
LECTURE 3 (PART 1): MACDONALD POLYNOMIALS

CHRISTOPHER RYBA

Abstract. These are notes for a seminar talk given at the MIT-Northeastern Double Affine Hecke Algebras
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1. Goals

The purpose of this document is to introduce Macdonald polynomials, and prove the Macdonald conjecture
which concerns the value of certain bilinear forms when evaluated on these polynomials. The existence of
these polynomials is not trivial; we will see two different approaches. Then we will explain how Affine Hecke
Algebras and Double Affine Hecke Algebras can be used to prove the Macdonald conjecture.

2. Review of Notation

2.1. Root System and Weyl Groups. We write R for an irreducible finite root system in a vector space
V , equipped with inner product (−,−). We write Ra for the associated affine root system. We employ the
following notation:

• The set of positive roots of R is denoted R+, and the set of negative roots is denoted R−. Similarly
we write Ra+ and Ra− for the positive and negative roots of Ra, respectively.

• We write {α1, α2, · · · , αn} for a choice of simple roots in R. The coroot associated to αi is α∨i =
2αi

(αi,αi)
.

• We write α0 for δ − θ where θ is the longest root in R. In this way {α0, α1, · · · , αn form a set of
simple roots for Ra.

• The root lattice is Q = Z{α1, α2, · · · , αn}. The coroot lattice is Q∨ = Z{α∨1 , α∨2 , · · · , α∨n}.
• The weight lattice is P = Z{ω1, ω2, · · · , ωn}, where ωi is the i-th fundamental weight (P = {λ |

(λ, α∨) ∈ Z∀α ∈ R}). The dominant weights are P+ = N{α1, α2, · · · , αn} (P+ = {λ | (λ, α∨) ∈
N∀α ∈ R}). Similarly we have the coweight lattice is P∨ = {λ | (λ, α) ∈ Z∀α ∈ R}, and the
dominant coweights are P∨ = {λ | (λ, α) ∈ N∀α ∈ R}.

• The half-sum of positive roots is ρ =
∑
α∈R+

α, and it is well known that ρ =
∑n
i=1 ωi.
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• We write W = 〈s1, s2, · · · , sn〉 for the (finite) Weyl group associated to R, generated by the sim-
ple reflections si. We also write W a = 〈s0, s1, · · · , sn〉 for the affine Weyl group. We have the
isomorphism

W a = W n t(Q∨)

Here, as in previous lectures, t indicates translation in Q∨, so this is a subgroup of the group of
invertible affine maps on Q∨.

• The extended affine Weyl group is W ae = W n t(P∨) (a subgroup of the group of invertible affine
linear maps on P∨).

• We write Ω ⊂W ae for the set of all length zero elements of W ae. It is a subgroup which acts faithfully
on the set of simple roots of Ra. Furthermore, Ω is isomorphic to P∨/Q∨ and is in bijection with
minuscule weights (to be discussed later).

• We actually have W ae = Ω nW a.
• We write λ+ for the unique dominant weight in the W -orbit of λ. Similarly we write λ− for the

unique anttdominant weight in the orbit of λ
• We will work over the field C(q, t), which we write Cq,t.
• Shortly after the beginning, we will specialise to the case where t = qk (where k ∈ Z≥0). The

notation t appears in parts of the theory directly related to Hecke algebras.

2.2. Double Affine Hecke Algebras.

• We write H for the finite Hecke algebra attached to the root system R. Similarly Ha is the affine
Hecke algebra, and Hae is the extended affine Hecke algebra.

• Hae = Ω nHa

• Ha is generated by T0, T1, · · · , Tn subject to the braid relations and the quadratic relations (Ti −
ti)(Ti + t−1i ) = 0.

• Thinking of Hae as a quotient of the affine extended braid group, one has the elements Y λ coming
from the lattice associated to integral coweights.

• Hae = H ⊗ C(t)[Y ] as a vector space, where the Y λ.
• The centre of Hae is precisely C(t)[Y ]W .
• We have Cherednik’s basic representation of Hae on Cq,t[X] = Cq,t[P ], where Ti acts as tisi + (ti −
t−1i ) si−1

X−αi−1 .

• The extended affine Weyl group action on Cq,t[X] satisfies tλ)(Xµ) = q2(λ,µ)Xµ, where tλ) is trans-
lation by λ.

3. Macdonald Polynomials

3.1. Definition and Proof of Existence. Recall that the Weyl group acts on the set of weights, P . We
may therefore extend the action of W to the group algebra Cq,t[P ]. We will be concerned with elements
of Cq,t[P ]W , namely elements of the group algebra which are fixed by the Weyl group action. Note that
Cq,t[P ]W is a linear subspace of Cq,t[P ]. Macdonald polynomials will form a basis of Cq,t[P ]W . Note that
an obvious basis of Cq,t[P ]W is given by the orbit sums mλ =

∑
µ∈Wλ e

µ for λ ∈ P+. By a standard
theorem in Lie theory, there is a unique dominant weight in each Weyl group orbit on P , which shows that
{mλ | λ ∈ P+} is indeed a basis for Cq,t[P ]W .

At this point, one might protest that it is unclear how these are polynomials. To answer this, recall that
P = Z{ω1, ω2, · · · , ωn} and therefore Cq,t[P ] can be thought of as the algebra of Laurent polynomials in
the variables ω1, ω2, · · · , ωn (with complex coefficients). To conform with standard notation, given λ ∈ P ,
we write eλ instead of λ for the associated element in Cq,t[P ] (this avoids ambiguity between additive and
multiplicative notation).

Next, we introduce a bilinear form on Cq,t[P ].

Definition 3.1. If f ∈ Cq,t[P ], write [f ]0 for the coefficient of e0 in f , when expressed in the eλ basis.

Suppose that f 7→ f̄ is the involution of Cq,t[P ] defined by eλ 7→ e−λ. Let ∆q,t =
∏
α∈R

∏∞
i=0

1−q2ieα
1−t2q2ieα
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(consider this as a Laurent series in the variables q, t, having coefficients in Cq,t[P ]). Then, we define the
bilinear form 〈−,−〉q,t on Cq,t[P ] as follows:

〈f, g〉q,t =
1

|W |
[f∆q,tḡ]0

We will just be interested in the restriction of the bilinear form to Cq,t[P ]W . Motivation for this construction
will come later.

Note that if we define ∆+
q,t =

∏
α∈R+

∏∞
i=0

1−q2ieα
1−t2q2ieα , then ∆q,t = ∆+

q,t∆
+
q,t. This will be convenient

in what follows. We are now able to give a definition of Macdonald polynomials, although it will not be
immediately clear that they exist.

Theorem 3.2. For each λ ∈ P+, there exists a unique Pλ ∈ Cq,t[P ]W such that:

(1) Pλ = mλ +
∑
µ<λ aλ,µmµ

(2) 〈Pλ, Pµ〉q,t = 0 whenever λ 6= µ

Here, µ < λ means that λ− µ ∈ Q+.

We will prove this theorem (at least, in some special cases), but first we discuss it.

Remark 3.3. Gram-Schmidt orthogonalisation cannot be applied here because < is not a total order on P+.
However, it does imply uniqueness.

To see why this is could be an interesting construction, we consider some examples.

Example 3.4. Suppose that t = 1, so that ∆q,t = 1. Then 〈f, g〉q,t = [fḡ]0, and it is easy to see that
Pλ = mλ satisfy the statement of the theorem (and this does not depend on q).

Now suppose that t = q. Then ∆+
q,t =

∏
α∈R+

(1 − eα) because the product telescopes. Let χλ be given

by the Weyl Character Formula for λ ∈ P+:

χλ =

∑
w∈W ε(w)ew(λ+ρ)−ρ∏
α∈R+

(1− e−α)

We calculate 〈χλ1
, χλ2
〉q,t.

〈χλ1
, χλ2
〉q,t =

1

|W |
[χλ1

∆q,tχλ2
]0

=
1

|W |
[
(
χλ1∆+

q,t

) (
∆+
q,tχλ2

)
]0

=
1

|W |
[
∑
w1∈W

ε(w1)ew1(λ1+ρ)−ρ
∑
w2∈W

ε(w2)e−w2(λ2+ρ)+ρ]0

=
1

|W |
∑
w1∈W

∑
w2∈W

ε(w1w2)[ew1(λ1+ρ)−w2(λ2+ρ)]0

Note that the nonzero terms are precisely those for which w1(λ1 + ρ) = w2(λ2 + ρ). This is equivalent to
λ1 + ρ = w−11 w2(λ2 + ρ). Using the fact that each weight has a unique dominant weight in its orbit in the
Weyl group, we see that this equation can only hold if λ1 + ρ = λ2 + ρ (the latter is the unique dominant
weight in its orbit). So we get zero unless λ1 = λ2. Furthermore, the terms which contribute 1 are those for
which w−11 w2 fixes λ2 + ρ. Recall the length of a Weyl group element is equal to the number of positive roots
that it maps to negative roots, so that

w−11 w2(ρ) =
1

2

∑
α∈R+

w−11 w2(α) ≤ 1

2

∑
α∈R+

α = ρ

with equality if and only if w−11 w2 is the identity element of W . Since w−11 w2(λ) ≤ λ, we may add these
two inequalities to find that the identity is the only element of W that fixes λ2 + ρ. The number of solutions
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(w1, w2) to w−11 w2 = IdW is clearly |W |, so we obtain

〈χλ1 , χλ2〉q,t =
|W |
|W |

= 1

Finally, we write χλ =
∑
µ aλ,µmµ, where the aλ,µ correspond to the dimensions of weight spaces in the

irreducible representation of the relevant simple Lie algebra of highest weight λ. Recall that the irreducible
representation is generated by the action of the lower triangular part of the Lie algebra (usually written n−)
on a highest weight vector, which itself is unique up to scalar multiplication. This implies that only µ ≤ λ
appear in the sum, and that aλ,λ = 1. This proves that χλ satisfy the conditions of the theorem.

In light of the preceding example, it might be reasonable to view Macdonald polynomials as a deformation
of characters of representations of simple Lie algebras.

Example 3.5. Let V = Rn with standard basis ei, and let R = {ei − ej | i 6= j} so that R is a root system
of type An−1 and we may take αi = ei − ei+1. The associated simple Lie algebra is sln, and the Weyl group
is W = Sn, which acts on V by permutation of coordinates. Since α = α∨ for all α ∈ R, the weights and
the coweights of R are the same. Let Cq,t[P ] be presented by letting xi = exp(ei), so that eαi = xi

xi+1
. Then

Cq,t[P ] is realised as the space of Laurent polynomials in x1, x2, · · · , xn of total degree zero. Then it is easily
seen that the positive roots correspond to xi

xj
with i < j. It is also easy to see that if λ ∈ P corresponds to

xλ1
1 xλ2

2 · · ·xλnn (where necessarily the λi sum to zero), then the value of the fundamental weight ωr applied
to λ is ωr(λ) = λ1 + λ2 + · · ·+ λr. It is also easy to see that being dominant is equivalent to having the λi
forming a weakly decreasing sequence, and λ is integral if and only if the λi are integers.

We now prove theorem 3.2 in the case where t = qk, for k ∈ Z≥0, and when there are minuscule weights
associated to the root system R (so R cannot be G2, F4, E8). Although these restrictions are not required,
they mitigate technical difficulties. The specialisation of the parameter t is the case relevant to the Macdonald
conjecture, so not much will be lost to us. The reader who is interested in greater generality is directed to
[Mac00].

Proof. Firstly, note that the product in the definition of ∆+
q,t telescopes:

∆+
q,t =

∏
α∈R+

∞∏
i=0

1− q2ieα

1− t2q2ieα

=
∏
α∈R+

∞∏
i=0

1− q2ieα

1− q2kq2ieα

=
∏
α∈R+

k−1∏
i=0

(1− q2ieα)

In particular, we obtain a finite expression. Next, if π ∈ P∨ we define Tπ(eλ) = q2(π,λ)e
λ

(and extend
linearly), where we may have to include fractional powers of q in our ring. Now let us write

Dπ(f) =
∑
w∈W

w

(
Tπ(∆+

q,t(f))

∆+
q,t

)
In the case where π is a minuscule coweight (i.e. 0 ≤ (λ, α) ≤ 1 for all positive roots α ∈ R+), this simplifies
as follows.

(1) Dπ(f) =

(∑
w∈W

w

) ∏
α∈R+,(π,α)=1

1− q2keα

1− eα

Tπ(f)

This is clearly the symmetrisation of some rational function, whose denominator is a product of distinct
terms of the form (1 − eα). It is certainly W -invariant. In particular, let δ =

∏
α∈R+

1
eα/2−e−α/2 be the

Weyl denominator, which is antisymmetric (implicitly we are now working in eρCq,t[P ]). To see this, recall
that the action of si ∈ W permutes the positive roots except for αi which it maps to −αi. Thus si acts by
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multiplication by −1 on 1
eαi/2−e−αi/2 , and permutes the other factors of δ. Thus δTπ(f) is antisymmetric

with respect to the W -action, and is also a polynomial (we have removed the denominators). In particular,
for any si, the coefficient of eλ must be minus the coefficient of esi(λ). This means that no eλ fixed by si can
occur in δTπ(f), so δTπ(f) is a linear combination of eλ − esi(λ). Now observe that

eλ − esi(λ) = eλ − eλ−(λ,α
∨
i )αi = eλ(1− e−(λ,α

∨
i )αi) = (1− e−αi)(1 + e−αi + · · ·+ e−((λ,α

∨
i )−1)αi)

This is therefore divisible by eαi/2 − e−αi/2 for each simple root αi. As a result, the same is true of δDπ(f).
Since each root is in the orbit of a simple root, by applying the action of a suitable element of W we find
that eα/2 − e−α/2 divides δDπ(f) for all positive roots α. It is not difficult to check that these are coprime
in the UFD Cq,t[P/2]. Hence, δDπ(f) is divisible by

∏
α∈R+

(eα/2 − e−α/2) = δ (in the sense of polynomial

divisibility). We conclude that Dπ(f) is actually a polynomial (rather than a rational function), which
preserves Cq,t[P ]W .

If we can show that Dπ is triangular with respect to the eλ basis, and is self-adjoint with respect to 〈−,−〉q,t
with distinct eigenvalues, then the theorem will follow. This is because triangularity allows us to restrict to
the finite dimensional subspace spanned by mµ for µ ≤ λ, whence distinct eigenvalues guarantee diagonal-
isability. Finally, self adjointness (and distinctness of eigenvalues) implies the eigenvectors are orthogonal.
The Macdonald polynomials will be the eigenvectors of this operator.

To see the self-adjoint property, recall that ∆q,t is W -invariant, as is the mλ basis:

1

|W |
[Dπ(mλ)∆q,tēµ]0 =

1

|W |
[
∑
w∈W

w

(
Tπ(∆+

q,tmλ)

∆+
q,t

)
∆q,tmµ]0

=
1

|W |
[
∑
w∈W

(
Tπ(∆+

q,tmλ)

∆+
q,t

)
∆q,tmw−1µ]0

=
1

|W |
[
∑
w∈W

Tπ(∆+
q,tmλ)∆+

q,tmµ]0

=
1

|W |
[
∑
w∈W

∆+
q,tmλT−π(∆+

q,tmµ)]0

=
1

|W |
[
∑
w∈W

mλ∆+
q,tTπ((∆+

q,tmµ))]0

=
1

|W |
[eλ∆q,t

∑
w∈W

Tπ((∆+
q,tmµ))

∆+
q,t

]0

=
1

|W |
[eλ∆q,t

∑
w∈W

w−1
Tπ(∆+

q,tmµ)

∆+
q,t

]0

=
1

|W |
[eλ∆q,tDπ(mµ)]0

We calculate the leading order term, and in doing so, observe triangularity. For this, we use a deformed
version of the Weyl characters χλ. Throughout we consider everything as formal series of the form cλe

λ +∑
µ<λ cµe

µ (the cλ being constants), where we refer to cλe
λ as the leading term.

χ
(k)
λ =

∑
w∈W ε(w)ew(λ+kρ)∏

α∈R+
(ekα/2 − e−kα/2)

This is a formal series rather than a polynomial. The numerator has leading order term eλ+kρ, and the

denominator has leading order term ekρ, so it is easy to see that the χ
(k)
λ (for λ ≥ 0) have leading term eλ

and so are related to the eλ by a triangular matrix. Thus, it will be enough to consider Dπ(χ
(k)
λ ) to prove
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triangularity and calculate the eigenvalues. So, we write

Dπ(χ
(k)
λ ) =

∑
w′∈W

w′
 ∏
α∈R+,(π,α)=1

1− q2keα

1− eα

[w′(Tπ(χ
(k)
λ ))

]
We calculate the leading order term of each set of square brackets separately. This means we will write it as
a constant times eµ plus terms indexed by weights lower than µ in the dominance order. We first consider
the action of w′ on each factor of ∏

α∈R+,(π,α)=1

1− q2keα

1− eα

 =

 ∏
α∈R+

1− q2k(π,α)eα

1− eα


The action of w′ on

1− q2k(π,α)eα

1− eα
is

1− q2k(π,α)ew′(α)

1− ew′(α)
If w′(α) is negative root, the leading term is just 1, otherwise we may write this as

q2k(π,α) − e−w′(α)

1− e−w′(α)

whence the leading term is clearly q2k(π,α). Thus the total contribution to the leading order term is q(π,2kν),
where ν is the sum of all positive roots α such that w′(α) is also positive.

Upon applying Tπ to χ
(k)
λ , we get

Tπ(χ
(k)
λ ) =

∑
w∈W ε(w)q2(π,w(λ+kρ))ew(λ+kρ)∏

α∈R+
(q(π,kα)ekα/2 − q(π,−kα)e−kα/2)

If the Weyl group element w′ is applied to this expression, we get

w′(Tπ(χ
(k)
λ )) =

∑
w∈W ε(w)q2(π,w(λ+kρ))ew

′(w(λ+kρ))∏
α∈R+

w′(q(π,kα)ekα/2 − q(π,−kα)e−kα/2)

We expand the denominator as a series of the form eµ plus lower order terms. To extract the leading
order term from

∏
α∈R+

w′(q(π,kα)ekα/2 − q(π,−kα)e−kα/2), we first note that we pick up a sign for each α

mapped to a negative root, thus obtaining ε(w′). We pick the term corresponding to the positive root in
each w′(α)/2,−w′(α)/2 pair, obtaining the following:

ε(w′)ekρq(π,kν
′)

Here ν′ =
∑
α∈R+

σ(w′(α))α, where σ(α) is the sign of a root. Clearly 2ν − ν′ = 2ρ. So our leading

term so far is q(π,2kρ)/ε(w′)ekρ. The leading term of the numerator arises when w = (w′)−1, when we get

ε((w′)−1)q2(π,(w
′)−1(λ+kρ))eλ+kρ. Taking the product of these (and noting that ε(w′) = ε((w′)−1)), we obtain

q2(π,(w
′)−1(λ+kρ))q(π,k(2ρ))eλ

Finally, we sum over w′ ∈W to get the coefficient

q2(π,kρ)
∑
w∈W

q2(π,w(λ+kρ))

These are not necessarily distinct for distinct λ ∈ P+. However, one can find a suitable coweight π in types
A and B (and E6 and E7). In type D it is possible to find a linear combination of the operators Dπ with
this property. We demonstrate the case of type A below. �
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Example 3.6. Suppose that R is the root system An−1 as before. Then the positive roots are ei − ej =
αi +αi+1 + · · ·+αj−1 for 1 ≤ i < j ≤ n. All coefficients are zero or one, so it is clear that the fundamental
weights ωi are minuscule coweights (note that α = α∨ for all α ∈ R). Additionally ρ = (n−1, n−3, · · · , 1−n).

We are given (a constant independent of λ multiplied by)
∑
w∈W q2(π,w(λ+kρ)), which is equivalent to knowing

the multiset of values (w−1(π), λ + kρ) as w ranges across W . In general, this does not determine λ, but
for certain π, it does. For example, in type A3, we may choose λ1 = (4, 0,−2,−2) and λ2 = (2, 2, 0,−4),
so that λ1 + kρ = (3k + 4, k,−k − 2,−3k − 2) and λ2 + kρ = (3k + 2, k + 2,−k,−3k − 4). Then we see
that π2 = (1/2, 1/2,−1/2,−1/2) is a fundamental (co)weight. But, one can check that in both cases, the
multiset of values of (w−1(π2), λi + kρ) is {4k + 4, 2k + 2, 2,−2,−2k − 2,−4k − 4}. However, if π1 is used
instead, it is easy to restrict λ from the multiset (w−1(π1), λ+kρ). For example, we may add any multiple of
(1, 1, · · · , 1) to π1 without affecting the inner product, allowing us to assume π1 = (1, 0, 0, · · · , 0). Thus, the
inner product gives the coordinates of the vector λ+ kρ. Since these are strictly decreasing, they determine
λ+ kρ, and hence λ.

Proposition 3.7. The Dπ operators commute.

Proof. Let D be the operator with distinct eigenvalues that was used to construct the Macdonald Polyno-
mials. For π a minuscule coweight, consider Dπ + cD, where c ∈ Cq,t. Since D has distinct eigenvalues, this
linear combination has district eigenvalues for generic c. This means that this linear combination of opera-
tors is diagonalisable, and as before, its eigenvectors are the Macdonald polynomials. Since the Macodonald
polynomials are unique, this means that D and Dπ + cD are diagonalisable with the same eigenbasis. We
conclude that Dπ is diagonalisable, with Macdonald polynomials as eigenvectors. This means that in the
basis of Macdonald polynomials, the Dπ are diagonal operators, and hence commute. �

Example 3.8. Continuing with R being of type An−1 as in example 3.5, we recall that the positive roots
correspond to xi

xj
with i < j. In this setting, Tωr can be taken to send xi to q2xi if i ≤ r and to xi otherwise.

In this way xi
xi+1

is unchanged unless i = r, in which case it is multiplied by q2, which is the correct action.

In fact, this makes it easy to write down explicit formulae for Dωr (acting on Cq,t[P ]W ) in terms of the
“shift operators” Ti. If I ⊂ {1, 2, · · · , n}, we write TI =

∏
i∈I Ti (the order of composition is unimportant

since these operators clearly commute). Using equation 1, we have

Dωr =
∑
w∈Sn

w

 ∏
1≤i≤r<j≤n

1− q2k xixj
1− xi

xj

T{1,2,··· ,r}


=

∑
w∈Sn

w

 ∏
1≤i≤r<j≤n

xj − q2kxi
xj − xi

T{1,2,··· ,r}


= r!(n− r)!

∑
I⊂{1,2,··· ,n},|I|=r

 ∏
i∈I,j /∈I

xj − q2kxi
xj − xi

TI

Here we have used the fact that Sn acts transitively on r-element subsets of {1, 2, · · · , n} with stabiliser of
size r!(n− r)!. It is easy to see that these commute.

Remark 3.9. The proof in [Mac00] begins by introducing the concept of a “quasi-minuscule weight”.

3.2. Macdonald Polynomials via AHA/DAHA. We begin by describing a collection of operators that
generalise the construction of the first section, without relying on minuscule weights. For the moment, we
return to the case of t unspecialised. We recall that Hq,t has a representation Cq,t[X] where πr acts as πr
and the action of Ti is given by

Ti = tisi + (ti − t−1i )
si − 1

X−αi − 1
Here, the meaning of the expression is exactly the same as in previous lectures (the action of si − 1 on any
Xλ yields an element divisible by X−αi − 1). Note that p ∈ Cq,t[X] is W invariant precisely when it is
annihilated by each Ti − ti (for the action of the latter element is to first apply si − 1, and then do some
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divisions and multiplications). This action will be of primary importance for our construction of Macdonald
polynomials in Cq,t[X]W = Cq,t[P ]W .

We note also that if we have Ti = siG(αi), for

G(α) = t+ (t− t−1)
1− si
Xα − 1

=
tXα − t−1

Xα − 1
− (t− t−1)sα

Xα − 1

Here sα is the reflection associated to the root α. These G(α) satisfy the property that for wG(α)w−1 =
G(w(α)) for w ∈W ae. We introduce these elements for the following important triangularity fact.

Definition 3.10. For λ, µ ∈ P∨, say that λ � µ if λ+ > µ+ (i.e. λ+ − µ+ ∈ Q+) or λ+ = µ+ and λ > µ.
When we need to indicate lower order terms, we write l.o.t..

Proposition 3.11. For λ ∈ P∨ and µ ∈ P+, we have:

Y λXµ =
∑
µ�ν

cν,µX
ν

Moreover,

cµ,µ = q(λ,µ+kρ)

Proof. Clearly it is enough to prove this for λ ∈ P∨+ for otherwise we may write it as the difference of
two dominant coweights, and compose a triangular operator corresponding to one, with the inverse of the
triangular operator corresponding to the other. Choose a reduced expression for tλ ∈ W ae of the form
πrsi1 · · · sir , so that Y λ = πrTi1 · · ·Tir . Then we have:

Y λ = πrTi1 · · ·Tir−1
Tir

= πrsi1G(αi1) · · · sir−1
G(αir−1

)sirG(αir )

= πrsi1G(αi1) · · · sir−1
sirG(sir (αir−1

))G(αir )

= · · ·
= πrsi1 · · · sir−1

sirG(α(1)) · · ·G(α(r))

= tλG(α(1)) · · ·G(α(r))

Here tλ(Xµ) = q2(λ,µ), and we see that the α(i) that arise are precisely the positive roots that t−1λ maps to
negative roots, i.e. {α+ k′δ | α ∈ R+, 0 ≤ k′ < (λ, α)}.

Note that the definition of G(α+ k′) gives us the following:

G(α+ k′)Xµ =

{
tXµ + l.o.t. (µ, α∨) ≥ 0

t−1Xµ + l.o.t. (µ, α∨) < 0

Since µ ∈ P+, and α ∈ R+, we are in the first case. It is clear that the leading order term picks up a factor
of t = qk, (λ, α) times for each α ∈ R+. So the total contribution is q2(λ,ρ) which gives the required formula
when we include q2(λ,µ) coming from tλ. �

Proposition 3.12. If f(Y ) ∈ Cq,t[Y ]W , thought of as a central element of the affine Hecke algebra Ha =
HCq,t[Y ], then f(Y ) preserves the space Cq,t[X]W .

Proof. It is enough to show that for p ∈ Cq,t[X]W , (Ti− ti)f(Y )p = 0. But f(Y ) and Ti− ti are elements of
Ha = HCq,t[Y ] in which the former is central, which means they commute. So (Ti − ti)f(Y )p = f(Y )(Ti −
ti)p = f(Y ) · 0 = 0. �

Since W ae = P∨ oW , the action of any w ∈W ae in Cq,t[X] may be written as∑
w∈W,λ∈P∨

gλ,wtλw

here we recall that tλ(Xµ) = q2(λ,µ)Xµ. The gλ,w are rational functions in the Xα, whose denominators are
products of terms of the form Xαi − 1, for αi simple roots.
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Definition 3.13. Define the restriction of the action of Tw for w ∈W ae via

Res(
∑

w∈W,λ∈P∨
gλ,wtλw) =

∑
w∈W,λ∈P∨

gλ,wtλ

(that is, omit the Weyl group action in each term). This is clearly a linear operation. For f(Y ) ∈ Cq,t[Y ]W ,
we define Lf = Res(f).

Proposition 3.14. The Lf , for f ∈ Cq,t[Y ]W are W -invariant commuting operators on Cq,t[X].

Proof. The W -invariance is clear because for f ∈ Cq,t[Y ]W , because the action of w ∈W on Res(f) can be
obtained by restricting the action of w on f (which is invariant).

Consider the action of f as
∑
w∈W,λ∈P∨ fλ,wtλw, and that of g in the form

∑
w′∈W,µ∈P∨ gµ,w′tµw

′. Thus,
since g is W -invariant, fg acts as∑

w∈W,λ∈P∨
fλ,wtλw

∑
w′∈W,µ∈P∨

gµ,w′tµw
′ =

∑
w∈W,λ∈P∨

fλ,wtλ
∑

w′∈W,µ∈P∨
gµ,w′tµw

′w

Taking the restriction of this, we obtain LfLg. Hence L(f)L(g) = L(fg). But fg = gf , so we also get
L(fg) = L(gf) = L(g)L(f) (where the last step uses the W -invariance of f). �

By proposition 3.11, we see that the Lf (f ∈ Cq,t[Y ]W ) are actually triangular operators on Cq,t[X]W ,

with respect to the mµ basis. In particular, we have Lf (mµ) = f(q2(µ+kρ))mµ + l.o.t.. This notation means

that each Y λ in f should be replaced with the scalar q2(λ,µ+kρ). One easily checks that the eigenvalues∑
ν∈Wλ q

2(ν,µ) determine µ (as λ ∈ P∨+ varies). Since the Lf commute, we easily see they form a family of
simultaneously diagonalisable operators. We thus obtain:

Lemma 3.15. The operators are Lf are diagonalisable triangular operators on Cq,t[X]W , with respect to

the mµ basis. The eigenvalues of Lf are f(q2(µ+kρ)). Moreover the eigenvector associated to this may be
taken to be of the form mµ + l.o.t..

Remark 3.16. It can be shown that the operators Dπ we constructed for minuscule weights π are the Lf
corresponding to

∑
w∈W fw(π) up to a scalar multiple. We describe the proof. Consider the ordering defined

by µ v λ when µ+ < λ+, or µ+ = λ+ and µ ≥ λ (note that the last inequality is opposite to that in the
definition of �). The leading order term of Y λ turns out to be ∏

α∈Ra−∩tλRa+

tXα − t−1

Xα − 1

 tλ

One can check that the leading order term of our operator is of the form g(X)tπ− , where π− is the anttdom-

inant coweight in the orbit of π. We see that this can only arise from the term Y π
−

, where the coefficient
is

|Wπ|
∏

α∈R,(α,π−)=1

tXα − t−1

Xα − 1
tπ−

Here, Wπ is the stabiliser of π. Since π is minuscule, there are no dominant weights below it, so the remainder
of the operator is determined by conjugacy considerations. This gives that

Res(
∑
w∈W

Y w(π)) =
∑
w∈W

w

 ∏
α∈R,(α,π−)=1

tXα − t−1

Xα − 1
tπ


This agrees with Dπ up to a scalar.

Independently of the previous remark, we may deduce that the eigenvectors of Lf are actually Macdonald
polynomials, for which we will use the same self-adjointness argument that we did before. For this, we
introduce a bilinear form.
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Definition 3.17. Define the Cq,t-linear involution ι of Cq,t(q) by ι(q) = q−1, and extend it to Cq,t[X] by
declaring ι(Xµ) = Xµ. Then, definite the bilinear form 〈−, 〉′k on Cq,t[X] as follows.

〈f, g〉′k = [fµkι(ḡ)]0

Similarly to before, [h]0 is the coefficient of X0 = 1 in h, written in the Xµ basis, and µk is defined as

µk =
∏
α∈R+

k∏
i=1−k

(qiXα/2 − q−iX−α/2)

This inner product is neither symmetric, nor W -invariant, but it happens to be exactly the right definition
to help prove the Macdonald conjecture.

Definition 3.18. We define the following quantity, which will be important.

ϕk =
∏
α∈R+

(qkXα/2 − q−kX−α/2)

Note that ϕ0 = δ, the Weyl denominator.

This means that we have
µk = (−1)k|R+|q−k(k−1)|R+|∆k

ϕk
δ

Here ∆k = ∆q,t (from the first section, but we identify eα with Xα), but we emphasise the dependence on
k. We make some observations

(1) µ̄k = ι(µk), so 〈f, g〉′k = ι(〈g, f〉′k).
(2) At q = 1, 〈−,−〉′k = ±〈−,−〉q,t, in particular, the form 〈−,−〉′k is generically non degenerate.

Proposition 3.19. If f, g ∈ Cq,t[X]W , then

〈f, g〉′k = (−1)k|R+|q−k(k−1)|R+|〈f, ι(g)〉q,tdk
where

dk = qk|R+|
∑
w∈W

q−2k|R+∩w−1(R−)|

Proof. We observe that [h]0 = [w(h)]0 for any h ∈ Cq,t[X]. It’s enough to compute

[fι(g)µk]0 = [fι(g)∆k
ϕk
δ

]0

=
1

|W |
∑
w∈W

[w(fι(g)∆k
ϕk
δ

)]0

=
1

|W |
∑
w∈W

[fι(g)∆kw(
ϕk
δ

)]0

Here we have used W -invariance of f, g,∆k. Note that
∑
w∈W w(ϕkδ ) = 1

δ

∑
w∈W ε(w)w(ϕk). It is clear that

multiplying by δ gives a W -antiinvariant polynomial, hence something divisible by δ. Therefore this quantity
is a polynomial. It is ∑

w

∈W
∏
α∈R+

qkεαXα/2 − q−kεαX−α/2

Xα/2 −X−α/2

where εα is 1 if w(α) ∈ R+ and −1 otherwise. The leading order term of this is a constant multiple of X0,
so the whole quantity must be scalar. That scalar is∑

w∈W

∏
α∈R+

qkεα = qk|R+|
∑
w∈W

q−2k|R+∩w−1(R−)|

Combining this with the scalar factors relating µk and ∆k gives the desired result. �

We now prove some statements about Macdonald polynomials before we embark on the proof of their
existence.

Proposition 3.20. We have:
10



(1) ι(Pλ) = Pλ
(2) 〈Pµ, Pν〉′k = 0 if µ 6= ν
(3) The Macdonald polynomials are uniquely defined by Pλ = mλ + l.o.t. and the above orthogonality

property.

Proof.

∆k =
∏
α∈R+

k−1∏
i=0

(−q2iXα + 1 + q4i − q2iX−α)

This immediately implies that ι(∆k) = q−4k(k−1)|R+|∆k, which gives that [Pµ∆kPν ]0 = 0 implies [ι(Pµ)∆kι(Pν)]0 =
0. So, ι(Pλ) satisfy the definition of the Macdonald polynomials, hence they equal Pλ by uniqueness (so the
first statement follows). Since 〈−,−〉′k and 〈−,−〉q,t agree up to a scalar, the second statement is true. The
third statement follows from the nondegeneracy of 〈−,−〉′k. �

Definition 3.21. For an operator h from Cq,t to itself, define its adjoint h∗ (with respect to 〈−,−〉′k) in the
usual way:

〈hf, g〉′k = 〈f, h∗g〉′k
We also define h† via [h(f)ι(g)]0 = [fι(h†(g))]0.

Proposition 3.22. We have the following:

(1) h∗ = µ−1k h†µk.

(2) If p ∈ Cq,t[X] is identified with the operator of multiplication by p, then p† = ι(p).
(3) For w ∈W ae, w† = w−1.

(4) T †i = T−1i

(5) (Y λ)† = Y −λ

Proof. The first statement is clear from the definition of the bilinear form. The second statement is trivial.
The third statement follows from W -invariance of X0. To prove the fourth statement, we note that ι(t) = t−1,
since ι(q) = q−1 and t = qk. As T−1i = Ti − (t− t−1), it is enough to show (Ti − t)∗ = Ti − t. For this, we
have:

s∗i = µ−1k siµk = −ϕksiϕk =
q−kXαi/2 − qkX−αi/2

qkXαi/2 − q−kX−αi/2
si

where we have used the fact that si permutes the set of positive roots different from αi, so that only the
factor corresponding to αi in the definition of φk is relevant. One easily checks that

Ti − t =
tX−αi/2 − t−1Xαi/2

X−αi/2 −Xαi/2
(si − 1)

This is something we know how to take the adjoint of

(Ti − t)∗ = (s∗i − 1)

(
tX−αi/2 − t−1Xαi/2

X−αi/2 −Xαi/2

)∗
=

tX−αi/2 − t−1Xαi/2

t−1X−αi/2 − tXαi/2

tXαi/2 − t−1X−αi/2

Xαi/2 −X−αi/2
si −

tX−αi/2 − t−1Xαi/2

X−αi/2 −Xαi/2

=
tX−αi/2 − t−1Xαi/2

X−αi/2 −Xαi/2
(si − 1)

= Ti − t
To prove the fifth part, it is enough to consider λ ∈ P∨+ , for which the previous part suffices, together with

π∗r = π−1r (as Y λ is a product of πr and Ti). We already know that π†r = π−1r , so this is equivalent to the
statement that πr preserves µk. �

Corollary 3.23. The mapping from Cq,t[Y ]W to itself defined by f(q)Y λ 7→ ι(f(q))Y −λ is an involution
which agrees with the ∗-adjoint. Therefore h 7→ h∗ is an involution on Cq,t[Y ]W .

Theorem 3.24. For f ∈ Cq,t[Y ]W , the Macdonald polynomial Pλ is an eigenvector of Lf with eigenvalue

f(q2(λ+kρ)).
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Proof. We already know eigenvectors with the stated eigenvalues exist, and it suffices to check that they
satisfy the definition of Macdonald polynomials. By proposition 3.20, it is enough to check orthogonality
(we have already seen triangularity). Observe that for f = mν ∈ Cq,t[Y ]W , f∗ = m−ν− = m−w0ν . We check∑

η∈Wν

q2(η,λ+kρ)〈Pλ, Pν〉′k = 〈LfPλ, Pν〉′k

= 〈Pλ, L∗fPν〉′k
= ι(

∑
η∈−Ww0ν

q2(η,µ+kρ))〈Pλ, Pν〉′k

=
∑
η∈Wν

q2(η,µ+kρ)〈Pλ, Pν〉′k

Since we already know these eigenvalues are distinct (for suitably chosen f), this shows that the Pλ are
orthogonal, and the Lf are self-adjoint. �

Corollary 3.25. The eigenvectors of the Lf operators (f ∈ Cq,t[Y ]W ), Pλ, satisfy the definition of Mac-
donald polynomials. Therefore Macdonald polynomials exist.

4. The Macdonald Conjecture

This section is dedicated to the proof the following theorem (the Macdonald Conjecture), using DAHA.

Theorem 4.1. Let Pλ be the Macdonald polynomial associated to λ ∈ P , and let tα = qk. Then

〈Pλ, Pλ〉q,t =
∏
α∈R+

k−1∏
i=1

1− q2(α∨,λ+kρ)+2i

1− q2(α∨,λ+kρ)−2i

If we write [n] = qn−q−n
q−q−1 for the “quantum number n”, this may also be written

q|R|
k(k−1)

2

∏
α∈R+

k−1∏
i=1

[(α∨, λ+ kρ) + i]

[(α∨, λ+ kρ)− i]

Remark 4.2. If k = 1, the Pλ = χλ (the Weyl character); we already know these are orthonormal with
respect to 〈−,−〉q,t (see example 3.4), which is consistent with the theorem.

Remark 4.3. The case where λ = 0, i.e.

1

|W |
[
∏
α∈R

k−1∏
i=0

(1− q2ieα)]0 = q|R|
k(k−1)

2

∏
α∈R+

k−1∏
i=1

[(α∨, kρ) + i]

[(α∨, kρ)− i]

is known as the Macdonald constant term conjecture. This special case of the conjecture was not known until
the general case was resolved.

Firstly, note that

〈Pλ, Pλ〉q,t = dk(−1)k|R+|q−k(k−1)|R+|〈Pλ, ι(Pλ)〉′k
= dk(−1)k|R+|q−k(k−1)|R+|〈Pλ, Pλ〉′k

so it is sufficient to find 〈Pλ, Pλ〉′k. Actually we will do this inductively with k, so it will be necessary to

distinguish Pλ associated to different k. Therefore we will write P
(k)
λ for the Macdonald polynomial indexed

by λ for t = qk.

Definition 4.4. We need the following quantities.

(1) X = ϕ−k =
∏
α∈R+

(q−kXα/2 − qkX−α/2)

(2) Y = ϕ∨−k =
∏
α∈R+

(q−kY α
∨/2 − qkY −α∨/2)

(3) Ŷ = ϕ∨k =
∏
α∈R+

(qkY α
∨/2 − q−kY −α∨/2)

(4) G = X−1Y
12



(5) Ĝ = ŶX
(6) P = 1

|W |
∑
w∈W w

(7) P− = 1
|W |

∑
w∈W ε(w)w

(8) Pq− = 1∑
w∈W t−2l(w)

∑
w∈W (−t)−l(w)Tw

Lemma 4.5. We have the following (checking these is trivial):

(1) ι(X ) = (−1)|R+|X = ϕk
(2) X ∗ = (−1)|R+|X
(3) Y∗ = (−1)|R+|Y
(4) Ŷ∗ = (−1)|R+|Ŷ
(5) P+

− |q=t=1 = P−

We first prove the statement that P−(Y − Ŷ) vanishes on Cq,t[X]W .

4.1. Properties of Symmetrisers and Antisymmetrisers.

Lemma 4.6. Let V be a finite dimensional representation of W and let V ′ =
∑

ker(1 − si). Then V ′ is
W -invariant.

Proof. It is enough to check that si ker(1 − sj) ⊆ ker(1 − si) + ker(1 − sj). If v ∈ si ker(1 − sj). then
siv ∈ ker(1 − sj), so in particular, sj(siv) = siv. Writing vπ = 1

2 (v ± siv), so that v = v+ + v−, siv =
v+ − v− ∈ ker(1− sj). But v+ ∈ ker(1− si), so we are done. �

Corollary 4.7. In the previous lemma, V ′ is the sum of isotypic components of non-sign representations of
W .

Proof. It is enough to check this on irreducible representations, in which case V ′ is either zero or all of V .
It is zero if and only if each ker(1− si) is empty, i.e. each si acts with eigenvalue −1 only (since s2i = 1, the
eigenvalues of its action must be ±1). But then si acts as minus the identity, so V is a direct sum of sign
representations of W . �

Corollary 4.8. We conclude that ker(P−) =
∑
i ker(1− si).

Proposition 4.9. We have that P− is divisible by Ti − t on both sides. Also, when acting on Cq,t[X],
ker(Pq−) = ker(P−), and Im(Pq−) = Cq,t[X]−W (antiinvariants). Analogous statements are true for the
action on Cq,t[Y ].

Proof. To see the first statement, break W into cosets of {1, si} (left or right cosets, according to which
divisibility condition one wishes to prove). Choosing minimal length coset representatives Tw, we obtain
that Pq− is a linear combination of terms of the form (−t)−l(w)Tw(1 − t−1Ti) (this is the right divisibility
case). This is clearly divisible by Ti − t. To see the kernel and image of Pq−, first observe that Cq,t[X] is
filtered by finite dimensional spaces (this easily follows from the fact that W -orbits on P are finite). Note
that the kernel contains the sum of the kernels of Ti − t, and that is the same as the sum of the kernels of
si − 1 (recall that we observed that ker(Ti − t) = ker(si − 1) when we showed that the intersection of these
is the space of invariants). But when q = 1, t = 1 and Pq− becomes P− and we have equality of spaces. We
must therefore have equality of spaces generically. To see the image statement, observe that because we have
left divisibility, and noting that Ti− t is left divisible by si−1, multiplying by si changes the sign. Therefore
the image of Pq− is contained in Cq,t[X]−W with equality at q = 1 (as in the kernel case). Therefore we have
equality generically. The Cq,t[Y ] case is essentially the same. �

Corollary 4.10. The operator Pq− is a projector. On its image (antiinvariants) Ti acts as −t−1. Therefore

Tw acts as (−t)−l(w). In particular,
∑
w∈W (−t)−l(w)Tw acts as

∑
w∈W t−2l(w). Dividing through by that

scalar shows that Pq− acts as the identity on antiinvariants.

Theorem 4.11. For f ∈ Cq,t[X]W , P−(Y − Ŷ)f = 0.
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Proof. We have shown that for f ∈ Cq,t[X], Pq−(f) = 0 if and only if P−(f) = 0. So it is enough to prove the

statement with P− replaced by Pq−. Let R = Pq−(Y − Ŷ) ∈ Hae. Since Cq,t[X] is a faithful representation
of Hae, the statement that R annihilates all invariants is equivalent to R being of the form

∑
i hi(Ti − t)

(for some hi ∈ Hae). This is because there is a PBW-style theorem for Hae which implies that any element
may be written as a linear combination of terms, each of which is Y λ followed by a product of Ti. Since
we can replace Ti by (Ti − t) + t, we may rewrite our element at Y λ followed by a product of Ti − t. It
is clear that a nonzero sum of Y λ (with no Ti − t factors following it) does not annihilate invariants. To
prove this decomposition in Hae, we may work in any faithful representation of Hae and we choose to do
so in Cq,t[Y ]. We now employ the same reasoning in reverse. The stated decomposition is equivalent to R

annihilating Cq,t[Y ]W . This is true if and only if P−(Y − Ŷ) annihilates invariants. But P− is divisible by

(1 + (−1)|R+|w0) on both sides (recall that w0 is the longest element of W which sends positive roots to
negative roots and vice versa). It is easy to check that the following identities hold:

w0(Y) = (−1)|R+|Ŷ
w0(Ŷ) = (−1)|R+|Y

Then it immediately follows that

(1 + (−1)|R+|w0)(Y − Ŷ) = 0

This implies that P−(Y − Ŷ) annihilates invariants, which is what we needed to prove. �

4.2. The Proof.

Lemma 4.12. We have the following (as actions on Cq,t[X]):

(T + t−1)X =
t−1X−αi/2 − tXαi/2

t−1Xαi/2 − tX−αi/2
X (Ti − t)

(T + t−1)Y =
t−1Y −α

∨
i /2 − tY α∨i /2

t−1Y α
∨
i /2 − tY −α∨i /2

Y(Ti − t)

(T − t)Ŷ =
tY −α

∨
i /2 − t−1Y α∨i /2

tY α
∨
i /2 − t−1Y −α∨i /2

Ŷ(Ti + t−1)

Proof. Recall that Ti acts as tsi + (t− t−1) si−1
X−αi−1 , which is of the form Asi +B (where A,B commute with

the Xλ). It is clear that these terms preserve
∏
α∈R+,α6=αi(q

−kXαi − qkX−αi), so it is enough to consider

the term (q−kXαi − qkX−αi) (the only factor of X not appearing in the previously mentioned product).
One can verify the following equations.

TiX
αi/2 = X−αi/2Ti + (t− t−1)Xαi/2

Xαi/2Ti = TiX
−αi/2 + (t− t−1)Xαi/2

hence,

Ti(q
−kXαi − qkX−αi) = (q−kX−αi − qkXαi)Ti + (q2k − q−2k)Xαi/2

t−1(q−kXαi − qkX−αi) = q−2kXαi −X−αi

Summing the last two equations gives

(T + t−1)(q−kXαi − qkX−αi) = (q−kX−αi − qkXαi)(Ti − t)

This proves the first equation. The others can be proven using similar computations. �

Corollary 4.13. Since Cq,t[X]W is the intersection of the kernels of (Ti − t), and Cq,t[X]−W is the the
intersection of the kernels of (Ti + t−1), the preceding lemma implies the following.

(1) XCq,t[X]W = Cq,t[X]−W

(2) YCq,t[X]W ⊆ Cq,t[X]−W

(3) ŶCq,t[X]−W ⊆ Cq,t[X]W
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Proof. The only thing that has not yet been explained is why there is an equality instead of a one-way
inclusion in the first statement. The reason for this is that when q = 1 we have equality (this reduces to
the fact that every antisymmetric polynomial is divisible by the Weyl denominator), hence we have equality
generically. �

The point of the previous arguments is to deduce the following.

Corollary 4.14. The operators G = X−1Y and Ĝ = ŶX preserve Cq,t[X]W .

Proposition 4.15. If f, g ∈ Cq,t[X]W , 〈Gf, g〉′k+1 = dk+1

dk
〈f, Ĝg〉′k.

Proof. Note that µk+1 = ϕk+1ϕ−kµk = ϕk+1Xµk. Since µkX =
∏
α∈R+

∏k
i=−k(qiXα/2 − q−iX−α/2), we

see that µkX is antisymmetric (the i = 0 term is the Weyl denominator which is antisymmetric, but the
product of the i = ±j gives a symmetric quantity). So,

P(µk+1) =
1

|W |
∑
w∈W

w(ϕk+1ε(w)Xµk

= P−(ϕk+1)Xµk

=
1

|W |
dk+1δXµk

Similar methods show

P(X 2µk) =
dk
|W |

δXµk

This gives the (important) equation

P(µk+1) =
dk+1

dk
P(X 2µk)

We note that [f ]0 = [Pf ]0. Therefore, as G(f) and ι(g) are invariant,

〈Gf, g〉′k+1 = [G(f)ι(g)µk+1]0

= [G(f)ι(g)P(µk+1)]0

=
dk+1

dk
[X−1Y(f)ι(g)P(X 2µk)]0

=
dk+1

dk
[P(X−1Y(f)ι(g)X 2µk)]0

=
dk+1

dk
[P−(Y(f))ι(g)Xµk]0

In this last step we used the fact that Xµk is antisymmetric. We now use the fact that P−(Y − Ŷ) vanishes

on invariants. We may therefore replace the Y with Ŷ.

=
dk+1

dk
[P−(Ŷ(f))ι(g)Xµk]0

=
dk+1

dk
[P(Ŷ(f)ι(g)Xµk)]0

=
dk+1

dk
[Ŷ(f)ι(g)Xµk]0

=
dk+1

dk
〈X Ŷf, g〉′k

=
dk+1

dk
〈f, ŶX g〉′k

= 〈f, Ĝg〉′k
In the second last step we used the adjoint formulae that we had noted previously in lemma 4.5. �
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Theorem 4.16. We have the following equalities.

G(P
(k)
λ+ρ) = qk|R+|ck(λ)P

(k+1)
λ

(this is taken to be zero if λ+ ρ /∈ P+)

Ĝ(P
(k+1)
λ ) = q−k|R+|ĉk(λ)P

(k+1)
λ+ρ

where

ck(λ) =
∏
α∈R+

(q−k+(α∨,λ+(k+1)ρ) − qk−(α
∨,λ+(k+1)ρ))

ĉk(λ) =
∏
α∈R+

(qk+(α∨,λ+(k+1)ρ) − q−k−(α
∨,λ+(k+1)ρ))

Proof. Recalling that Y λXµ = q2(λ,µ+kρ)Xµ + l.o.t., it is easy to check the triangularity condition GP
(k)
λ+ρ =

qk|R+|ck(λ)mλ + l.o.t.. So, it suffices to check the triangularity condition 〈GP kλ+ρ,mµ〉′k+1 = 0 for µ < λ.

This is equivalent to 〈P (k)
λ+ρ, Ĝmµ〉′k = 0. But, similarly, we see that Ĝmµ is a constant multiple of mµ+ρ plus

lower order terms, whence the conclusion follows from earlier properties of Macdonald polynomials. The
second statement is proved similarly. �

Definition 4.17. Let

M ′k(λ) = 〈P (k)
λ , P

(k)
λ 〉

′
k

Also let

Mk(λ) = 〈P (k)
λ , P

(k)
λ 〉q,t = d−1k (−1)k|R+|q|R+|k(k−1)M ′k(λ)

Note that we have the following (where we make use of the triangularity properties of G and Ĝ):

M ′k+1(λ) =
1

ck(λ)ι(ck(λ))
〈GP (k)

λ+ρ, GP
(k)
λ+ρ〉

′
k

=
1

ck(λ)ι(ck(λ))

dk+1

dk
〈P (k)
λ+ρ, ĜGP

(k)
λ+ρ〉

′
k

=
ι(ĉk(λ))ι(ck(λ))

ck(λ)ι(ck(λ))

dk+1

dk
〈P (k)
λ+ρ, P

(k)
λ+ρ〉

′
k

= (−1)|R+| dk+1

dk

ĉk(λ)

ck(λ)
M ′k(λ+ ρ)

Translating this into Mk(λ), we obtain:

Mk+1(λ) =

 ∏
α∈R+

1− q2(α∨,λ+(k+1)ρ)+2k

1− q2(α∨,λ+(k+1)ρ)−2k

Mk(λ+ ρ)

We iteratively apply this equation k−1 times to reduce to the case where k = 1 where we already know that
the Macdonald polynomials are orthonormal (as they are Weyl characters in that case). Note that at each
step, the loss of a ρ due to k decreasing is compensated for by λ incrementing by ρ. This gives completes
the proof of the Macdonald conjecture. We obtain

〈P (k)
λ , P

(k)
λ 〉q,t =

∏
α∈R+

k−1∏
i=1

1− q2(α∨,λ+(k+1)ρ)+2i

1− q2(α∨,λ+(k+1)ρ)−2i
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5. Closing Remarks

Whilst we worked with ti = t = qk, we could actually have taken ti = qki where ki ∈ Z≥0. This would

have involved introducing several different shift operators (our G, Ĝ) to control the the different parameters
separately. In that case, we would replace kρ with ρk =

∑
α∈R+

kα
2 α, where kα is equal to ki for a simple

root αi in the orbit of α.
It is in fact true that (appropriately understood), Macdonald polynomials in type A define symmetric

functions (i.e. they have suitable restriction properties for An as n decreases). In [Mac95], it is shown that
if λ = a1ω1 + · · · an−1ωn−1 is written as a partition λ = (a1 + · · ·+ an−1, a2 + · · ·+ an−1, · · · , an−1), then

〈Pλ, Pλ〉q,t =
∏
s∈λ

1− qa(s)+1tl(s)

1− qa(s)tl(s)+1

Here s ∈ λ means s is a box in the Young diagram of λ. Also a(s) is the arm length of s, namely the number
of boxes to the right of s (not including s), and l(s) is the leg length of s, namely the number of boxes below
s (not including s).
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