
 

8 BRAID GROUPACTIONS A PBWTYPE BASIS

MOTIVATION ROOT VECTORS VIA A BRAIDGROUP ACTION

Recall that in Leonardo's first talk we saw that

if Ut subalgebra of U generatedby all Ear GET
6 Far are IT

W Ku MEZE
then we had

THEOREM 4.21 i U U Ut Ug U uiouzi u.ws
is an isomorphism of vectorspaces

ii km for µ EZE are a basis for W

The subalgebra Ut and U are quantum analoguesof

Ulnt Ulm CUCog We have PBW theorems for

Mint WW Explicitly Ufnt has a basis
consistingoforderedmonomials in the root vectors ear are t

In the quantum setting we have Eos for arett but

we don't yet know how to make senseof E f are

THEOREML For all are there is an element

EarC Utes such that Ut has a basis consisting
of ordered monomials in these elements



This statement eventhe existence ofEcs part is nontrivial

as there is no underlying lie algebra for Ut

Motivation for how we will construct theseEar again
comes from the classical setting For any PE Et there
is c IT and weW such that was p We write

Sos Sos d p for W Sar So a reduced expression

One can lift each Sari to an automorphism string og
by STIX expladeodexpf adfor explodes

By the construction Eri oyyi ogs.ir for TEE
Sir also acts on any g module

The STs do not quite form a Weylgroup aation
we don't always have 5,2 1 but they do form
a braid group action

Definition The braid group associated to W
is the group generated by simple reflections
Sari ariett but modulo only the braid
relations if are Aj C IT and SariSag has
order m in W we impose the relation

ScsiSerjSai u SerjSocSog
in terms in terms

And we omit the relations say I presentin W J



minimallength

Any two reduced expressions for WEW are

related by a sequence of braid relations So
if we accept that the Er Satisfy the braid relations
we can for any WEW define ht Is Er
where W so Sarr is reduced

Then for any PE Et a way to define the
root vector ep C Wnt Ts to set

ep WTeo Sir Forces
where p way orCIT and w Sasi Sarr is
reduced as before

With this in mind we'll follow thisoutline
in the quantum setting by constructing a

braid group action on U and on all finite
dimensional U modules analogous to the
one defined above for og We will then
use this to define Ep for all REIT



DEFINING THE ACTION Sls

Let's start by restricting ourselves to the
case of _Sls Write E F etc instead of

Ear Far etc and q qa We continue to
discuss only f dim U modules V of Type 1

So V mQzVm where Vm VEVI kv qmv3

Define Err Efg FM III for all rao
Recall the automorphism w of U with
WEI F wCF E WAK k l Now
we define four linear operators T T WT T
such that for all MEK VEVan

Tlv I r Hbgb
acEraErbEro v

a b c20
a tb c M

T ly I C Hbqac bEraterblerc v
a b c20
a tb c M

wtm a.ZI.or nbqbacfmemfmvabtc

mwyv IE.ioC Hbqb Frater F v

a btc _m



The latter two are obtained from the
former two by twisting by w We will see
see T WT l WT T t

Recall the irreducible V Un t of highest
weight n Type 1 for Ugfsed Let's

determine the action of these operators on V
let vo be the highest weight rector of V and
recall vi F Vo form a basis for V with

Fmv fr vii r Emu Intr Ivi r
tf Vj o for j co j n

Now we'll describe the action of
our operators using the following property
of Gaussian binomial coefficients

Lemma 8.1 If a b MEK b m 20 then

p

EEE ya
Exercise Note this is a familiar combinatorial identity if q 1



lemma 8.3 for all i
I

i i
WT Vi f 1 i g

int i un i

lemma 8.4 The operators T T WT WT
are bijective on each fin dim Type 1 Uggla
module V and

l T t WTI
T WT

z for all MEK VEVan

WTH f QI MTN and WTH L gMTN

Proofe By complete reducibility it suffices
to consider V Unit Bijeanity is clear by
lemma 8.3 We can check l 2 on the

basis Vii then these too follow from Unna8.3

llmma 8 si for all V as above VEV
TIED f Fk Tru ETH TH k i u

Ttu f k E TN FTW TN Ek v

Ther K Tis KTM TIK Iv



Proofsketchi It's enough to take f Unit
evi for some i let's do

TIED L Ek Tlv
as an example with the rest following similarly
TIE IT ntl i3 via

4 n iti
qirn

it Nt I i Un ite

while FTfvil fcfayn iqitnrn isv.nu
4 n i it 1 n i n Etl Vn et g

Trevi qu
n ITI v since un i

f Fk Thr
hasweight zi n

and so on for the rest II



DEFINING THE ACTION FIN GENERAL

Return now to U Ugfog where g is

arbitrary Extend all our definitions in the
natural way
for arett set Eon Efg FE Ijf for all rzo

let V de a fdim Ugfg mod Define four operators
such that for all te IL VE Va

Tlv E r Hop EI FI EE vas a b c20
atb c M

T'm I C Hbqacberalfrbler.lv
a bczo

as as as as

a tb c m

wtjn a.EI.or hbq IF.IEFI'vabtc

mwTIvs7 orMEEEEEE FI v
a btc en

mi Ch arr
2ft ar Recall q geek

where

Recall the embedding Uqorsed Ugly defined

by Et Ea Ft Fo KH Ks Considering V
as a Uq Csl module via the embedding
we get the T we defined earlier



This means the results we proved for T actually
lift straightaway to give the results for Tar
Here arethe properties we get immediately

Tae and Tai are bijective with
inverses wTal and wTor
Taluk f qr Tain
Tain f qiao Tain
Tas Vy Usa andsamefor Tar Tai Tai
We leave this as an exercise
lemma 8.5 implies

To CESv f Fake Tashi Eaton Tak KaiErm
TorfFav f KaiEa Tom Foster ut Tak Eoka v

If pC IT with forp O then Ep commutes
with Eos and Fe with Ts So

EpTaiv TsfEpv and

FpTash TsfFpv when forp7 0



RELATIONS FOR THE Tos

Going back to the classical case for a brief
moment recall we had automorphisms Is of fdim

of modules and of of itself These satisfy5ohm stash sin
We'd like similar behaviour from our Tar and
for this we'll need a bunch of formulas

PROPOSITION8BL For all UEU there is a unique
w EU such that

TarCuv ul Tg f v
forallVEVArale fd
Type I UmodsV

The map htt U is an automorphism of U

To prove this it will be useful to
have formulas for EpTarts TadEpv and
similarly for Ep replaced by Fp

PROPOSITION 8.10 KEY COMPUTATION
let ar p EI r sp or for all f down
M modules V and all VEV
H TarfEpv CadLEEDEp Tsm



Setting off with correct signs this reduces to
a familiar formula for STs

Proofsketchi This is a big computation but
here are the key steps

The formula m o

ad CEI Ep E'C hiqaim s r Eat EPEE
This comes from the formula for adIEat we E

saw in Leonardo's lecture usingdivided powers

The r comes into play here since KOEPKE qEB'T p
of Ep

We then use theaboveto prove that for
integers m i30

fadfEEMEpted
l

ftp.fmjti gqiIr
zm JiidEiiifadrEfmti7Ep

and

fedEdmEp Ff
2
Iggy if ft's gg Fdi fadfEEmJ'tEp KEJ

This is done by induction on i using the
previous formula Let armkadFEETEp



p p

We use l and 2 to get a formula for
air Tdv i.e RHS of our goal Indeed
Tashi is a linear combination of terms of
the form Efalff EE v and so applying

1 then 2 then l allows us to pass

air pass end of the three factors in such
a term We end up with a linearcombination
of terms EEFIBEE arr h v where if air
then h s ta btc simplifying the
coefficient on such terms we see that

they are zero unless h r and we get

an Torah Z'I hbqEacEEFibEEaro va bc30
atb es

Since aco Ep arolveth p
with A p at r

this is TadEpv as desired

Now notethat we can get a similar result for
TadFpv using the following

Wuma If u u E U sit If ur UToros for
all v in a finitedimensional U nodule V then

WT war v WCW WTadu for allsuch v



If UEUµ for µ 5k recallUr y graded
then Tadwrulv piece of re

f gas Hov woe Tdv for all such v

Proof Exercise the first claim is easy and the
second follows from the first and theformulas
relating wTashiand Tae v for vets

This lemma applied to ft gives us

TadFp Ifor Digit FpFair I Taras
Now we want to deducefrom this a formula

for EpTadv We can do this by twisting
the adjoint action Recall the antiautomorphism
T defined by

ICED Es LTE Fo c Kae Kai

For all XEU defineIndex U U by
Tad To adat T is an antiautomorphism

but the twist is still an action

Claims with r as before
TaffadfEEm Ep D fadCEEm Ep Tom



p
in particular setting m r we get
EpTest To Fad EI Eph

Proof sketch
First we caneasily see Tad Es u uEs EsKaruKai

IadCEdu KECuFa Fsu
c ad Ks u KaruKai

Next we claim that if Taduv u TorIv for
all in all finitedimensional U modules V then
Tafftad Edu D Lad Edu Tashi

and Tar fad Fo a v fad Es d Tarot for as above

We'll do the first one
To traded u VJ I autov EoKaruKai v

U f EskoToshi f Erkadkai'uKartaN
Esu w Fa Kotah
ad W Tou

Combining this observation with f we get
TafftadLEE Ep if fadLEEDadLEEDEpTorus

ad EE m Ep Taru

Now let's move on and use these relations to show
the compatibility of the action of T on modules we
hinted at earlier



PROPOSITION8BL For all UEU there is a unique
w EU such that

TarCuv ul Tgf
forallVEVArale fd
Type I UmodsV

The Maf Utd U is an automorphism of U

PROOI Suppose ul uz EU and we'vealready
found ui ud Then we can take Caird'sHud
and fault buz auf tba so it suffices to show
existence for generators of M But this is exaoly
what we've done

Tucker Ks Tomb jutoos
TafEsv Farkas Tom

fromearlier Toffs f KEEcs Torn

ray computation Ep fadLEEDEp Tom Adoe
To ftp.I fEie hiqEFaE'FpFE i7TaiD

Now for uniqueness If u u both satisfy the
condition for a given u then

u u Tash 0 V V veV Since Tar is

bijedive this means W u annihilates every fin
dim N module So u u 0 by Leonardo's lecture



y

By definition it's an algebra endomorphism But
note we've already shown Surjectivity of thismap
uh 349

since we have formulas for

kirtan Easton Foton

EpTech Fp Tsar this
means all the generators appear in the image
of our map

Injectivity If u B in the kernel then
Tacuv D for all VEV all V ShreeTae
is bijective the result from leonardo's lecture
again says u O So Ubu is an automorphism

By abuse of notation we also denote this autom
UH U by Tae U U So by definition
Tarun Tatu Tsm for all VE all V ftp.dm

Our formulas from before tell us

Tolley Ksu TI Kr htMEKE
Tater Farkas T CEO KaiFor
Toffs KidEa T For Esko



as well
as

TadEp FEC Digi EI EpE

Tai'IEp F fniqiiE EPEE

TacFp orniqEF Fpff

Tai'Ep EyeDigiFair FpFerris

Note These imply Tai To Toot



BRAID RELATIONS

Lusztig Showed that the Tar on modules and

on U satisfy the braid relations i.e for
ar p C IT with or4ps if SarspEW has order
in then

Totp a Tp Tar
W
M M

where both sides have m factors This
generalizes the behaviour of the STs from the

classical case
The proof in general requires long

calculations We'll do it for ou 3 to give an
idea of the proof The case m 2 is an

easy exercise using commutativity of Eu Ep
when Car B 0

When Sasp has order 3 is when sp as
1 6 pv and far a Bp so

go qp Our formulas from earliergive
that writing gigs for converrerce

in this case



t.IEp EEiE.EiE taiIi ifs

Tsf Fp FpFcs QEFp Tpt Fr
Tai ftp.I FI p qfpfs Tp Fo

lemonade beta PET St s sp has
order 3 Then

ToTpTs TpTsTp
as automorphisms

of U

Proof It's enough to show the two sides
coincide on generators of U and it's an

easy exercise to show on UO so it remarry
to look at Eg Fr tell For f soap
we just check both sides

e.g TartpTo Ep TaTpTp Ea
Tastes
Foster

TpToTp Ep Tp Tsf FpKp
Fokspsop
Forks

and similarly forFp plussymmetry
in ar and p



Now assume fo p Since theDynkin
diagram contains no loops 48,57 0 Or

8 pv o Whoo 48 pv O so

Er Ep 0 Es Fp3
Tp Es Es

Applying Tpta to J it's easy to
see from 3 that

TpTadED Ea o TpTo Er Far
which implies
To ftp.TafEH TpToCEr

so TsTpTdED TpToCEr TpTsTpfEr
similarly for Fr IT

Now recall W is generated by the Sar SET
Reduced expressions for an element WEW are

related by braid relations and remain reduced

after applying braid relations
So since the To satisfy braid relations

we Can define for WEW reduced

Two Tar Tag for W So Sore

and this is well defined



If dhow't butterw't get

Twwi TwTw

It is clear that
Tw Ky Kwp for all WEW y cROI
Tw Un Hwy for all WEW pekeOI

And our Note earlier goes Tw
t E.tw lot

using T2 id



ROOT VECTORS PBW BASIS

Now we can start to approach our goalby using
the Tw to construct root vectors to ultimately get
a PBW type theorem

From now on let's restrict to the simply
laced case lie M 2 or 3 for thefollowing just
for simplicity

Proposition let WEW and arEIT If

war 0 then TwfEar C Ut if
warett then Tw Eos Ewes

Proofstetch we go by induction on Owl
ta

Suppose Nw 0 We can then pick pelts.t
WIP so Thereexists wi w s't w w1w with

W C Cso Sp sit W p O w ar O

dfw dew tlIw W as o w Bso
So w I Ilw clew So by induction

get ce.gl Twicea CUt TwilEp C Ut 4
We deal with Tw as follows



lenma 8 la Under above assumptions on w

Twi fear is contained onthe Subalggeneratedby
Ear Ep if WET Twi fEa Ewa

PI since we're assuming m 2 or M 3 it'seasy
If m 2 w Sp Tw Eu Ear
If m 3 w CEsp SoSp so

Tw Ear C EpEas qEEesEp Ep on

So Twos fees C Ut So we'redue sinceTwTwTw
and so we can apply 14
to conclude

Forthe Second claim assume warett If we

show W arELT we'redoneby deduction applied to
w cud w ar

Exercise about roofsystems show that w ar ELT
under the hypotheses above D

Now we're ready to define root vectors The
naive approach would be forany feet pick
BC IT and we W s t wp 8 and then define
Er TwEp
But this doesn't actually provide a consistent

choice



E G If El is ofTypeAz IT as p3
Y Stp then 8 Ssp spot but

TarfEp EsEp g EpEar r two linearly
independent

TplEo EpE g EasEp
vectors

Luckily there is still a way to make a consistent

choice of root vectors but only by first making
a choice for a reduced expression of Wo EW
the largest element
If we choose Wo So a Sort a reduced

expression then

G1 Scs Az So Said 3 Sart art
is a list of all positive roots So for JEET
let i be sit So Samori 8 and define

Xy _To Tori.IEare IIIETIssociata
to 8

We would now like to prove thePBWtype theorem
we sought

THEOREM8IZ In the above setup recalling
again our assumption that q is not a root of unity

Torito Tare fEIE i To To.IE si Tar.fEIilEaai
Ai nonneg integers are a basis for UT



TO prove it define for any WEW the
subspace Utfw CUT spanned by expressions

Tartar Tarr LEE Taste SEE 5

where Sar Sarr is a reduced expression for w

PROPOSITION 8 ZZ
a This is well defined Wttw does

not depend on the choice of reduced expression
b let Fp be simple roots If w is

the largest element in 5Sos Sp then Utcw
Spans the subalg of U gerby Eos Ep


