)^{g[[t]]}\right) \\
& \downarrow \\
&\left.\downarrow \operatorname{gr} M_{0, k_{c}}\right)^{b_{+}} \longrightarrow \operatorname{gr}\left(V_{k_{c}}(g)\right)^{\sigma[[t]]}
\end{aligned}
$$

- the left arrow is an iso. by what we just said
- the bottom arrow is surf. by the Corollary.
\Rightarrow the fight vertical arrow must be surg. (but we already know it's
\Rightarrow it's on isomorphism. injevive).
\Rightarrow the charades of $\operatorname{gr} \xi(g)$ is equal to that of

$$
\left.\operatorname{gr}\left(V_{k_{c}}(g) g[c t]\right]\right), \text { so }
$$

$$
\text { ch } z(g)=c h g r z(o g)=\prod_{i=1}^{l} \prod_{n_{i} \geq d_{i}+1}\left(1-q^{n_{i}}\right)^{-1} .
$$

This is a nontrivial result which tells us a lot about the center, but again, we wont to understand the geometric meaning of the center, and in particular the action of Ant θ on $z(\hat{g})$. To do so, he need to complete Steps $5 \& 6$ of the plan at the start.
8.1.2: The center \& the classical W-algebra.

Recall we showed $Z_{\zeta}(\hat{J})$ is contained in the intersection of the kernels of $\bar{V}_{i}[1] \quad i=1, \ldots, \ell$ on π_{0}. Our next goal is to compare the character of this inverscetion, to use later for a proof of equality.
Let \hat{h}_{ν} be a copy of the Heisenberg Lie algetira with geverators $b_{i, n} i=1, \ldots, l ; n \in \mathbb{Z}$, for ν an inv't inner product on of.
Recall the vertex operator $V_{-\alpha_{i}}^{\nu}(z): \pi_{0}^{\nu} \rightarrow \pi_{-\alpha_{i}}^{\nu}$ defined by

$$
V_{x}^{u}=T x^{u} \exp \left(-\sum_{n<0} \frac{x_{n}}{n} z^{-n}\right) \exp \left(-\sum_{n>0}^{1} \frac{x_{n}}{n} z^{-n}\right)
$$

and let $V_{-a_{i}}^{\cup}[1]=\int V_{-a_{i}}^{\nu}(z) d z$. We call it a W-algebra screening operator. Since $\left.V_{-\alpha_{i}}^{v}(z)=Y_{\pi v, \pi}^{U}\left(1-\alpha_{i}\right\rangle, z\right)$, the intersection of the kernels of $V_{-\alpha_{i}}^{i}[1] \quad i=1, \ldots, l$ is a vertex subalgebra of π_{0}^{U}, which we know by the commutation relation

$$
\left[\int Y_{V, M}(B, z) d z, Y(A, w)\right]=Y_{V, M}\left(\int Y_{V, M}(B, z) d z-A, w\right)
$$

We tale this intersection as the definition of the affine W-algetra $W_{\nu}(g)$, although other definitions are also possible, (c.f. Frentel\& Ben-Zvi, 2004). This is a deformation of the algebra of functions on $O_{G}(D)$.
We now want to define the limit of $W_{\nu}(g)$ as $\nu \rightarrow \infty$. To do so, we fox an inuit inner prod. ν_{0} on of and let $\varepsilon=v / \nu_{0}$. Then:

$$
\alpha_{i}=\varepsilon \frac{2}{\nu_{0}\left(h_{i}, h_{i}\right)} h_{i} \quad\left(\text { identifying } h^{*} \simeq h \text { via } v\right) .
$$

Let $b_{i, n}^{\prime}=\varepsilon \frac{2}{v_{0}\left(h_{i}, h_{i}\right)} b_{i, n}$. Consider the $\mathbb{C}[\varepsilon]$-lattice
in $\pi_{0}^{\cup} \otimes \mathbb{C}[\varepsilon]$ spanned by all monomials in $b_{i, n}^{\prime}$ and its specialization at $\varepsilon=0$. (The latter is a commiative vertex alg).
In the limit $\varepsilon \rightarrow 0$, we get the expansion

$$
V_{-\alpha_{i}}^{\nu}[1]=\varepsilon \frac{2}{\nu_{0}\left(h_{i}, h_{i}\right)} V_{i}[1]+\underbrace{\cdots \cdots}_{\text {higher order in } \varepsilon \text { terms }}
$$

and the action of $V_{i}[i]$ on π_{0}^{v} is given by
$\binom{$ Formula }{$B} V_{i}[1]=\sum_{m \leq 0} V_{i}[m] D_{b_{i, m-1}^{\prime}}$ where $D_{b_{i, m}^{\prime}} \cdot b_{j, n}^{\prime}=a_{i j} \delta_{n, m}$,
$\left(a_{i j}\right)$ the Carton of of and

$$
\sum_{n \leq 0} V_{i}[n] z^{-n}=\exp \left(-\sum_{m>0} \frac{b_{i,-m}^{\prime}}{m} z^{m}\right)
$$

Def. Let $W(g)$ (the classical W-algebra associated to of) be the comitative vertex suoolgetra of π_{0}^{v} which is the intersection of the kennels of the operators $V_{i}[1] i=1, \ldots, l$.
(It's independent of changing V_{0}, sure this only rescales $V_{i}[1]$).
8.1.3 The appearance of $L \mathrm{~g}$.

Recall:

$$
\bar{V}_{i}[1]=-\sum_{m \leq 0} \overline{V_{i}}[m] D_{b_{i}, m-1}, \quad(\text { Formula } A)
$$

By comparing Formula A and Formula B, we see that if we substitute $b_{i, n} \longrightarrow-b_{i, n}$, the operators $\bar{V}_{i}[1]$ almost become $V_{i}[1]$, except $a_{j i} \longleftrightarrow a_{i j}$ are flipped.

This is because $V_{i}[1]$ was associded to a coroot, and $V_{i}[1]$ to a root.

Swapping roots \& Coroots, ie. transposing the Carton matrix, corresponds to swapping of with Log, the Langlands dual Lie algebra.
π_{0} for of $\simeq \pi_{0}^{v}$ for $\log _{0}$ by $b_{i, n} \mapsto-b_{i, n}$, and
$\bar{V}_{i}[1]$ for of $\longmapsto V_{i}[1]$ for $L_{o g}$.
So, by this isomorphism, z($\hat{g})$ is actually embedded into the intersection of the kernels of $V_{-i}[1] i=1$, ..ill on π_{0}^{V} for $L_{o g}$, ie. into the classical W-alg. $W(L o g)$.

Lemma The character of $W\left(L_{0}\right)$ is equal to that of $\mathcal{Z}(\hat{\jmath})$. (To be proved in Vasya's talle).
\Rightarrow Theorem There is an isomorphism
$Z_{\xi}(\hat{\jmath}) \simeq W\left(L_{g}\right)$ of graded commutative vertex algebras.

This completes step 5 of the plan above (once this lena is proven!)

