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Abstract. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar
on Double Affine Hecke Algebras and Elliptic Hall Algebras, Spring 2017.

Contents

1. Goals and structure of the talk 1
2. Double Affine Hecke Algebras 2
2.1. Reminders 2
2.2. Double affine Hecke algebras 3
2.3. Example: DAHA for A1 5
2.4. Example: DAHA for gln 8
3. The polynomial representation 16
3.1. Upper triangularity of Y λ 16
3.2. Difference operators 17
3.3. Spherical DAHA 19
4. Degenerations 20
4.1. Trigonometric degeneration 20
4.2. Rational degeneration 21
4.3. Integrable systems 22
References 24

1. Goals and structure of the talk

This talk introduces one of the main objects of study in our seminar: the double affine Hecke
algebra (DAHA). We will make the definitions in great (but not complete) generality, and we will
emphasize the gln case. In the first part of the talk we will briefly recall from Seth’s talk the
main ingredients for the construction of DAHA: the affine Hecke algebras and Cherednik’s basic
representation. After this, we will give the definition of DAHA and exhibit an explicit basis of it.
We will then spend some time looking at two explicit cases: the DAHA for A1 and that for gln. In
particular, we will give explicit presentations by generators and relations, present their trigonomet-
ric and rational degenerations, and exhibit a large group of automorphisms of the DAHA for gln.
After that, we will study certain operators on the polynomial representation of DAHA. The im-
portance of these operators is that, first, they can be used to form a big commuting family of
difference operators on the group algebra of the weight lattice and, second, they are connected to
Macdonald polynomials, which is the topic of a subsequent talk in this seminar. The study of these
difference operators naturally leads to the definition of spherical DAHA. We finish the notes with
a discussion of trigonometric and rational degenerations in the general setting, the description of
(trigonometric, difference-rational and rational) Dunkl operators, and applications to the theory of
quantum integrable systems.
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2. Double Affine Hecke Algebras

2.1. Reminders.

2.1.1. Root systems and Weyl groups. We will work with affine root systems that are of the form
Ra, where R is an irreducible finite root system (so, for example, we will ignore the affine root
systems of the form (C∨n , Cn), etc.). Throughout these notes, we will use the following notation.

• {α1, . . . , αn} denotes the set of simple roots and {α∨1 , . . . , α∨n} the set of simple co-roots of
R.
• Q,Q∨ denote the root and coroot lattice of R, respectively. Similarly, P, P∨ denote the

weight and coweight lattice of R, respectively.
• W := 〈s1, . . . , sn〉 is the Weyl group of R, where si denotes the reflection sαi .
• α0 := −θ + δ, so that {α0, α1, . . . , αn} forms a set of simple roots for Ra.
• W a := 〈s0, . . . , sn〉 is the Weyl group of Ra, aka the affine Weyl group. Recall that we have

an isomorphism

W a = W n t(Q∨)

• W ae := W n t(P∨) is the extended affine Weyl group.
• Ω ⊆ W ae denotes the subgroup of all elements of length 0. This is a finite subgroup of
W ae, acting faithfully on the set of simple roots {α0, . . . , αn}, and it is actually isomorphic
to P∨/Q∨.
• We have an isomorphism

W ae = Ω nW a

where the action of Ω′ on W a is given as follows: if πr ∈ Ω′ is such that πr(αi) = αj , then
πrsiπ

−1
r = sj .

2.1.2. Affine Hecke algebras. Throughout this talk, τ := {τ0, . . . , τn} will denote a collection of
formal variables such that τi = τj whenever the reflections si and sj are conjugate in W a, and let
Cτ := C(τ0, . . . , τn) denote the field of rational functions in these variables. Recall that we have
the affine Hecke algebra Hτ of W , which is a quotient of the group algebra CτBae, where Bae is
the extended affine braid group. We have two presentations of this algebra.

The Coxeter presentation. Hτ = Cτ 〈T0, . . . , Tn,Ω〉 with the following relations.

(a) TiTj · · · = TjTi · · · , where term has mij factors.

(b) (Ti − τi)(Ti + τ−1
i ) = 0.

(c) πrTiπ
−1
r = Tj , if πr(αi) = αj .

The Bernstein presentation. Hτ = Cτ 〈T1, . . . , Tn, Y
P∨〉 with relations:

(a’) Relations (1) and (2) above for the Ti.
(b’) Y λY µ = Y λ+µ.
(c’) TiY

λ = Y λTi if 〈λ, αi〉 = 0.

(d’) TiY
si(λ)Ti = Y λ if 〈λ, αi〉 = 1.

2.1.3. Cherednik’s basic representation. Let us now recall Cherednik’s basic representation of the
affine Hecke algebra Hτ . We let q be a variable, and consider the affine Hecke algebra defined
over the field Cq,τ := Cτ (q1/e), where e is such that 〈P, P∨〉 = 1

eZ. Now let Cq,τ [X] denote the

group algebra of P . Note that this contains Cτ [X̂], the group algebra of the affine weight lattice

P̂ := P ⊕ Zδ, by setting Xλ+rδ := qrXλ. So the extended affine Weyl group W ae acts on Cq,τ [X]
by setting, for w = t(λ)v, λ ∈ P∨, v ∈W and µ ∈ P ,
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w(Xµ) := Xw(µ) = q−〈λ,v(µ)〉Xv(µ)

We have that Cq,τ [X] becomes a Hτ -module via the formulas:

πr 7→ πr, πr ∈ Ω

Ti 7→ τisi + (τi − τ−1
i )

si − id

Xαi − 1
, i = 0, . . . , n

Let us be more explicit on the action of T0. Recall that α0 = −θ+ δ, and that we are identifying
q = Xδ. So it follows that s0X

µ = Xµ−(−θ+δ)〈µ,−θ∨〉 = Xµ(q−1Xθ)〈µ,−θ
∨〉. Thus,

T0 : Xµ 7→

(
τ0(q−1Xθ)〈µ,−θ

∨〉 + (τ0 − τ−1
0 )

(q−1Xθ)〈µ,−θ
∨〉 − 1

qX−θ − 1

)
Xµ

In particular, if 〈µ,−θ∨〉 = 0, then T0(Xµ) = τ0X
µ, while if 〈µ,−θ∨〉 = 1, then T0(Xµ) =

τ0q
−1Xθ+µ − (τ0 − τ−1

0 )q−1Xθ+µ.

2.1.4. The induced representation. Let us denote by HXτ the affine Hecke algebra for the root
system (R∨)a. In particular, we have the Bernstein presentation for this Hecke algebra, which is
completely analogous to the Bernstein presentation above. We have the induced representation of
HXτ on Cq,τ [X], where the Xµ act by multiplication and the Ti act by

Ti 7→ τisi + (τi − τ−1
i )

si − id

Xαi − 1
, i = 1, . . . , n

Let us remark that the induced representation of HXτ on Cq,τ [X] is obtained by the eponymous
representation on Cτ [X] by base-change to the field Cq,τ .

2.2. Double affine Hecke algebras. We are now ready to define the double affine Hecke algebra
for R. The idea here is to glue together the affine Hecke algebras Hτ and HXτ along their common
representation Cq,τ [X].

Definition 2.2.1. The double affine Hecke algebra H := H(W ) is the Cq,τ -algebra generated by
elements T0, . . . , Tn,Ω, X

P with relations.

(1) The relations (a)-(c) above for the affine Hecke algebra between T0, . . . , Tn and Ω.
(2) Denote α∨0 := −θ∨. Then, for i = 0, . . . , n:

TiX
µ = XµTi if 〈µ, α∨i 〉 = 0

TiX
µ = Xsi(µ)T−1

i if 〈µ, α∨i 〉 = 1

(3) πrX
µπ−1

r = Xπr(µ).

Definition 2.2.2. Note that, by its very definition, the DAHA H admits a representation on the
space Cq,t[X], where Xµ acts by multiplication and both πr and Ti act as in Cherednik’s basic
representation. We call this representation the polynomial representation of H.

Note that, by Matsumoto’s theorem, if w = αi1 . . . αik is a reduced decomposition of w ∈ W a,
then we have a well-defined element Tw ∈ H.

Theorem 2.2.3 (PBW theorem for DAHA). Every element h ∈ H can be uniquely written in the
form

h =
∑
µ∈P
πr∈Ω
w∈Wa

aµ,r,wX
µπrTw, aµ,r,w ∈ Cq,τ
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The existence of such an expression for h is a standard exercise. The uniqueness is harder.
We will use a standard trick that we have already seen in Seth’s lecture: we will write down a
representation of H in a space in which the operators XµπrTw are linearly independent. It turns
out that we already know such a representation: the polynomial representation, cf. Definition 2.2.2.

Theorem 2.2.4. Consider the polynomial representation Cq,τ [X] of H. Then, the operators
{XµπrTw : µ ∈ P, πr ∈ Ω, w ∈ W a} are linearly independent over the field Cq,τ . In particular,
the polynomial representation is faithful.

Proof. Note that, even though the operators πrTw are not Cq,τ [X]-linear, we still have an action
of Cq,τ [X] on EndC(Cq,τ [X]), f : ϕ 7→ (x 7→ fϕ(x)). It clearly suffices to show that the operators
{πrTw}µ∈P,w∈Wa are linearly independent over Cq,τ [X]. In order to do this, we will relate this
action to the action of the extended affine Weyl group W ae on Cq,τ [X], which we know from Seth’s
talk it is faithful.

Recall that for i = 0, . . . , n, Ti acts via the operator:

Ti := τisi + (τi − τ−1
i )

si − id

Xαi − 1
=

(
τi +

τi − τ−1
i

Xαi − 1

)
si +

(
τ−1
i − τi
Xαi − 1

)
id

It follows that, for πrw ∈W ae, w ∈W a, we can write

πrTw =
∑
w′≤w

fw′,wπrw
′

where fw′,w ∈ Cq,τ (X) are rational functions on X and the order on W a is the usual Bruhat order.
Note that fw,w 6= 0.

Now assume that we have a linear combination of the form∑
πr∈Ω
w∈Wa

gr,w(X)πrTw = 0

where gr,w ∈ Cq,τ [X] are not all 0. It follows from the above that we get∑
w∈Wa,πr∈Ω

w′≤w

gr,w(X)fr,w′,w(X)πrw
′ = 0

The operators πrw are all distinct, since the representation of W a on Cq,τ [X] is faithful, and
can be extended to automorphisms of the field Cq,τ (X) (= the field of quotients of Cq,τ [X]). It
follows that the operators πrw are linearly independent over the field Cq,τ (X). So for every πr ∈ Ω,
w ∈W a we have ∑

w′≥w
gr,w′fr,w,w′ = 0

If we pick w0 ∈ W a such that w0 is maximal w.r.t. the Bruhat order in the set {w ∈ W a : gr,w 6=
0 for some πr ∈ Ω} then we get gr,w0fr,w0,w0 = 0. But since fr,w0,w0 6= 0, this is a contradiction.
We are done. �

Corollary 2.2.5. We define the following subalgebras of H:

(1) HX := 〈T1, . . . , Tn, X
µ(µ ∈ P )〉.

(2) HY := 〈T0, . . . , Tn,Ω〉.
(3) H := 〈T1, . . . , Tn〉.

Then, HX is (isomorphic to) the affine Hecke algebra for the root system R∨; HY is (isomorphic
to) the affine Hecke algebra for the root system R; and H is (isomorphic to) the finite Hecke algebra
of W .
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Recall from Seth’s talk the definition of the elements Y λ ∈ HY , λ ∈ P∨. Namely, Y λ := Tt(λ) if

λ ∈ P∨+ , while Y λ := Y µ(Y ν)−1 if λ = µ− ν with µ, ν ∈ P∨+ . Since HY is an affine Hecke algebra,

the elements Y λ are well-defined. The following result follows immediately from Seth’s talk.

Theorem 2.2.6 (PBW theorem for DAHA, v2). Every element h ∈ H can be uniquely written in
the form

h =
∑
λ∈P∨
µ∈P
w∈W

aλ,µ,wX
µY λTw, aλ,µ,w ∈ Cq,τ

Let us remark that the weight and co-weight lattice play a symmetric role in the definition
of DAHA. In order to state this precisely, let ω1, . . . , ωn be the fundamental weights of R, so
〈ωi, α∨j 〉 = δij , and denote by ω∨1 , . . . , ω

∨
n the fundamental coweights. We will denote Xi := Xωi ,

Yi := Y ω∨i .

Theorem 2.2.7. The following assignment can be extended to a C-automorphism of H:

Xi 7→ Yi, Yi 7→ Xi, Tj 7→ T−1
j , τj 7→ τ−1

j , q 7→ q−1

We will not prove Theorem 2.2.7 in full generality. We will show it for specific types of root
systems below. Let us remark that a consequence of Theorem 2.2.7 is the following.

Corollary 2.2.8 (PBW theorem for DAHA, v3). Every element h ∈ H can be uniquely written in
the form

h =
∑
λ∈P∨
µ∈P
w∈W

aλ,µ,wY
λXµTw, aλ,µ,w ∈ Cq,τ

Note that we could have also defined H to be an algebra generated by T1, . . . , Tn−1, X
P , Y P∨

with certain relations. Of course, the relations among (Ti, X
µ) or among (Ti, Y

λ) can be explicitly
written - they are just the relations of the affine Hecke algebra. But it is not easy to write the
relations among (Xµ, Y λ). We will give a couple of examples where these relations can actually be
written. As we will see, they are topological in nature.

2.3. Example: DAHA for A1.

2.3.1. Generators and relations. We give explicit generators and relations for the DAHA of A1. So
we have that the (co-)root lattice is Q = Q∨ = Zα and the (co-)weight lattice is P = P∨ = Zρ,
with ρ = α/2. Let us denote s = sα. We have that Ω = {1, πρ}, we denote π := πρ = t(ρ)s. Setting
now X := Xρ, we have that the DAHA H is generated by T0, T1, X

±1 and π. Note, however, that
T0 = πT1π, so we may ignore T0 from our list of generators. Thus, we have

H = Cq,τ 〈X,T, π〉
/{

TXT = X−1, πXπ−1 = qX−1,
π2 = 1, (T − τ)(T + τ−1) = 0

}
Setting Y := πT , we have the following alternative presentation of H:

H = Cq,τ 〈X,T, Y 〉
/{

TXT = X−1, Y −1X−1Y X = q−1T−2,
TY −1T = Y, (T − τ)(T + τ−1) = 0

}
Note that this presentation reveals a symmetry between X and Y . The following proposition is

obvious, note that its second part is a special case of Theorem 2.2.7.
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Lemma 2.3.1. We have a Cq,τ anti-involution φ : H→ Hopp, defined on generators by the following
formulas

φ(X) = Y −1, φ(Y ) = X−1, φ(T ) = T

and a C-involution ε : H→ H, defined by

ε(X) = Y, ε(Y ) = X, ε(T ) = T−1, ε(τ) = τ−1, ε(q) = q−1

2.3.2. The polynomial representation. Let us give formulas for the action of the elements X,Y, T
on the polynomial representation Cq,τ [X]. First of all, we have that the action of T is given by

τs+ (τ − τ−1)
s− id

X2 − 1

while the action of t(ρ) is given by t(ρ)(X) = qX. Moreover, for a Laurent polynomial f(X) ∈
Cq,τ [X], we have that t(ρ)f(X) = f(qX), so that π(X) = t(ρ)s(X) = q−1X−1. Thus, we have

Y = π

(
τs+ (τ − τ−1)

s− id

X2 − 1

)
= τt(ρ) + (τ − τ−1)π

s− id

X2 − 1

= τt(ρ) + (τ − τ−1)
t(ρ)− π

q−2X−2 − 1

= τt(ρ) + (τ − τ−1)t(ρ)
id−s

X−2 − 1

= t(ρ)

(
τ + (τ − τ−1)

id−s
X−2 − 1

)
So, for example, we get Y (Xn) = τ−1(qnXn + qn−2Xn−2 + · · ·+ q2−nX2−n). The operator Y is

known as the difference-trigonometric Dunkl operator.

2.3.3. Topological interpretation. Let E = C/Λ be an elliptic curve, where we take the lattice
Λ = Z⊕Zι. Let 0 ∈ E be the zero point, and consider the automorphism −1 : x 7→ −x of E. Note
that π1((E \ {0})/Z2) is trivial, as (E \ {0})/Z2 being a disk is contractible. We will consider the
orbifold fundamental group πorb

1 (E \ {0}/Z2, x), where x ∈ E \ {0} is a generic point (i.e., not one
of the three branching points of E \ {0} → (E \ {0})/Z2).

Let us recall that the orbifold fundamental group is generated by homotopy classes of paths in
E \ {0} from x to ±x, with multiplication defined by γ1 ◦ γ2 is γ2 followed by −γ1, if γ2 connects
x to −x. So we have an exact sequence

1→ π1(E \ {0}, x)→ πorb
1 ((E \ {0})/Z2, x)→ Z2 → 1,

i.e., πorb
1 (E \ {0}/Z2, x) is an extension by Z2 of the group π1(E \ {0}, x), the fundamental group

of the punctured torus. The latter group has three generators, X (the “horizontal” cycle of the
torus), Y (the “vertical” cycle of the torus) and C (a loop around the missing point 0). The
orbifold fundamental group πorb

1 (E \ {0}/Z2, x) is then generated by X,Y and an element T (a
half-loop around 0) connecting x to −x such that T 2 = C.
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x x

x

−x

X

Y
T

The elements X,Y, T satisfy the relations

TXT = X−1, TY −1T = Y, Y −1X−1Y XT 2 = 1

Let us show, for example, the first relation, which says that TXTX = 1. So we have to first go
through the loop X, then through the path T , and then through the path −X, since the endpoint
of T is −x. Finally, we go through the path −T . It follows from the following picture that this
path is null-homotopic.

x

−x

X

T

X

T

So we see that H can be seen as a quotient of the group algebra Cq,τπorb
1 ((E \ {0})/Z2, x),

as follows. First of all, recall that out base field Cq,τ includes q±1/2, since 〈ρ, ρ〉 = 1/2. Now set

T̃ := q−1/2T, X̃ := q1/2X, Ỹ := q−1/2Y , so that X̃, Ỹ , T̃ satisfy the relations of H with the exception

of the quadratic relation for T̃ . Thus:

H = Cq,τπorb
1 (E \ {0}/Z2, x)

/
((T − q1/2τ)(T + q1/2τ−1))

2.3.4. Trigonometric degeneration. Now let ~, c and t be variables. Set Y := exp(~ŷ), q := exp(t~),
τ := qc = exp(~tc) and T := s exp(~cs), where s ∈ S2 is the non-trivial element. We can consider H
as a C[[~, c, t]]-algebra, with the same generators and relations as above. Then, H/~H is generated
by s, ŷ and X, with relations

s2 = 1, sXs = X−1, sŷ + ŷs = 2c, X−1ŷX − ŷ = t− 2cs

We call Htrig := C[c, t]〈s,X, ŷ〉 with the relations above the trigonometric DAHA of A1.

Lemma 2.3.2. Every element h ∈ Htrig can be uniquely written as

h =
∑
m∈Z
n∈Z≥0

i=0,1

am,i,nX
msiŷn, am,i,n ∈ C[c, t]
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The lemma again can be proved using a faithful representation of Htrig. Here the space is
C[c, t][X±1]. The element s acts by X 7→ X−1 and X acts by multiplication. To give the action of
ŷ, first define the trigonometric derivative by ∂(X) = X. Then, ŷ acts by the trigonometric Dunkl
operator

Dtrig := t∂ − 2c
1

1−X−2
(id−s) + c

This is known as the differential polynomial representation of Htrig. We also have a different
polynomial representation of Htrig, which stems from the fact that the variables X and ŷ are not
symmetric. This is an action of Htrig on C[c, t][ŷ]. Note that we have an action of S2 on C[c, t][ŷ],
where s acts by y 7→ −y. Then, s ∈ Htrig acts on C[c, t][ŷ] via the operator

S := s− c

ŷ
(s− id)

To define an action of X, let π : C[c, t][ŷ] → C[c, t][ŷ] be defined by f(ŷ) 7→ f(−ŷ + t). Then,
X acts via the operator πS. This is known as the difference-rational polynomial representation of
Htrig. The operator πS is known as the difference-rational Dunkl operator.

Corollary 2.3.3. The following are subalgebras of Htrig:

(1) The group algebra of the extended affine Weyl group for A1: it is isomorphic to the subalgebra
of Htrig generated by s,X.

(2) The degenerate affine Hecke algebra for A1: it is isomorphic to the subalgebra of Htrig

generated by s, ŷ.

2.3.5. Rational degeneration. Now in Htrig set X = exp(~x) and y = ~ŷ. Then, modulo ~, the
elements s, x, y, satisfy the following relations

s2 = 1, sx = −xs sy = −ys yx− xy = t− 2cs

Define the algebra Hrat := C[c, t]〈s, x, y〉 with the relations above. This is known as the rational
DAHA of A1.

Lemma 2.3.4. Every element h ∈ Hrat can be uniquely written in the form

h =
∑
m,n∈Z
i=0,1

am,i,nx
msiyn, am,i,n ∈ C[c, t]

Lemma 2.3.4 may be proven using the polynomial representation of Hrat. This is the represen-
tation on C[c, t][x], where s acts by x 7→ −x, x acts by multiplication and y acts by the rational
Dunkl operator

Drat := t
d

dx
+ c

1

x
(s− id)

2.4. Example: DAHA for gln.

2.4.1. The affine Hecke algebra for gln, revisited. We will now define the DAHA for gln, which is
different (but closely related to) from the DAHA of type An. So the first step is to study the affine
Hecke algebra for gln, which has already appeared at the end of Seth’s talk. Recall that we denote
Cτ := C(τ), the field of rational functions on the variable τ .

Definition 2.4.1. Let n > 0. The affine Hecke algebra of gln, Hn, is the Cτ -algebra with genera-
tors T1, . . . , Tn−1, Y

±1
1 , . . . , Y ±1

n and relations
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(Quadratic relations) (Ti − τ)(Ti + τ−1) = 0, for i = 1, . . . , n− 1.
(Braid relations) TiTi+1Ti = Ti+1TiTi+1 for i = 1, . . . , n− 2; TiTj = TjTi if |i− j| > 1.
(Action relations) T−1

i YiT
−1
i = Yi+1, i = 1, . . . , n− 1; TjYi = YiTj if j 6= i, i− 1.

(Laurent relations) YiYj = YjYi for i, j = 1, . . . , n; YiY
−1
i = 1.

In order to define DAHA, we will need Cherednik’s basic representation for Hn. This is more
easily given in the Coxeter presentation, so we will need an analogue of the Coxeter presentation
of Hn. Let us introduce the following element of Hn:

π := T−1
1 · · ·T−1

i−1Y
−1
i Ti · · ·Tn−1

Note that, thanks to the action relations, the element π is well-defined, i.e., it does not depend
on i = 1, . . . , n. So, for example, π = Y −1

1 T1 · · ·Tn−1 = T−1
1 · · ·T−1

n−1Yn.

Lemma 2.4.2. The element πn is central in Hn.

Proof. We have

πn = (Y −1
1 T1 · · ·Tn−1)(Y −1

1 T1 · · ·Tn−1) · · · (Y −1
1 T1 · · ·Tn−1)

= Y −1
1 Y −1

2 · · ·Y −1
n A1A2 · · ·An

where Ai := T−1
1 T−1

2 · · ·T−1
n−iTn−i+1 · · ·Tn−1, so, for example, A1 = T−1

1 T−1
2 · · ·T−1

n−1 and An =
T1T2 · · ·Tn−1. We claim that A1A2 · · ·An = 1, note that this will finish the proof of the lemma.
Indeed, this can already be seen in the braid group Bn: first of all, the associated permutation in
Sn of every Ai’s is the cycle 1 7→ n 7→ n− 1 7→ · · · 7→ 2 7→ 1, and the n-th power of this cycle is the
identity. So A1 · · ·An is, at least, an element of the pure braid group.

Now note that, in Ai, the strand starting at 1 passes below the strands starting at 2, . . . , n − i
and above the strands starting at n − i + 1, . . . , n − 1. So, in the product A1 · · ·An, the strand
connecting 1 to 1 passes below all other strands; the strand connecting 2 to 2 passes above the
strand connecting 1 to 1 and below all other strands and, in general, the strand connecting i to i
passes above the strand connecting j to j if j < i, and below the strand connecting j to j if j > i.
So A1 · · ·An = 1. �

Lemma 2.4.3. We have πTiπ
−1 = Ti+1, i = 1, . . . , n− 2.

Proof. Here we use π = T−1
1 · · ·T−1

n−1Yn. So

πTiπ
−1 = (T−1

1 · · ·T−1
n−1Yn)Ti(Y

−1
n Tn−1 · · ·T1)

= (T−1
1 · · ·T−1

i )(T−1
i+1TiTi+1)(Ti · · ·T1)

Now we use the identity T−1
i+1TiTi+1 = TiTi+1T

−1
i , which follows immediately form the braid

relation involving i, i+ 1. From here, the result follows easily. �

Theorem 2.4.4. The affine Hecke algebra Hn is generated by T1, . . . , Tn−1, π
±1 with relations:

(1) The braid and quadratic relations involving the Ti.
(2) πTiπ

−1 = Ti+1, i = 1, . . . , n− 2.
(3) πn is central.

Proof. Let H′n denote the algebra defined in the statement of the theorem. Define

Yi := Ti · · ·Tn−1π
−1T−1

1 · · ·T−1
i−1.

We have to check that the Yi’s satisfy the action and commutativity relations. Let us check the
action relations. First of all, it is clear that T−1

i YiT
−1
i = Yi+1, for i = 1, . . . , n. Now, if j > i we

have
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TjYi = TjTiTi+1 · · ·Tn−1π
−1T−1

1 · · ·T−1
i−1

= Ti · · ·TjTj−1Tj · · ·Tn−1π
−1T−1

1 · · ·T−1
i−1

= Ti · · ·Tj−1Tj · · ·Tn−1Tj−1π
−1T−1

1 · · ·T−1
i−1

= Ti · · ·Tn−1π
−1TjT

−1
1 · · ·T−1

i−1
= YiTj

and if j < i− 1 we have

TjYi = Ti · · ·Tn−1Tjπ
−1T−1

1 · · ·T−1
i−1

= Ti · · ·Tn−1π
−1Tj+1T

−1
1 · · ·T−1

i−1

= Ti · · ·Tn−1π
−1T−1

1 · · ·Tj+1T
−1
j T−1

j+1 · · ·T
−1
i−1

= Ti · · ·Tn−1π
−1T−1

1 · · ·T−1
j T−1

j+1TjT
−1
j+2 · · ·T

−1
i−1

= YiTj

Let us proceed to the commutation relations. We prove them in several steps.

Step 1: If Y1Yj = YjY1 for every j = 1, . . . , n, then YiYj = YjYi for every i, j = 1, . . . , n. Indeed,
assume that i < j. Then, using the action relations that we have already shown:

YiYj = T−1
i−1 · · ·T

−1
1 Y1T

−1
1 · · ·T−1

i−1Yj
= T−1

i−1 · · ·T
−1
1 Y1YjT

−1
1 · · ·T−1

i−1

= T−1
i−1 · · ·T

−1
1 YjY1T

−1
1 · · ·T−1

i−1

= YjT
−1
i−1 · · ·T

−1
1 Y1T

−1
1 · · ·T−1

i−1
= YjYi

Step 2: If Y1Y2 = Y2Y1, then Y1Yj = YjY1 for every j = 1, . . . , n. This is done similarly to Step 1.

Step 3: Y1Y2 = Y2Y1. We need to show that Y1T
−1
1 Y1T

−1
1 = T−1

1 Y1T
−1
1 Y1. The left-hand side of

this equation becomes

(2.4.1)
Y1T

−1
1 Y1T

−1
1 = T1 · · ·Tn−1π

−1T−1
1 T1 · · ·Tn−1π

−1T−1
1

= T1 · · ·Tn−1T1 · · ·Tn−2π
−2T−1

1

And the right-hand side becomes

(2.4.2)
T−1

1 Y1T
−1
1 Y1 = T−1

1 T1 · · ·Tn−1π
−1T−1

1 T1 · · ·Tnπ−1

= T2 · · ·Tn−1T1 · · ·Tn−2π
−2

Now we use that πn is central in H′n. Indeed, we have π−nT1π
n = T1, which implies that

π−2T1π
2 = Tn−1, or T1π

2 = π2Tn−1, so π−2T−1
1 = T−1

n−1π
−2. We use this on the right-hand side of

Equation (2.4.1). Now inductively use the identity Ti−1T
−1
i = T−1

i T−1
i−1TiTi−1, together with the

braid relations, to get an equality with (2.4.2). �

We also need an analog of Cherednik’s basic representation. This is given by the following.

Theorem 2.4.5. The following assignment defines a representation of Hn on the space Cq,τ [X±1
1 , . . . , X±1

n ]:

Ti 7→ τsi + (τ − τ−1)
si − id

1−XiX
−1
i+1

π(Xa1
1 · · ·Xan

n ) = q−anXan
1 Xa1

2 · · ·X
an−1
n
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Proof. We need to check that these operators satisfy the relations of Hn. That the Ti satisfy
the braid and quadratic relations is very similar to what Seth has already done. Note also that
πn(Xa1

1 · · ·Xan
n ) = q−

∑
aiXa1

1 · · ·Xan
n . Since the operators Ti preserve the grading, it follows

that they commute with πn. The only relation we need to check now is that πTi = Ti+1π for
i = 1, . . . , n− 2. This is clear. �

Let us examine the relations between the operators Xi (multiplication) and π. First of all, it is
clear that for i = 1, . . . , n− 1, we have that πXi = Xi+1π. For i = n, we get πXn = q−1X1π. And
since πn is a grading operator, we get that πnXi = q−1Xiπ

n.

2.4.2. Generators and relations. The DAHA for gln is the Cq,τ -algebra generated by the operators
Tj , j = 1, . . . , n − 1, Xi, i = 1, . . . , n and π. Let us give a precise definition by generators and
relations.

Definition 2.4.6. The DAHA Hn is the Cq,τ -algebra generated by T1, . . . , Tn−1, X
±1
1 , . . . , X±1

n , π±1

with relations:

(1) The quadratic relations for T1, . . . , Tn−1: (Ti − τ)(Ti + τ−1) = 0.
(2) The braid relations for T1, . . . , Tn−1: TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi if |i− j| > 1.

(3) The Laurent relations for X±1 , . . . , X
±
n : XiXj = XjXi, XiX

−1
i = X−1

i Xi = 1.
(4) The action relations involving Ti, Xj: TiXiTi = Xi+1 if i = 1, . . . , n − 1; TiXj = XjTi if

i 6= j, j − 1.
(5) πXi = Xi+1π, i = 1, . . . , n− 1; ; πnXi = q−1Xiπ

n.
(6) πTi = Ti+1π, i = 1, . . . , n− 2; πnTi = Tiπ

n, i = 1, . . . , n− 1.

Remark 2.4.7. Let us remark that the relations πXn = q−1X1π and π2Tn−1 = T1π
2 are formal

corollaries of the relations (5), (6) in Definition 2.4.6.

Now set

Yi := Ti · · ·Tn−1π
−1T−1

1 · · ·T−1
i−1 ∈ Hn

It is clear that the Yi’s satisfy the Laurent relations, as well as the relations

T−1
i YiT

−1
i = Yi+1, TiYj = YjTi if i 6= j, j − 1

Let us examine the relations of Yi with Xj . First of all, since Y1 · · ·Yn = π−n, we get

(2.4.3) Ỹ Xj = qXj Ỹ

where Ỹ := Y1 · · ·Yn. Now, setting X̃ := X1 · · ·Xn, we have that X̃ commutes with all the Ti’s

while we have that πX̃ = q−1X̃π. This easily implies that

(2.4.4) X̃Yj = q−1YjX̃.

Finally, we have the following relation.

(2.4.5)

Y −1
2 X1Y2X

−1
1 = (T1πT

−1
n−1 · · ·T

−1
2 )X1(T2 · · ·Tn−1π

−1T−1
1 )X−1

1

= T1πT
−1
n−1 · · ·T

−1
2 T2 · · ·Tn−1X1π

−1T−1
1 X−1

1

= T1(πX1π
−1)T−1

1 X−1
1

= T1X2(T−1
1 X−1

1 T−1
1 )T1

= T1(X2X
−1
2 )T1

= T 2
1 .
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Theorem 2.4.8. The DAHA Hn is isomorphic to the Cq,τ -algebra generated by T1, . . . , Tn−1,

X±1
1 , . . . , X±1

n , Y ±1
1 , . . . , Y ±1

n subject to the following relations.

(1) The quadratic and braid relations for T1, . . . , Tn−1.
(2) The Laurent relations for {X±1

1 , . . . , X±1
n } and for {Y ±1

1 , . . . , Y ±1
n }.

(3) The action relations for (Ti, Xj) and for (Ti, Yj).
(4) Relations (2.4.3), (2.4.4) and (2.4.5).

Proof. Let H′n denote the algebra defined in the statement of the theorem. Define π by

π := T−1
1 · · ·T−1

i−1Y
−1
i Ti · · ·Tn−1

Thanks to the action relations involving T and Y , π is independent of i. We need to check
that T1, . . . , Tn−1, X

±1
1 , . . . , X±1

n , π satisfy the relations of Hn. Note that we only need to check

the relations involving π and Xi. Moreover, since πn = Y −1
1 · · ·Y −1

n , we only need to check that
πXi = Xi+1π for i = 1, . . . , n− 1. Furthermore, note that because of the action relations involving
T,X and the relations πTi = Ti+1π, we only need to check the relation πX1 = X2π. Using the
relation (2.4.5) we have

πX1 = T−1
1 Y −1

2 T2 · · ·Tn−1X1

= T−1
1 (Y −1

2 X1)T2 · · ·Tn−1

= T−1
1 (T 2

1X1Y
−1

2 )T2 · · ·Tn−1

= T1X1(T1T
−1
1 )Y −1

2 T2 · · ·Tn−1

= (T1X1T1)T−1
1 Y −1

2 T2 · · ·Tn−1

= X2π

and the result follows. �

Just as in the A1 case, the T,X, Y presentation of the DAHA Hn has the advantage of revealing
a symmetry between the X and Y parameters.

Lemma 2.4.9. The following defines a Cq,τ -linear anti-involution of Hn

φ(Xi) = Y −1
i , φ(Yi) = X−1

i , φ(Tj) = Tj , 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1

and the following defines a C-linear involution of Hn:

ε(Xi) = Yi, ε(Yi) = Xi, ε(Tj) = T−1
j , ε(τ) = τ−1, ε(q) = q−1, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1

Proof. For the first statement, we only need to check that the relation (2.4.5) is self-dual with
respect to φ. Note that we can write this relation as:

(2.4.6)

1 = T−1
1 Y −1

2 X1Y2X
−1
1 T−1

1

= (T−1
1 Y −1

2 T−1
1 )(T1X1T1)(T−1

1 Y2T
−1
1 )(T1X

−1
1 T1)T−2

1

= Y −1
1 X2(T−2

1 Y1T
−2
1 )(T 2

1X
−1
2 T 2

1 )T−2
1

= Y −1
1 X2T

−2
1 Y1X

−1
2

which we can rewrite as T 2
1 = Y1X

−1
2 Y −1

1 X2, and so (2.4.5) is self-dual with respect to φ. Note
that this is also the equation required to prove that ε extends to a morphism H→ H. This finishes
the proof. �

Exercise 2.4.10. The following relations hold in Hn:

Y −1
i+1XiYi+1X

−1
i = T 2

i , Y −1
j+1XiYj+1X

−1
i = Tj · · ·Ti+1T

2
i T
−1
i+1 · · ·T

−1
j , j > i
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2.4.3. Topological interpretation. Let E be a 2-torus. Consider the n-fold product En, and let
(En)reg := {(x1, . . . , xn) ∈ En : xi 6= xj if i 6= j}, C := (En)reg/Sn. The fundamental group π1(C)
is known as the elliptic braid group.

Lemma 2.4.11. We have π1(C) = 〈T1, . . . , Tn−1, X1, . . . , Xn, Y1, . . . , Yn〉 with relations

TiTi+1Ti = Ti+1TiTi+1 TiTj = TjTi if |i− j| > 1, XiXj = XjXi

YiYj = YjYi TiXiTi = Xi+1 T−1
i YiT

−1
i = Yi+1

TiXj = XjTi, i 6= j, j − 1 TiYj = YjTi, i 6= j, j − 1 Y −1
2 X1Y2X

−1
1 = T 2

1

(Y1 · · ·Yn)Xj = Xj(Y1 · · ·Yn) (X1 · · ·Xn)Yj = Yj(X1 · · ·Xn)

In the previous lemma, the generator Xi corresponds to the i-th point going around a loop in
the “horizontal” direction on E; Yi corresponds to the i-th point going around in the “vertical”
direction on E; while Ti corresponds to the transposition of the i-th and (i+ 1)-th points. Let us
remark that, unlike the A1 case, it is not possible to renormalize the generators so that the DAHA
Hn becomes an honest quotient of the group algebra of π1(C). However, one may form a twisted
group algebra, which is a deformation of the group algebra π1(C) arising from a central extension
of π1(C) (so that the central element z becomes q in the twisted group algebra) and we indeed have

Hn = Ctwq,τπ1(C)
/

((Ti − τ)(Ti + τ−1))i=1,...,n−1

2.4.4. From gln to sln. Let us explain how to recover the DAHA for the root system An−1 from
Hn. First of all, in the lattice generated by Yi we must have Y1 · · ·Yn = 1. Thus, we pass to the
algebra

H̃n := Hn/(π
n − 1)

In this algebra, we take the subalgebra generated by T1, . . . , Tn−1, the elements Y i := Y1 · · ·Yi,
i = 1, . . . , n − 1 and their multiplicative inverses, and the elements Xi := X1 · · ·Xi(X̃)−i/n. We

remark that the element X̃ does have an n-root in Hn (this can be seen, for example, using the

automorphism ε defined in Lemma 2.4.9 and using the fact that Ỹ = π−n) so this expression makes

sense. We also take X
−1
i . This subalgebra is isomorphic to H(An−1).

2.4.5. Trigonometric degeneration. Let us introduce the trigonometric degeneration of the DAHA
Hn. This is done completely analogously to the A1 case. So the first thing we need to do is to think
of Hn as a C[t, c][[~]]-algebra. Set

Yi := e~ŷi , q := et~, τ := e~c, Tj := sje
~csj , i = 1, . . . , n, j = 1, . . . , n− 1

where si ∈ Sn is the transposition (i, i + 1). We have Htrig
n := Hn/~Hn. So Htrig is generated by

si, i = 1, . . . , n − 1, X±1
i , i = 1, . . . , n, and ŷi, i = 1, . . . , n. We have s2

i = 1. From the identity

TiXiTi = Xi+1, we get siXisi = Xi+1. Let us now examine the identity T−1
i YiT

−1
i = Yi+1, we have

(si−~cs2
i +~2 c

2s3
i

2!
+ . . . )(1 +~ŷi+~2 ŷ

2
i

2!
+ . . . )(si−~cs2

i +~2 c
2s3
i

2!
+ . . . ) = 1 +~ŷi+1 +~2 ŷ

2
i+1

2!
+ . . .

looking at the coefficient of ~ we get the identity siŷisi − 2csi = ŷi+1 or, equivalently,

siŷi − ŷi+1si = 2c.

Similarly, we have the following relations:
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(ŷ1 + · · ·+ ŷn)Xj = Xj(t+ ŷ1 + · · ·+ ŷn),
X1 · · ·Xnŷj = (−t+ ŷj)X1 · · ·Xn,
X1ŷ2X

−1
1 − ŷ2 = 2cs1

Definition 2.4.12. The trigonometric double affine Hecke algebra for gln, Htrig
n , is the C[c, t]-

algebra with generators s1, . . . , sn−1, ŷ1, . . . , ŷn, X
±
1 , . . . , X

±
n subject to the relations

(1) s2
i = 1, i = 1, . . . , n− 1; sisi+1si = si+1sisi+1; sisj = sjsi if |i− j| > 1.

(2) siXisi = Xi+1; siXj = Xjsi if i 6= j, j − 1.
(3) siŷi − ŷi+1si = 2c, siŷj = ŷjsi if i 6= j, j − 1.
(4) (ŷ1 + · · ·+ ŷn)Xj = Xj(t+ ŷ1 + · · ·+ ŷn).
(5) X1 · · ·Xnŷj = (ŷj − t)X1 · · ·Xn.

(6) X1ŷ2X
−1
1 − ŷ2 = 2cs1

Lemma 2.4.13. Every element h ∈ Htrig
n can be uniquely written as a sum

h =
∑

P∈C[X±1
i ]

w∈Sn
f∈C[ŷi]

aP,w,fP (X)wf(ŷ), aP,w,f ∈ C[c, t]

Of course, the lemma is proven by means of an action of Htrig
n on its polynomial representation

C[c, t][X±1
1 , . . . , X±nn ], where si acts by transposing the i-th and (i + 1)-th variables, Xi acts by

multiplication. Now, for i = 1, . . . , n, define the trigonometric derivative by ∂i(Xj) = δijXj . So ŷi
acts by the trigonometric Dunkl operator

Dtrig
i := t∂i + 2c

∑
i 6=j

1

1−XiX
−1
j

(id−sij)− 2cisi

Corollary 2.4.14. The following are subalgebras of Htrig
n :

(1) The group algebra of the extended affine Weyl group of gln, which is isomorphic to the

subalgebra of Htrig
n generated by s1, . . . , sn−1, X±1

1 , . . . , X±1
n .

(2) The degenerate affine Hecke algebra of gln, which is isomorphic to the subalgebra of Htrig
n

generated by s1, . . . , sn−1, ŷ1, . . . , ŷn.

Let us remark that we also have a difference-rational polynomial representation of Htrig
n . This is

the representation of Htrig
n on the space C[c, t][ŷ1, . . . , ŷn] which is defined as follows. The element

ŷi just acts by multiplication, the element si acts by the Demazure-Lusztig operator :

Si := s̃i − 2c
1

ŷi − ŷi+1
(s̃i − id)

where s̃i is the operator on C[c, t][ŷ1, . . . , ŷn] that transposes the variables ŷi and ŷi+1. To state the
action of Xi, first define the operator π : C[c, t][ŷ1, . . . , ŷn]→ C[c, t][ŷ1, . . . , ŷn] by

π(f(ŷ1, . . . , ŷn)) = f(ŷ2, . . . , ŷn, ŷ1 − t)

And now define the action of Xi to be by the operator Si−1 · · ·S1πSn−1 · · ·Si. This is known as
the difference-rational Dunkl operator.
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2.4.6. Rational degeneration. Now we define the rational degeneration for the DAHA Hn. Similarly
to what was done for the case ofA1, letXi = exp(~xi), yi := ~ŷi. Then s1, . . . , sn−1, y1, . . . , yn, x1, . . . , xn
satisfy the following relations modulo ~.

sixisi = xi+1, siyisi = yi+1, sixj = xjsi(i 6= j, j − 1), siyj = yjsi(i 6= j, j − 1),

yixj − xjyi = 2csij , i 6= j (y1 + · · ·+ yn)xj = t+ xj(y1 + · · ·+ yn)

Note that, in view of all the other relations, the last relation is equivalent to yixi − xiyi =
t− 2c

∑
j 6=i sij . These are the defining relations for the rational DAHA of gln, Hrat

n .

Lemma 2.4.15. Every element h ∈ Hrat
n can be written as

h =
∑
f∈C[x]
w∈Sn
g∈C[y]

af,w,gf(x)wg(y), af,w,g ∈ C[c, t]

We have the polynomial representation C[c, t][x1, . . . , xn] of Hrat
n . Here, Sn acts by permutation

of the indices, xi acts by multiplication, and yi acts via the rational Dunkl operator

Drat
i := t

d

dxi
− 2c

∑
j 6=i

1

xi − xj
(id−sij)

Let us remark that similar degenerations Htrig,Hrat exist for a general root system R. This will
be the subject of Section 4.

2.4.7. Braid group action. The main goal of this section is to produce a braid group action on Hn

by algebra automorphisms.

Lemma 2.4.16. The following assignment can be extended to an automorphism of Hn:

(2.4.7) ρ1(Ti) = Ti, i = 1, . . . , n− 1, ρ1(Xj) = Xj , j = 1, . . . , n, ρ1(π) = X−1
1 π

Proof. The only relation that is not immediate to check that it is preserved is πnTi = Tiπ
n. Using

the relations πX−1
i = X−1

i+1π if i < n

(X−1
1 π) · · · (X−1

1 π) = X−1
1 (πX−1

1 ) · · · (πX−1
1 )π

= X−1
1 X−1

2 · · ·X−1
n πn

Which is the product of a symmetric polynomial in the X ′is and πn. Both terms commute with all
Ti. From here, the result follows. �

For completeness, let us give a formula for ρ1(Yi). Recall that we have Y1 = T1 · · ·Tn−1π
−1, so

ρ1(Y1) = T1 · · ·Tn−1π
−1X1 = Y1X1. Now, using the fact that T−1

i YiT
−1
i = Yi+1 we get:

(2.4.8) ρ1(Yi) = YiXi(T
−1
i−1 · · ·T

−1
1 )(T−1

1 · · ·T−1
i−1)

The following lemma can be checked similarly to Lemma 2.4.16.

Lemma 2.4.17. The following assignment can be extended to an automorphism of Hn:

(2.4.9) ρ2(Ti) = Ti, i = 1, . . . , n− 1; ρ2(Yj) = Yj , ρ2(Xj) = XjYj(Tj−1 · · ·T1)(T1 · · ·Tj−1).

Remark 2.4.18. Note that ρ2 = ερ1ε, where ε : H → H is the C-linear involution defined in
Lemma 2.4.9.
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Let us give a formula for ρ−1
2 . We have that ρ−1

2 (Ti) = Ti, ρ
−1
2 (Yj) = Yj , while

ρ−1
2 (Xj) = Xj(T

−1
j−1 · · ·T

−1
1 )(T−1

1 · · ·T−1
j−1)Y −1

j

Lemma 2.4.19. Consider the braid group on three strands, B3 := 〈σ1, σ2 : σ1σ2σ1 = σ2σ1σ2〉. The
assignment

σ1 7→ ρ1, σ2 7→ ρ−1
2

gives an action of B3 on Hn.

Proof. We need to check that ρ1, ρ
−1
2 satisfy the relation:

ρ1ρ
−1
2 ρ1 = ρ−1

2 ρ1ρ
−1
2(2.4.10)

It is obvious that when we evaluate both sides on Ti we just get Ti. Then, thanks to the action
relations and the fact that both sides of (2.4.10) are automorphisms, we just need to check that
ρ1ρ
−1
2 ρ1(X1) = ρ−1

2 ρ1ρ
−1
2 (X1), and a similar equation for Y1. We have:

ρ1ρ
−1
2 ρ1(X1) = ρ1ρ

−1
2 (X1) = ρ1(X1Y

−1
1 ) = X1X

−1
1 Y −1

1 = Y −1
1

ρ−1
2 ρ1ρ

−1
2 (X1) = ρ−1

2 (Y −1
1 ) = Y −1

1

It is similarly easy to check that ρ1ρ
−1
2 ρ1(Y1) = ρ−1

2 ρ1ρ
−1
2 (Y1) = Y1X1Y

−1
1 . The lemma follows.

�

Let us remark that the automorphisms ρ1, ρ2 descend to the rational degeneration of Hn.

Lemma 2.4.20. The following define automorphisms of Hrat
n :

ρ1(si) = si ρ1(xj) = xj ρ1(yj) = yj + xj
ρ2(si) = si ρ2(xj) = xj + yj ρ2(yj) = yj

We still have the relations ρ1ρ
−1
2 ρ1 = ρ−1

2 ρ1ρ
−1
2 . Moreover, (ρ1ρ

−1
2 ρ1)4 = id, so that we have an

action of SL2(Z) on Hrat
n , cf. Lemma 3.3.5.

It is interesting to note that, according to [C2, 2.12.4], the automorphisms ρ1, ρ2 have no trigono-
metric analogue.

3. The polynomial representation

3.1. Upper triangularity of Y λ. We study the polynomial representation more carefully. Our
first goal is to see that the operators Y λ are upper triangular with respect to a certain partial order
on P . First of all, recall that we have the partial order < on P+, which is defined by ν > µ if
ν − µ ∈ P+. We extend this order to P .

Definition 3.1.1. For µ ∈ P , let µ+ ∈ P+ be the dominant weight lying in the orbit Wµ. Define
a partial order on the weight lattice P as follows: ν ≺ µ if ν+ < µ+, or ν+ = µ+ and ν > µ (note
the change of signs!)

Let us give some properties of the order ≺ that will be useful later.

Lemma 3.1.2. Let µ ∈ P and let α ∈ R+

(1) If 〈µ, α∨〉 = r > 0, then sα(µ) � µ, while µ− α, . . . , µ− (r − 1)α ≺ µ.
(2) If 〈µ, α∨〉 = −r < 0, then µ+ α, . . . , µ+ (r − 1)α, sα(µ) ≺ µ.

Proof. See e.g. [M, Section 2.6]. �
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Recall now from Seth’s talk that, if λ ∈ P∨+ is such that t(λ) = πrsi` · · · si1 is a reduced expression,

then Y λ = πrTil · · ·Ti1 . We would like to use this to obtain some information about the operator
Y λ. First of all, if a ∈ Ra is a root, define the operator

G(a) := τa + (τa − τ−1
a )

id−sa
X−a − 1

where τa = τi if w(a) = ai for some element w ∈ W a. Note that Ti = siG(ai) and, if w ∈ W a,
G(w(a)) = wG(a)w−1. In particular, if s is a reflection we have G(a)s = sG(s(a)). Thus, for
λ ∈ P∨+ we have

Y λ = πrsi`G(ai`)si`−1
G(ai`−1

) · · · si1G(ai1) = t(λ)G(a(`)) · · ·G(a(1)),

where a(j) = si1 · · · sij−1(aij ).

Theorem 3.1.3. For λ ∈ P∨, µ ∈ P we have

Y λ(Xµ) =
∑
ν�µ

cµ,νX
ν

with cµ,ν ∈ Cq,τ .

Proof. Assume first that λ ∈ P∨+ , so that in particular Yλ = t(λ)G(a(`)) · · ·G(a(1)) with a(i) =
αi + kiδ, αi ∈ R+. So let a = α+ kδ with α ∈ R+. Then we have:

G(a)Xµ = τaX
µ + (τa − τ−1

a )
Xsa(µ) −Xµ

1−X−a
Now assume that 〈α∨, µ〉 = r > 0, so sa(µ) = µ− ra. Thus, we have

G(a)Xµ = τaX
µ − (τa − τ−1

a )(Xµ +Xµ−a + · · ·+Xµ−(r−1)a) = τ−1
α Xµ + . . .

where the ellipsis stands for lower order terms, see Lemma 3.1.2. The case 〈α∨, µ〉 < 0 is similar, for
〈α∨, µ〉 = 0 we just have G(a)Xµ = τaX

µ. Since t(λ) is diagonal, we have that Y λ is a composition
of upper triangular operators and the result follows.

Now if λ = λ′ − λ′′ with λ′, λ′′ ∈ P∨+ , then Y λ = Y λ′(Y λ′′)−1. Since the inverse of an upper
triangular operator is again upper triangular, the result follows. �

3.2. Difference operators. The goal of this section is to produce some difference operators on
the space Cq,τ [X] using the representation theory of DAHA. Recall from the proof of Theorem
2.2.4 that for every w ∈W ae, the extended affine Weyl group, the action of Tw on Cq,τ [X] may be
written as

(3.2.1) Tw =
∑
λ∈P∨
w∈W

gλ,wt(λ)w, gλ,w ∈ Cq,τ (X)

so in particular the same is true for Y λ ∈ HY ⊆ H. Recall that the center of HY is precisely
Cq,τ [Y ]W .

Lemma 3.2.1. Let f(Y ) ∈ Cq,τ [Y ]W . Then, the action of f(Y ) on Cq,τ [X] preserves the space of
W -invariants Cq,τ [X]W .

Proof. Note that, from the formula for the action of Ti, i = 1, . . . , n, on Cq,τ [X] it follows that
p(X) ∈ Cq,τ [X] is W -invariant if and only if

Tip(X) = τip(X), i = 1, . . . , n

From here, the result follows easily using the fact that f(Y ) commutes with Ti. �
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Now let f be an operator on Cq,τ [X] of the form (3.2.1). We define its restriction by

Res(f) :=
∑
λ∈P∨
w∈W

gλ,wτ(λ)

In particular, Res(f) is a difference operator on Cq,τ [X] and f |Cq,τ [X]W = Res(f)|Cq,τ [X]W . For

f ∈ Cq,τ [Y ]W , we denote Lf := Res(f). This is a difference operator on Cq,τ [X] preserving the

space of invariants Cq,τ [X]W .

Corollary 3.2.2. The operators Lf , f ∈ Cq,τ [Y ]W , are pairwise commutative and W -invariant.

Proof. Let f, g ∈ Cq,τ [Y ]W . Then LfLg = Res(f) Res(g). Since g is W -invariant, Res(f) Res(g) =
Res(fg) = Res(gf). Since now f is W -invariant, we get Res(gf) = Res(g) Res(f) = LgLf . �

Remark 3.2.3. It follows from Theorem 3.1.3 that the operators Lf : Cq,τ [X]W → Cq,τ [X]W are

upper triangular with respect to the basis formed by {xλ :=
∑

λ′∈WλX
λ′}λ∈P+ and the dominance

ordering on P+.

The operators Lf are intimately related to the theory of Macdonald’s polynomials. This will be
the subject of a subsequent talk.

3.2.1. Example: A1. Let us consider the example of a root system of type A1. We keep the notation
of Section 2.3.2, with one small caveat. Now we set X := Xα, so that Cq,τ [X] is the algebra of

polynomials in X±1/2. With this convention, the action of T is given by

τs+ (τ − τ−1)
s− id

X − 1
While the action of t(ρ) is t(ρ)(X) = q2X, so t(ρ)f(X) = f(q2X) and, in particular, πρ(X) =

t(ρ)s(X) = q−2X−1. Note that we have

Y ρ = t(ρ)

(
τ + (τ − τ−1)

id−s
X−1 − 1

)
Let us now deal with Y −ρ = T−1πρ. Here we will use the reflection s0 on the affine Weyl group: it

is easy to check that we have a relation πρT
−1πρ = T−1

0 , so that Y −ρ = πρT
−1
0 = πρ(T0 +(τ−1−τ)).

Thus,

Y −ρ = πρ

(
τs0 + (τ − τ−1)

s0 − id

q−2X−1 − 1
+ (τ−1 − τ)

)
= t(ρ)s

(
τt(α)s+ (τ − τ−1)

t(α)s− q−2X−1

q−2X−1 − 1

)
= τt(−ρ) + (τ − τ−1)t(ρ)

t(−α)− q−2Xs

q−2X − 1

= τt(−ρ) + (τ − τ−1)
t(−ρ)−Xt(ρ)s

X − 1

Thus, ResY ρ = τt(ρ), ResY −ρ =
τX − τ−1

X − 1
t(−ρ) + (τ − τ−1)

1

X−1 − 1
t(ρ). So

(3.2.2) Res(Y ρ + Y −ρ) =
τX−1 − τ−1

X−1 − 1
t(ρ) +

τX − τ−1

X − 1
t(−ρ).

This is (a scalar multiple of) Macdonald’s difference operator for A1. The symmetric polynomials

here are spanned by binomials of the form Xi/2 +X−i/2, i ≥ 0. It is an easy exercise to check that
the operator (3.2.2) indeed preserves the space of symmetric polynomials, and that it is upper

triangular with respect to the basis xi := Xi/2 +X−i/2.
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3.3. Spherical DAHA. We have seen that the operators Lf , f ∈ Cq,τ [X]W define difference
operators on the space of W -invariant polynomials on X. We can actually define a smaller algebra
than the DAHA H which includes all the operators Lf and which acts on Cq,τ [X]W . This is known
as the spherical DAHA and it is constructed as follows.

Let Cτ be the 1-dimensional (over Cτ ) representation of the finite Hecke algebra H where Ti
acts by τi, i = 1, . . . , n. We can realize this representation as Cτ = He, where e ∈ H is an
idempotent which is constructed as follows. For w ∈ W let τw := τi1 · · · τik , where w = si1 · · · sik
is a reduced decomposition. Note that τw is well-defined, since it is the scalar by which w acts on
the representation Cτ . Now define ẽ :=

∑
w∈W τwTw.

Lemma 3.3.1. For i = 1, . . . , n, we have Tiẽ = τiẽ.

Proof. We will do a direct calculation. We will need the following equation that we have already
seen in Seth’s talk. In the finite Hecke algebra H:

TiTw =

{
Tsiw if `(siw) > `(w)

Tsiw + (τi − τ−1
i )Tw if `(siw) < `(w)

where the length ` is the usual one in W , i.e., the length of a reduced expression of w. Thus, we
have:

Tiẽ =
∑
w∈W

`(siw)>`(w)

τwTsiw +
∑
w∈W

`(siw)<`(w)

τw(Tsiw + (τi − τ−1
i )Tw)

Now we find the coefficient of Tw in the previous expression. We have two cases. If `(siw) < `(w),
then we have that the coefficient of Tw is τsiw + τw(τi − τ−1

i ) = τiτw, since τw = τiτsiw. If
`(siw) > `(w), then the coefficient of Tw is simply τsiw = τiτw. We are done. �

Remark 3.3.2. Similarly, we can see that ẽTi = τiẽ for i = 1, . . . , n.

Thanks to the previous lemma, ẽ2 =
∑

w∈W τwTwẽ =
∑

w∈W τ2
wẽ. Thus

e :=

(∑
w∈W

τ2
w

)−1

ẽ

is an idempotent.

Definition 3.3.3. Define the spherical DAHA as SH := eHe. This is a non-unital subalgebra of
H, with unit e.

Remark 3.3.4. In the gln case, note that the automorphisms ρ1, ρ2 of Hn preserve the idempotent
e, hence they also preserve the spherical subalgebra. So we have an action of B3 on SHn.

The following result will be important to connect DAHA’s to EHA’s, which is one of the objectives
of the course. First, we recall a well-known result. For a proof, see e.g. [KT, Appendix A].

Lemma 3.3.5. The group SL2(Z) is a quotient of the braid group on three strands B3 = 〈σ1, σ2 :
σ1σ2σ1 = σ2σ1σ2〉. The quotient map B3 � SL2(Z) is given by

σ1 7→
(

1 1
0 1

)
, σ2 7→

(
1 0
−1 1

)
the kernel of this map is generated by (σ1σ2σ1)4.

Theorem 3.3.6. The braid group action on SHn factors through SL2(Z), that is, (ρ1ρ
−1
2 ρ1)|4SHn =

idSHn.
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Proof. According to [C2, 3.2.2], (ρ1ρ
−1
2 ρ1)4 is conjugation by T−2

w0
, where w0 is the longest element

of Sn. Since Tw0e = τw0e, the result follows easily. �

Note that, if M is a H-module, then eM becomes a SH-module. For the polynomial representa-
tion we have:

eCq,τ [X] = {f ∈ Cq,τ [X] : Tif = τif, i = 1, . . . , n} = Cq,τ [X]W

Now note that, for f ∈ Cq,τ [Y ]W , we have that eLfe|Cq,τ [X]W = Lf |Cq,τ [X]W . Thus, the action

of the spherical DAHA SH on Cq,τ [X]W already includes the operators Lf defined above.

4. Degenerations

In this section, we give definitions that generalize the degenerate (trigonometric and rational)
DAHA’s from Sections 2.3.4, 2.3.5, 2.4.5, 2.4.6. These algebras can be obtained from H in a very
similar manner to what was done there.

4.1. Trigonometric degeneration. Let us first define the trigonometric DAHA. In order to do
this, let ci, i = 0, . . . , n be formal variables such that ci = cj whenever si and sj are conjugate. We
will also take commuting variables ŷ1, . . . , ŷn and, for b ∈ P∨, we will denote

ŷb :=
∑
〈b, αj〉ŷj .

Let us remark that the extended affine Weyl groupW ae = Wnt(P ) acts on the space C[c, t][ŷ1, . . . , ŷn]
by algebra automorphisms. Indeed, we need to define the action of s1, . . . , sn and t(λ), λ ∈ P on el-
ements of the form ŷb, b ∈ P∨. We have that siŷb = ŷsi(b) for i = 1, . . . , n, while t(λ)ŷb = ŷb−〈λ, b〉t.

Definition 4.1.1. The trigonometric DAHA, Htrig is the C[c, t]-algebra generated by the extended
affine Weyl group W ae and pairwise commuting variables ŷ1, . . . , ŷn, subject to the following rela-
tions.

(4.1.1) siŷb − ŷsi(b)si = −ci〈b, αi〉, s0ŷb − s0(ŷb)s0 = c0〈b, θ〉, πrŷb = ŷπr(b)πr

for i = 1, . . . , n, b ∈ P∨, and πr ∈ Ω′(∼= P/Q).

Let us remark that the variable t appears in disguise in the second relation of (4.1.1).
Since, unlike the nondegenerate and rational cases, the variables X, ŷ are not symmetric, the

algebra Htrig admits more than one polynomial representation. First, we have the differential
polynomial representation, which is given in terms of trigonometric differential Dunkl operators. In
order to do this, for b ∈ P∨, define the following derivation on the group algebra C[c, t][X] of the
weight lattice P :

∂b(X
a) = 〈b, a〉Xa

We have then that Htrig acts on C[c][X]. The group W acts naturally and yb acts via the
trigonometric differential Dunkl operator

Dtrig
b := t∂b +

∑
α∈R+

cα〈b, α∨〉
1−X−α

(id−sα)− 〈ρc, b〉

where ρc is the formal expression ρc :=
1

2

∑
α∈R+

cαα.

We also have the difference-rational polynomial representation, on the algebra C[c, t][ŷ1, . . . , ŷn].
Recall that the extended affine Weyl group W ae acts on this space by algebra automorphisms. We
deform this action by the Demazure-Lusztig operators:
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Si := si +
ci
ŷαi

(si − id), i = 0, . . . , n

where yα0 := −yθ + t. And define, for w ∈ W ae with w = πrsi1 · · · si` a reduced expression,
Sw := πrSi1 · · ·Si` . According to [C2, 1.6], this still defines an action of W ae on C[c, t][λ]. Here we
only check that S2

i = id. Indeed, we have for i 6= 0

(4.1.2)

Siŷa =

(
si +

ci
ŷαi

(si − id)

)
ŷa

= ŷsi(a) +
ci
ŷαi

(
ŷsi(a) − ŷa

)
= ŷsi(a) +

ci
ŷαi

(
ŷa − ŷ〈α∨i ,a〉αi − ŷa

)
= ŷsi(a) +

ci
ŷαi

(
−〈α∨i , a〉ŷαi

)
= ŷsi(a) − ci〈α∨i , a〉.1

Thanks to (4.1.2), we have that Si(ŷsi(a)) = ŷa + ci〈α∨i , a〉.1. It follows from (4.1.2) again that

S2
i = id. Let us now treat the case i = 0. First of all, note that s0ŷa = ŷa + 〈a, θ∨〉(t− ŷθ). Then,

we have:

(4.1.3)

S0ŷa =

(
s0 +

c0

t− ŷθ
(s0 − id)

)
ŷa

= ŷa + 〈a, θ∨〉(t− ŷθ) +
c0

t− ŷθ
〈a, θ∨〉(t− ŷθ)

= ŷa + 〈a, θ∨〉(t− ŷθ) + c0〈θ∨, a〉.1
It follows from (4.1.3), the fact that S0 clearly fixes c, t and 1, and that 〈θ, θ∨〉 = 2, that S2

0 = id.

Theorem 4.1.2 (See e.g. Proposition 1.6.3 in [C2]). The algebra Htrig acts on the space C[c, t][ŷ1, . . . , ŷn],
where elements of the group W act via Sw, and ŷb acts by multiplication. This representation is
faithful and it is known as the difference-rational polynomial representation.

For b ∈ P , the operators St(b) are known as the difference-rational Dunkl operators.

Corollary 4.1.3. The following are subalgebras of Htrig:

(1) The group algebra of W , in a natural way.
(2) The degenerate affine Hecke algebra for W , which is the algebra generated by W and

ŷ1, . . . , ŷn.

4.2. Rational degeneration. We also have a rational degeneration. Here, we substitute the group
algebras of the lattices P and P∨ by the vector spaces V ∗ ∼= V where our root systems R, R∨ are
defined.

Definition 4.2.1. The rational DAHA, Hrat, is the C[c, t]-algebra generated by C[V ],C[V ∗] and
the group W subject to the relations

wx = w(x)w, wy = w(y)w [y, x] = t〈y, x〉 −
∑

α∈R+ cα〈y, α〉〈α∨, x〉sα, w ∈W,x ∈ V ∗, y ∈ V

The algebra Hrat admits a polynomial representation on the space C[V ]. Here, W acts in a
natural way, and x ∈ V ∗ acts by multiplication. Now recall that y ∈ V defines a derivation on
C[V ], by setting ∂y(x) = 〈y, x〉, x ∈ V ∗. Then, we define the rational Dunkl operator

Drat
y := t∂y −

∑
α∈R+

cα
〈α, y〉
α

(id−sα)
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Theorem 4.2.2. The assignment w 7→ w, x 7→ x, y 7→ Drat
y defines a representation of Hrat on

C[c, t][V ]. This is known as the polynomial representation, and it is a faithful representation of
Hrat.

Remark 4.2.3. The hard part of the previous theorem is to prove that the Dunkl operators commute.

Corollary 4.2.4. The algebras C[c, t][V ],C[c, t][V ∗],C[c, t]W sit naturally as subalgebras of Hrat.

Let us remark that, unlike H and Htrig, the definition of the rational DAHA Hrat can be gener-
alized to the case where W is a group generated by complex reflections acting on a vector space V
(so W is not necessarily the Weyl group of a root system). This has been done in [EG].

Remark 4.2.5. We can also define spherical subalgebras SHtrig, SHrat of the degenerate DAHAs.
There are defined as eHtrige, eHrate, respectively, where the idempotent e now is the trivial idem-

potent of the group W , that is, e =
1

|W |
∑
w∈W

w.

Remark 4.2.6. Let us remark that, just as we did in Section 3.2, we can use the representation
theory of DAHA to define a large family of commuting differential (resp. difference) operators on
C[c, t][X] or C[c, t][x1, . . . , xn] (resp. on C[c, t][λ]) that restrict to differential (resp. difference)
operators on the W -invariant subalgebras. These operators are given by elements in C[c, t][ŷ]W ,
C[c, t][y]W and C[c, t][X]W , respectively.

4.3. Integrable systems. The degenerate DAHA are connected to the theory of the Olshanetsky-
Perelomov integrable systems, aka generalized Calogero-Moser integrable systems. In this section
we elaborate on this connection. Here, we treat the differential case (i.e., rational DAHA,) the
difference (i.e., trigonometric) case can be done by similar methods, see e.g. [C1]. Recall that we
have a root system R ⊆ V ∗ ∼= V , where V is a vector space with nondegenerate form 〈·, ·〉. For the
rest of these notes, we specialize to t = 1.

Definition 4.3.1. The quantum Olshanetsky-Perelomov Hamiltonian of R is the differential op-
erator

H := ∆V −
∑
α∈R+

cα(cα + 1)〈α, α〉
α2

where ∆V is the Laplace operator on V , and cα ∈ C are such that cα = cw(α) for every w ∈W .

Example 4.3.2. Perhaps, the quantum Olshanetsky-Perelomov Hamiltonian has the clearest phys-
ical meaning in type A. Here (taking V = Cn instead of Cn−1) we have

H =
n∑
i=1

∂2

∂x2
i

−
∑

1≤i<j≤n

2c(c+ 1)

(xi − xj)2

which is the quantum Hamiltonian for a system of n particles on the line interacting with potential
c(c+ 1)/(xi − xj)2.

Our goal is to see that the quantum system defined by the Olshanetsky-Perelomov Hamiltonian
is completely integrable. Let us be a bit more explicit about this. Consider the action of the Weyl
group W on the symmetric algebra S(V ). According to the Chevalley-Shepard-Todd theorem, the
algebra of invariants S(V )W is polynomial, with algebraically homogeneous generators P1, . . . , Pn of
degrees d1, . . . , dn, respectively. Recall also that we have the symbol map, D(V )→ S(V ∗)⊗ S(V ),
that to each differential operator associates its symbol. Note, however, that we need a slight ex-
tension of this: the hamiltonian H does not belong to D(V ). We can consider the principal open
subset V reg that is the complement of the union of the hyperplanes 〈α, ·〉 = 0. Then, we have a
symbol map σ : D(V reg)→ C[V reg]⊗ S(V ). For example, σ(H) = P , where P (p) = 〈p, p〉, and we
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use the inner product on V ∗ that is dual to the inner product on V . Note also that σ(H) ∈ S(V )W .

In the sequel, we will assume that V is an irreducible representation of W . So σ(H) = P1 where,
recall, we denote P1, . . . , Pn the algebraically independent homogeneous generators of S(V )W .

Theorem 4.3.3. The system defined by the quantum Olshanetsky-Perelomov Hamiltonian is com-
pletely integrable. More precisely, there exist algebraic differential operators H1, . . . ,Hn on V reg

such that:

(1) H1 = H.
(2) σ(Hi) = Pi.
(3) [Hi, Hj ] = 0.

Remark 4.3.4. If we do not assume that V is an irreducible representation of W , then Theorem
4.3.3 is still valid with the exception that (1) should be replaced by H2 = H, see e.g. Example 4.3.2,
where we have Pi =

∑n
i=1 x

i.

The idea to prove this theorem is similar to what we have done in Section 3.2. So, first of all, if
f =

∑
w∈W fww is an operator on V reg, where fi ∈ D(V reg), define

Res(f) =
∑
w∈W

fw

So that Res(f) is a differential operator. Note that if g isW -invariant, then Res(fg) = Res(f) Res(g)
for any operator f of a similar form. Now let y1, . . . , yn be an orthonormal basis of V . So, consid-
ering the algebra C[y1, . . . , yn] ⊆ Hrat as an algebra of operators on V reg, which we can do thanks
to the Dunkl representation, we have the following result, which is proven similarly to the results
in Subsection 3.2.

Lemma 4.3.5. For every f ∈ C[y1, . . . , yn]W , denote Lf := Res(f). Then, {Lf : f ∈ C[y1, . . . , yn]W }
form a commuting family of differential operators with coefficients being rational functions on V
regular on V reg. Moreover, σLPi = Pi.

So what remains to do is to relate the operator H to LP1 .

Proposition 4.3.6. We have

LP1 = ∆V −
∑
α∈R+

cα〈α, α〉
α

∂α∨

Proof. We need to compute Res(
∑n

i=1D
2
yi), where we denote Dyi := Drat

yi . First of all, note that

Res(D2
yi) = Res(Dyi∂yi). Now, for every y ∈ V we have

Dy∂y = ∂2
y −

∑
α∈R+ cα

〈α,y〉
α (id−sα)∂y

= ∂2
y −

∑
α∈R+

〈α,y〉
α (∂y(id−sα) + [∂y, sα])

= ∂2
y −

∑
α∈R+

〈α,y〉
α (∂y(id−sα) + 〈α, y〉∂α∨s)

From where the result follows easily. �

Let us denote H := LP1 . It is not the quantum OP Hamiltonian, but we can get H via an
automorphism ϕ : D(V reg) → D(V reg), which is defined by ϕ(f) = f , f ∈ C[V reg], ϕ(∂y) =

∂y −
∑

α∈R+ cα
〈y,α〉
α . It is an exercise to check that ϕ indeed defines an automorphism of D(V reg).

The next result finishes the proof of Theorem 4.3.3.

Lemma 4.3.7. We have ϕ(H) = H.
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Proof. We have

ϕ(∂2
yi) =

(
∂yi −

∑
α∈R+ cα

〈α,yi〉
α

)2

= ∂2
yi −

∑
α∈R+ cα〈α, y〉(∂yiα−1 + α−1∂yi) +

∑
α,α′∈R+ cαcα′

〈α,yi〉〈α′,yi〉
αα′

= ∂2
yi − 2

∑
α∈R+ cα〈α, yi〉α−1∂yi +

∑
α∈R+ cα

〈α,yi〉2
α2 +

∑
α,α′∈R+ cαcα′

〈α,yi〉〈α′,yi〉
αα′

So it follows that

ϕ(∆V ) = ∆V −
∑

α∈R+
cα
α

∑n
i=1 2〈α, yi〉∂yi +

∑
α∈R+

cα
α2

∑n
i=1〈α, yi〉2 +

∑
α,α′∈R+

cαcα′
αα′

∑n
i=1〈α, yi〉〈α′, yi〉

= ∆V −
∑

α∈R+
cα
α 〈α, α〉∂α∨ +

∑
α∈R+

cs(cs+1)〈α,α〉
α2 +

∑
α 6=α′∈R+ cαcα′

〈α,α′〉
αα′

Thus, ϕ(H) = H +
∑

α 6=α′∈R+ cαcα′
〈α,α′〉
αα′ , and to prove the lemma (and hence Theorem 4.3.3)

we just need to show that this last term, which we denote by P , is 0. First of all, note that the
term is clearly W -invariant. Now denote

δ :=
∏
α∈R+

α

which is sign-invariant. So δP is sign-invariant. This is a polynomial of degree n − 2. But the
smallest degree of a nonzero sign-invariant element in S(V ) is n. Thus, δP = 0, and so P = 0. �
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