LECTURE 2: DOUBLE AFFINE HECKE ALGEBRAS

JOSE SIMENTAL

ABSTRACT. These are notes for a talk given at the MIT-Northeastern Graduate Student Seminar
on Double Affine Hecke Algebras and Elliptic Hall Algebras, Spring 2017.
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1. GOALS AND STRUCTURE OF THE TALK

This talk introduces one of the main objects of study in our seminar: the double affine Hecke
algebra (DAHA). We will make the definitions in great (but not complete) generality, and we will
emphasize the gl,, case. In the first part of the talk we will briefly recall from Seth’s talk the
main ingredients for the construction of DAHA: the affine Hecke algebras and Cherednik’s basic
representation. After this, we will give the definition of DAHA and exhibit an explicit basis of it.
We will then spend some time looking at two explicit cases: the DAHA for A; and that for gl,,. In
particular, we will give explicit presentations by generators and relations, present their trigonomet-
ric and rational degenerations, and exhibit a large group of automorphisms of the DAHA for gl,,.
After that, we will study certain operators on the polynomial representation of DAHA. The im-
portance of these operators is that, first, they can be used to form a big commuting family of
difference operators on the group algebra of the weight lattice and, second, they are connected to
Macdonald polynomials, which is the topic of a subsequent talk in this seminar. The study of these
difference operators naturally leads to the definition of spherical DAHA. We finish the notes with
a discussion of trigonometric and rational degenerations in the general setting, the description of
(trigonometric, difference-rational and rational) Dunkl operators, and applications to the theory of
quantum integrable systems.
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2. DOUBLE AFFINE HECKE ALGEBRAS

2.1. Reminders.

2.1.1. Root systems and Weyl groups. We will work with affine root systems that are of the form
R*, where R is an irreducible finite root system (so, for example, we will ignore the affine root
systems of the form (C)/,C,,), etc.). Throughout these notes, we will use the following notation.

e {a1,...,a,} denotes the set of simple roots and {ay, ..., } the set of simple co-roots of
R.

e (), QY denote the root and coroot lattice of R, respectively. Similarly, P, PV denote the
weight and coweight lattice of R, respectively.

o W :=(s1,...,8,) is the Weyl group of R, where s; denotes the reflection s, .

e ag:=—0+ 9, so that {ag, a1,...,a,} forms a set of simple roots for R®.

o W% := (sg,...,sy) is the Weyl group of R?, aka the affine Weyl group. Recall that we have
an isomorphism

W =W x t(Q")

o W2 =W x t(PV) is the extended affine Weyl group.

e () C W? denotes the subgroup of all elements of length 0. This is a finite subgroup of
W€ acting faithfully on the set of simple roots {ap, ..., a,}, and it is actually isomorphic
to PV/QV.

e We have an isomorphism

W* =Qx We
where the action of Q' on W is given as follows: if 7, € Q' is such that m.(oy) = o, then
TI'TSM'T_1 = S;.

2.1.2. Affine Hecke algebras. Throughout this talk, 7 := {7,...,7,} will denote a collection of
formal variables such that 7; = 7; whenever the reflections s; and s; are conjugate in W, and let
C; := C(79,...,Tn) denote the field of rational functions in these variables. Recall that we have
the affine Hecke algebra H, of W, which is a quotient of the group algebra C.B®, where B is
the extended affine braid group. We have two presentations of this algebra.

The Coxeter presentation. H, = C,(Tp,...,T,,2) with the following relations.
(a) T;T; --- =T;T; - - -, where term has m;; factors.

(b) (T; = 7)(T; + 7,7 1) = 0.
(¢) mTim, b =Ty, if mp(y) = .

The Bernstein presentation. H, = C.(T1,...,T,, YPV> with relations:

(a’) Relations (1) and (2) above for the Tj.

(b)) YAYH = YA,

(¢)) T,Y = Y T if (A, a;) = 0.

(@) TY 5Ty = YA if (A, o)

1.

2.1.3. Cherednik’s basic representation. Let us now recall Cherednik’s basic representation of the
affine Hecke algebra H,. We let ¢ be a variable, and consider the affine Hecke algebra defined
over the field C,, := C,(¢"/®), where e is such that (P, PV) = 17. Now let C4-[X] denote the
group algebra of P. Note that this contains C, [)?], the group algebra of the affine weight lattice
P=Pa Z6, by setting X 7 := ¢"X*. So the extended affine Weyl group W acts on C, . [X]
by setting, for w = t(A\)v, A € PV,v € W and p € P,
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w(XH) = X0 = g=Avlw) xvl)

We have that C, ,[X] becomes a H,-module via the formulas:

Ty > Ty T € Q)
1y S —id
Ti misi+(ti =7 ) gar
Let us be more explicit on the action of Ty. Recall that ag = —60+ 4, and that we are identifying
g = X%, So it follows that soX# = X#—(=0+0){w—0") — xu(q=1x0)(=0") Thus,

,0=0,...,n

gX—? -1

In particular, if (u, —60Y) = 0, then To(XH) = 170 XH, while if (u, —60") = 1, then To(XH) =
Toq P XM — (19 — T()_l)q’IX(’U““.

Vv —1x0 <u7_9\/> _
To: X' <TO(QIX0)<“’9 '+ (10 - T()_l)(q x) 1) XH

2.1.4. The induced representation. Let us denote by HX the affine Hecke algebra for the root
system (RY)%. In particular, we have the Bernstein presentation for this Hecke algebra, which is
completely analogous to the Bernstein presentation above. We have the induced representation of
HX on C,.[X], where the X# act by multiplication and the T} act by

Si—id

EHTiSi_"(Ti_Ti_l)m,i: 1,...,n

Let us remark that the induced representation of HX on C,[X] is obtained by the eponymous
representation on C;[X] by base-change to the field C ;.

2.2. Double affine Hecke algebras. We are now ready to define the double affine Hecke algebra
for R. The idea here is to glue together the affine Hecke algebras H, and HX along their common
representation C, -[X].

Definition 2.2.1. The double affine Hecke algebra H := H(W) is the C, r-algebra generated by
elements Ty, ..., Ty, 0, X with relations.

(1) The relations (a)-(c) above for the affine Hecke algebra between Ty, ..., T, and Q.
(2) Denote oy := —6". Then, fori=20,...,n:

XM = XPT,  if (g,a)) =0
TXF = X5WTif (o)) =1
(3) mpXtg L= X7,
Definition 2.2.2. Note that, by its very definition, the DAHA H admits a representation on the

space Cq4[X], where X* acts by multiplication and both m, and T; act as in Cherednik’s basic
representation. We call this representation the polynomial representation of H.

Note that, by Matsumoto’s theorem, if w = o, ... q;
then we have a well-defined element T, € H.

. is a reduced decomposition of w € W¢,

Theorem 2.2.3 (PBW theorem for DAHA). Fuvery element h € H can be uniquely written in the
form

h = g aprw X 1 Ty Qprw € Cor

neP
€N
weWe
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The existence of such an expression for h is a standard exercise. The uniqueness is harder.
We will use a standard trick that we have already seen in Seth’s lecture: we will write down a
representation of H in a space in which the operators X*#m,T;, are linearly independent. It turns
out that we already know such a representation: the polynomial representation, cf. Definition [2.2.2

Theorem 2.2.4. Consider the polynomial representation C,,[X]| of H. Then, the operators
{Xtm, Ty : p € P € Quw € W?} are linearly independent over the field Cy . In particular,
the polynomial representation is faithful.

Proof. Note that, even though the operators m,T,, are not C, ,[X]-linear, we still have an action
of Cy,[X] on Endc(Cy (X)), f: o+ (z+— fe(z)). It clearly suffices to show that the operators
{m,Tw}pepwewe are linearly independent over C,.[X]. In order to do this, we will relate this
action to the action of the extended affine Weyl group W on C, ,[X], which we know from Seth’s
talk it is faithful.

Recall that for ¢ =0,...,n, T; acts via the operator:

_1y si—id m— 1} AW
T; = 7isi + (13 — 7, 1)ﬁ: <Ti+)z(a¢_21> Si ()Z(O‘l—ll> i

It follows that, for m.w € W%, w € W%, we can write

T Ty = Z fw’,wﬂ'rw/
w!' <w
where f, ., € Cq-(X) are rational functions on X and the order on W* is the usual Bruhat order.
Note that fy, . # 0.

Now assume that we have a linear combination of the form

Z gr,w(X)ﬂ'rTw =0

TTrEQN
weWwe

where g, € C,-[X] are not all 0. It follows from the above that we get

Z Grw (X)fr,w’,w (X)ﬂ'rw, =0
wEW* m.€0
w' <w
The operators m,w are all distinct, since the representation of W® on C, -[X] is faithful, and
can be extended to automorphisms of the field C,(X) (= the field of quotients of C, .[X]). It
follows that the operators m,w are linearly independent over the field C, ,(X). So for every m, € Q,
w € W% we have

Z gnw’fr,w,w’ =0

w!'>w
If we pick wg € W such that wy is maximal w.r.t. the Bruhat order in the set {w € W®: g, #
0 for some 7, € Q} then we get gy, frwe,w, = 0. But since fr 0w, # 0, this is a contradiction.
We are done. ]

Corollary 2.2.5. We define the following subalgebras of H.:

(1) HX :=(Ty,..., T, X*(u € P)).

(2) HY = (Tp,..., T, Q).

(3) H:=(Th,...,Ty).

Then, HX is (isomorphic to) the affine Hecke algebra for the root system RY; HY is (isomorphic
to) the affine Hecke algebra for the root system R; and H is (isomorphic to) the finite Hecke algebra
of W.
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Recall from Seth’s talk the definition of the elements Y* € HY, A € PV. Namely, Y := Ty if
A € PY, while Y := Y#(Y¥)"1if A = y — v with pu,v € PY. Since HY is an affine Hecke algebra,
the elements Y are well-defined. The following result follows immediately from Seth’s talk.

Theorem 2.2.6 (PBW theorem for DAHA, v2). Every element h € H can be uniquely written in
the form

h= arxuwX"Y Ty, aruw€ Cyr
AepPY
pneP
weW
Let us remark that the weight and co-weight lattice play a symmetric role in the definition
of DAHA. In order to state this precisely, let wq,...,w, be the fundamental weights of R, so

{wi,af) = d;5, and denote by wy,...,w, the fundamental coweights. We will denote X := X,

Y; =YW
Theorem 2.2.7. The following assignment can be extended to a C-automorphism of H.:

1

XimYi, Yim X, Tj=To! merl g gt

We will not prove Theorem [2.2.7] in full generality. We will show it for specific types of root
systems below. Let us remark that a consequence of Theorem [2.2.7]is the following.

Corollary 2.2.8 (PBW theorem for DAHA, v3). Every element h € H can be uniquely written in
the form

h= " axuwY X"y, aruw € Cqr
AepY
pnepP
weW
Note that we could have also defined H to be an algebra generated by T1,...,Th_1, X7, yrY
with certain relations. Of course, the relations among (7;, X*) or among (7}, Y?) can be explicitly
written - they are just the relations of the affine Hecke algebra. But it is not easy to write the
relations among (X*,Y?). We will give a couple of examples where these relations can actually be
written. As we will see, they are topological in nature.

2.3. Example: DAHA for A;.

2.3.1. Generators and relations. We give explicit generators and relations for the DAHA of A;. So
we have that the (co-)root lattice is Q = QV = Za and the (co-)weight lattice is P = PV = Zp,
with p = /2. Let us denote s = s,. We have that Q = {1, 7,}, we denote 7 := 7, = t(p)s. Setting
now X := X”, we have that the DAHA H is generated by Ty, 71, X*! and 7. Note, however, that
Ty = w117, so we may ignore Ty from our list of generators. Thus, we have

TXT = X1, aXnl=¢X 1,
H—‘C%T<X’T’”>/{ =1 (T-m)(T+r)=0 }

Setting Y := 7T, we have the following alternative presentation of H:
TXT=X"' Y IX'VYX=q¢'T2
H=Cpr(X.1.Y) { TYT=Y, (T—1)(T+r =0

Note that this presentation reveals a symmetry between X and Y. The following proposition is
obvious, note that its second part is a special case of Theorem [2.2.
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Lemma 2.3.1. We have a C,; anti-involution ¢ : H — H°PP, defined on generators by the following
formulas

HX)=Y"! p(Y)=X"1, §T)=T

and a C-involution ¢ : H — H, defined by

eX)=Y, e(Y)=X, e(T)=T71, e(r)=71""Y elq) =q!

2.3.2. The polynomial representation. Let us give formulas for the action of the elements X, Y, T
on the polynomial representation C, -[X]. First of all, we have that the action of T" is given by

s —id

s+ (1 — 7_1)7X2 —

while the action of t(p) is given by ¢(p)(X) = ¢X. Moreover, for a Laurent polynomial f(X) €
Cy,r[X], we have that t(p) f(X) = f(¢X), so that m(X) = t(p)s(X) = ¢~ X L. Thus, we have

_id
Y= =« TS—%-(T—T*l)S ! )

X2 -1
= Tt(p)+ (7 — 7'_1)71';((2_)_ld1
tp) —m
_ —1

= 7o)+ (7 = ) s

= o) (7 =T )

So, for example, we get Y (X") = 771 (¢" X" + ¢"2X" 2 4 ... 4 ¢> X2 "). The operator Y is
known as the difference-trigonometric Dunkl operator.

2.3.3. Topological interpretation. Let E = C/A be an elliptic curve, where we take the lattice
AN=7Z®7Z¢. Let 0 € F be the zero point, and consider the automorphism —1 : x — —z of E. Note
that w1 ((E \ {0})/Z) is trivial, as (E \ {0})/Z2 being a disk is contractible. We will consider the
orbifold fundamental group 7™ (E \ {0}/Za,x), where x € E \ {0} is a generic point (i.e., not one
of the three branching points of E \ {0} — (E \ {0})/Zs).

Let us recall that the orbifold fundamental group is generated by homotopy classes of paths in
E\ {0} from z to £z, with multiplication defined by =y o 75 is 72 followed by —~1, if 72 connects
x to —x. So we have an exact sequence

1 — m(E\{0},z) = 7y ((E\ {0})/Za,x) — Zg — 1,
i.e., 7" (E\ {0}/Zs, ) is an extension by Zs of the group 71 (E \ {0}, ), the fundamental group
of the punctured torus. The latter group has three generators, X (the “horizontal” cycle of the
torus), Y (the “vertical” cycle of the torus) and C (a loop around the missing point 0). The
orbifold fundamental group 7¢™(E \ {0}/Z2, ) is then generated by X,Y and an element T (a
half-loop around 0) connecting = to —z such that 72 = C.
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o -
! !

The elements X, Y, T satisfy the relations

TXT=X"' TY-'T=Y, Y X lvYXT1?°=1
Let us show, for example, the first relation, which says that TXTX = 1. So we have to first go
through the loop X, then through the path 7', and then through the path — X, since the endpoint
of T'is —x. Finally, we go through the path —7T'. It follows from the following picture that this
path is null-homotopic.

)

So we see that H can be seen as a quotient of the group algebra C,,m¢™((E \ {0})/Za, ),
as follows. First of all, recall that out base field C,, includes ¢*'/2, since (p, p) = 1/2. Now set
T := g 2T, X = 72X, Y = ¢ Y2Y | so that )Af, )7, T satisfy the relations of H with the exception
of the quadratic relation for T. Thus:

H = (Cq,Tﬂ'?rb(E \ {0}/Za, $)/((T _ ql/QT)(T n q1/27’_1))

2.3.4. Trigonometric degeneration. Now let h, ¢ and t be variables. Set Y := exp(hy), q := exp(th),
T := ¢ = exp(hitc) and T := sexp(hcs), where s € Sy is the non-trivial element. We can consider H
as a C[[h, ¢, t]]-algebra, with the same generators and relations as above. Then, H/AH is generated
by s,y and X, with relations

s2=1, sXs=X"1 sp+gs=2c, X 19X —g=1t—2cs
We call H'™8 := C[e, t](s, X,§) with the relations above the trigonometric DAHA of A;.

Lemma 2.3.2. Every element h € H'™& can be uniquely written as

h= g AminX"S'Y", amin € Cle,t]
meZ
nGZEO
i=0,1
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The lemma again can be proved using a faithful representation of H"&. Here the space is
Cle, t][X*!]. The element s acts by X ~ X! and X acts by multiplication. To give the action of
7, first define the trigonometric derivative by 9(X) = X. Then, ¢ acts by the trigonometric Dunkl
operator

D'ig .=t — 2¢ (id —s) + ¢

1
1—X-2
This is known as the differential polynomial representation of H™&. We also have a different
polynomial representation of H", which stems from the fact that the variables X and 7 are not
symmetric. This is an action of H'"8 on Cle, t][§]. Note that we have an action of Sy on Clc,#][7],
where s acts by y +— —y. Then, s € H™# acts on Cle, t][§] via the operator

c
S:=s——(s—1id
y( )

To define an action of X, let 7 : Cle, t][y] — Clc, t][g] be defined by f(y) — f(—9 +t). Then,
X acts via the operator mS. This is known as the difference-rational polynomial representation of
H'™&. The operator 75 is known as the difference-rational Dunkl operator.

Corollary 2.3.3. The following are subalgebras of H™E:

(1) The group algebra of the extended affine Weyl group for Aj : it is isomorphic to the subalgebra
of H™& generated by s, X .

(2) The degenerate affine Hecke algebra for Ay: it is isomorphic to the subalgebra of H'™®
generated by s, 7.

2.3.5. Rational degeneration. Now in H™8 set X = exp(hz) and y = hg. Then, modulo A, the
elements s, x, ¥y, satisfy the following relations

=1, sx=—xs5 sy=—ys yr—ay==t—2cs

Define the algebra H'*' := C|c, t](s, z,y) with the relations above. This is known as the rational
DAHA of A;.

Lemma 2.3.4. Every element h € H'™ can be uniquely written in the form

h= Z am7i7nxmsiy", am,in € Cle, t]
mneZ
i=0,1
Lemma may be proven using the polynomial representation of H'. This is the represen-
tation on Cle, t][z], where s acts by z — —x, x acts by multiplication and y acts by the rational
Dunkl operator

d 1
Dt = t% + c;(s —id)

2.4. Example: DAHA for gl,.

2.4.1. The affine Hecke algebra for gl,, revisited. We will now define the DAHA for gl,,, which is
different (but closely related to) from the DAHA of type A,. So the first step is to study the affine
Hecke algebra for gl,,, which has already appeared at the end of Seth’s talk. Recall that we denote
C, := C(7), the field of rational functions on the variable 7.

Definition 2.4.1. Let n > 0. The affine Hecke algebra of gl,,, H, is the C.-algebra with genera-
tors Ty, ..., Tp_1, Ylil, .., YEL and relations
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(Quadratic relations) (T; —7)(T; +77 1) =0, fori=1,...,n—1.
(Braid relations) TTin T, =Ty TiTip fori=1,...,n—2; TT; =T,T; if i — j| > 1.
(Action relations) ’.Z}_lYiTi_1 =Y, i=1,....n—-11T;Y; =Y;T; if j #i,i— 1.
(Laurent relations) — Y;iY; = Y;Y; fori,j=1,...,n; ;Y71 =1.
In order to define DAHA, we will need Cherednik’s basic representation for H,. This is more

easily given in the Coxeter presentation, so we will need an analogue of the Coxeter presentation
of H,. Let us introduce the following element of H,,:

Ti= T1_1 .. 'TZ'__11Y;_1Ti N
Note that, thanks to the action relations, the element 7 is well-defined, i.e., it does not depend
oni=1,...,n. So, for example, T = Yl_lTl T = Tl_1 . --Tn:llYn.

Lemma 2.4.2. The element ©™ is central in H,,.

Proof. We have

- (ylflTl .. 'Tn71)(YflT1 oo Tpq) - (YflTl o Thly)
= y1—1y2—1 YA Ay Ay,
where A; = T1_1T2_1 . ~Tn__1z-Tn_,~+1 -+ Th_1, so, for example, A1 = T1_1T2_1 . -Tnill and A, =
TiT5---T,_1. We claim that A1As--- A, = 1, note that this will finish the proof of the lemma.
Indeed, this can already be seen in the braid group B,,: first of all, the associated permutation in
Sy, of every A;’s is the cycle 1l » n—»n—1+ ---+— 2+ 1, and the n-th power of this cycle is the
identity. So Ay --- A, is, at least, an element of the pure braid group.

Now note that, in A;, the strand starting at 1 passes below the strands starting at 2,...,n — 1
and above the strands starting at n —i+ 1,...,n — 1. So, in the product A;---A,, the strand
connecting 1 to 1 passes below all other strands; the strand connecting 2 to 2 passes above the
strand connecting 1 to 1 and below all other strands and, in general, the strand connecting i to ¢
passes above the strand connecting j to j if j < ¢, and below the strand connecting j to j if j > i.
So Ay--- A, =1. O

Lemma 2.4.3. We have tTyn ' =Ty q,i=1,...,n— 2.

Proof. Here we use m = T, - T, V,,. So

alm = (T7 T YY) LY, T - Th)
= (I T)TGATT)(T - )
Now we use the identity T;llTZTzH = TiTiHTfl, which follows immediately form the braid
relation involving ¢, ¢ + 1. From here, the result follows easily. ]
Theorem 2.4.4. The affine Hecke algebra H, is generated by T4, ..., Ty_1, 7" with relations:

(1) The braid and quadratic relations involving the T;.
2) Tt =Tyq,i=1,...,n—2.
(3) @™ is central.

Proof. Let H!, denote the algebra defined in the statement of the theorem. Define

Y, =T, .Tnflﬂ—lel .. Tf_l1
We have to check that the Y;’s satisfy the action and commutativity relations. Let us check the
action relations. First of all, it is clear that T[lYinl =Yy, fori =1,...,n. Now, if j > i we
have
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T;Yi= TTiTiy1-- Ty T T4

)

= T TjTj1Tj - .Tnflﬂ—lTl—l .. T;11

T Tj—lTj .. Tn—lTj—lﬂ'_lTl_l .. Tz__ll
Ty T yn T T

= YiT;
and if j <7 — 1 we have
T;Y; = T Ty Tym Tt T
= Ty Tyoam Ty Iyt T2
= T, T, 17T_1Tf1 . T]JrllT T]*+1 T 1
= T Tpqn Ty} T TJHTTJ_+2 ST
_ Y;Tj

Let us proceed to the commutation relations. We prove them in several steps.

Step 1: If Y1Y; =Y, Y1 for every j = 1,...,n, then Y;Y; =YY, for everyi,j =1,...,n. Indeed,
assume that ¢ < j. Then, using the action relations that we have already shown:

VY= Th e TTT T
— Tz:il --T_lYlYT_l-- Tz%
- ] 1 R |
= Y]Y;

Step 2: If V1Yo = YY1, then Y1Y; = Y;Y1 for every j = 1,...,n. This is done similarly to Step 1.

Step 3: V1Y = Y2Y7. We need to show that V177 'YiT; = Ty 'YAT7 'Y1. The left-hand side of
this equation becomes

NI NI = Ty Ty MV Ty YT

2.4.1 _
( ) = Ty Ty 1Ty Tn—27T72T1 1

And the right-hand side becomes

'Y = 1M Ty M T

2.4.2
( ) = Ty ---Tp 1T -- 'Tn—27T_2

Now we use that 7" is central in /. Indeed, we have 7~ "Ty7n"™ = Tj, which implies that

7 2Tyn? =T, 1, or Tiw? = w2T),,_1, so 7r_2T1_1 = 7;117r_2. We use this on the right-hand side of
Equation 1} Now inductively use the identity Ti_lel = T;lTif_llTiTi_l, together with the
braid relations, to get an equality with (2.4.2]). O

We also need an analog of Cherednik’s basic representation. This is given by the following.

Theorem 2.4.5. The following assignment defines a representation of H, on the space (Cq,T[Xlil, .. ,Xﬁfl]:
_ S; — id
T 7si+(r—17H—r
' s T X X4

ﬂ.(Xill - Xgn) — qfanXilnXgl . X%n—l



LECTURE 2: DOUBLE AFFINE HECKE ALGEBRAS 11

Proof. We need to check that these operators satisfy the relations of H,. That the T; satisfy
the braid and quadratic relations is very similar to what Seth has already done. Note also that
XM X)) = g X% XM ... X%, Since the operators T; preserve the grading, it follows
that they commute with 7#”. The only relation we need to check now is that «nT; = T; 17 for
i=1,...,n— 2. This is clear. ]

Let us examine the relations between the operators X; (multiplication) and 7. First of all, it is
clear that for i = 1,...,n — 1, we have that 7X; = X;, 7. For i = n, we get 7X,, = ¢ ' X 7. And
since 7™ is a grading operator, we get that 7"X; = ¢~ ' X,;7".

2.4.2. Generators and relations. The DAHA for gl, is the C, ;-algebra generated by the operators
T;,7 =1,...,n—1, X;,;t = 1,...,n and 7. Let us give a precise definition by generators and
relations.

Definition 2.4.6. The DAHA H,, is the C, +-algebra generated by T1,...,T,_1, Xlﬂ, o, XEL L

with relations:

1) The quadratic relations for Ty, ..., Tp_1: (T; — 7)(T; + 771) = 0.

2) The braid relations for Tv, ..., Tn—1: TiTi1 Ty = Ty TiTip1, T,T; = T3T; of i — 5| > 1.

3) The Laurent relations for Xli, . ,Xﬁf: X X; = X;X;, Xin-_l = Xz-_lXi =1.

4) The action relations involving T;, X;: Ty X;T; = Xipq if i = 1,...,n — 1; T;X; = X;T; if
i #J,J— L

5B) X = Xpymi=1,...,n—1; ; 7"X; = ¢ 1 X;7".

6) 7T; =Tipm,i=1,....n—=2; 7"T; =T;x",i=1,...,n— 1.

(
(
(
(

Remark 2.4.7. Let us remark that the relations X, = ¢ ' X 17 and 7°T,_1 = T\7w? are formal

corollaries of the relations (5), (6) in Definition [2.4.6,

Now set

Y, =T, -Tn,lﬂ_lel - T;11 € H,

It is clear that the Y;’s satisfy the Laurent relations, as well as the relations

T YT =Y, TY;=YTiti#5,j—1

Let us examine the relations of Y; with X;. First of all, since Y7 ---Y,, = 77"

, we get

(2.4.3) YX; = ¢X;Y

where Y := Y- --Yn.~Now, S(itting X = X1+ X, we have that X commutes with all the Ti’s
while we have that 7.X = ¢~ ' X7. This easily implies that

(2.4.4) XY; = ¢ 'YX,

Finally, we have the following relation.

Y, ' X Vo XM= (TynTh - Ty D)X (T Tooan T D X!
Tt Ty Ty Ty Xy T X

Ty (n Xy DT X!

T Xo(T XY Ty

Ty (Xo X5 Iy

= T%

(2.4.5)
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Theorem 2.4.8. The DAHA H, is isomorphic to the C,r-algebra generated by Ti,...,T,_1,

Xlﬂ, cee, Xﬁfl, Ylil, e ,YnjEl subject to the following relations.
(1) The quadratic and braid relations for Ty,...,Tn—1.
(2) The Laurent relations for {Xi', ..., X'} and for {Y{, ... Y, FY.
(3) The action relations for (T;, X;) and for (T3,Y;).
(4) Relations (2.4.5), (2.4.4) and (2.4.5).

Proof. Let H, denote the algebra defined in the statement of the theorem. Define 7 by

= Tfl .. Tlf_llylflTi Ty
Thanks to the action relations involving 7" and Y, 7 is independent of . We need to check
that T7,... ,Tn_l,Xlﬂ, .. .,X,“L—Ll,w satisfy the relations of H,,. Note that we only need to check
the relations involving 7= and X;. Moreover, since 7" = Yl_1 .- Y, 71 we only need to check that
wX; = X;pmw for i =1,...,n — 1. Furthermore, note that because of the action relations involving
T, X and the relations n’l; = T;41m, we only need to check the relation 7X; = Xom. Using the

relation ([2.4.5) we have

Xy = Ty, 'y T 1 Xy
= 7Y, ' X)Te - T
= Ty HT2X1 Yy DT Ty
= T X (TIHYY, M- T,y
= (X )Ty Yy ‘T Ty
= X27T
and the result follows. ]

Just as in the A; case, the T, X, Y presentation of the DAHA H,, has the advantage of revealing
a symmetry between the X and Y parameters.

Lemma 2.4.9. The following defines a Cy ,-linear anti-involution of H,

o X)) =Y, oY) =X, o(I})=T;, 1<i<n1<j<n-1

and the following defines a C-linear involution of H,,:

e(Xy) =Y, V) =X, 1) = T{l, e(r)=771 el@g=q¢' 1<i<n1<j<n-—1

Proof. For the first statement, we only need to check that the relation (2.4.5) is self-dual with
respect to ¢. Note that we can write this relation as:

1= T7Y, ' X xirt

= (7Y, T (X T )(T YTy (DX )T
= Y X(T I ) (TP X, T T

_ Y1—1X2T1—2Y1X2—1

(2.4.6)

which we can rewrite as T = Y1 X5 'Y ' Xo, and so (2.4.5) is self-dual with respect to ¢. Note
that this is also the equation required to prove that € extends to a morphism H — H. This finishes
the proof. O

Exercise 2.4.10. The following relations hold in H,,:

YaXYin X, =T YAX Y0 X =T T TPT

1 . .
i+l j+1 i1 Ty >0
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2.4.3. Topological interpretation. Let E be a 2-torus. Consider the n-fold product E™, and let
(E™M)9 = {(z1,...,2n) € E" : x; # xj if i # j}, C := (E™)"*9/S,,. The fundamental group m(C)
is known as the elliptic braid group.

Lemma 2.4.11. We have m(C) = (Th,...,Tp—1, X1, .., Xn, Y1, ..., Ys) with relations

LT T = Ty 1T T;T; = T;T; if |i — j| > 1, XiX; = X;X;
Y;Y; =Y}V, T,X:T; = Xit1 T, YT =Y
T,X;=X;Tii#j,j—1  TY;=YTi,i#j,j—1 Yy ' X Yo X[ =17
(Yl"‘Yn)Xj:Xj(Yl"'Yn) (X1"'Xn)Yj=Yj(X1'”Xn)

In the previous lemma, the generator X; corresponds to the ¢-th point going around a loop in
the “horizontal” direction on E; Y; corresponds to the i-th point going around in the “vertical”
direction on E; while T; corresponds to the transposition of the i-th and (i 4+ 1)-th points. Let us
remark that, unlike the Ay case, it is not possible to renormalize the generators so that the DAHA
H,, becomes an honest quotient of the group algebra of 71(C'). However, one may form a twisted
group algebra, which is a deformation of the group algebra 71 (C) arising from a central extension
of m1(C) (so that the central element z becomes ¢ in the twisted group algebra) and we indeed have

H, = Cy5m(C)/(Ti = T)(Ti + 77 1))i=1,.n1

2.4.4. From gl,, to sl,. Let us explain how to recover the DAHA for the root system A,_; from
H,,. First of all, in the lattice generated by Y; we must have Y7 ---Y,, = 1. Thus, we pass to the
algebra

H, :=H, /(7" — 1)
In this algebra, we take the subalgebra generated by Ti,...,T,_1, the elements Y; := Y; --- Y},
i =1,...,n — 1 and their multiplicative inverses, and the elements X; := X - ~Xi()N()_i/”. We
remark that the element X does have an n-root in H,, (this can be seen, for example, using the
automorphism € defined in Lemma and using the fact that Y = 7w~ ™) so this expression makes
sense. We also take X, ' This subalgebra is isomorphic to H(A,_1).

2.4.5. Trigonometric degeneration. Let us introduce the trigonometric degeneration of the DAHA
H,,. This is done completely analogously to the A; case. So the first thing we need to do is to think
of H,, as a C[t, c|[[h]]-algebra. Set

th he

. hy; R __ . hes
Yi:=e", q:=¢€" r1:=¢" Tj:=s;e",

i=1,....n, j=1,...,n—1

where s; € S, is the transposition (i,7 + 1). We have H&'® := H,, /AH,. So H' is generated by
si,t=1,...,n — 1, Xiil, 1 =1,...,n,and ¢;, © = 1,...,n. We have s? = 1. From the identity
T X;T; = Xiq1, we get s;X;8; = X;41. Let us now examine the identity Ti_lYZ-Ti_1 =Yit1, we have

g3 QQ g3 Q2
(si—hcs?%—hzz—‘l—i—...)(1+hg)i+h22—l‘—|—...)(si—hcs?+h22—'l+...) = 1+hgi+1+h222—+'1+...
looking at the coefficient of i we get the identity s;4;5; — 2¢s; = ;41 or, equivalently,

82@1‘ — Qi_:,_lsi = 2c.

Similarly, we have the following relations:
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(O 4+ 9n)Xj = X;(E+ 1+ -+ Gn),
Xio Xngj = (—t +9;) X1+ Xa,
X192 X7 ! — G2 = 2¢s

Definition 2.4.12. The trigonometric double affine Hecke algebra for gl,,, Hgig, is the Cle, t]-
algebra with generators s1,...,Sp—1,Y1,- - - ,g)n,Xli, el X;L—L subject to the relations
(1) = 1 1= 1, cee,n— 1,‘ SiSi4+1Si = Si+1SiSi+1; SiSj == sjsi ’Lf |Z —_]’ > 1.

2)5XSZ:X1+1,SZX Xjsiifi# 4,5 — 1.
) $;Yi — szrlSz = 2c, Szy] = y]S’L ZfZ 7£] Jj—L
) (y1+ A 9n) X = X[+ G+ ).
5) X

6)

(
(3
(4
( ny] ( )Xl - X
( X1y2X — 2 = 2¢81

trig

Lemma 2.4.13. Every element h € Hy, ° can be uniquely written as a sum

h= Y apusPX)wf(®), apus € Clet]
PeC[XF]

Of course, the lemma is proven by means of an action of HE'® on its polynomial representation
Cle, t][ XY, ..., X, where s; acts by transposing the i-th and (i 4+ 1)-th variables, X; acts by
multiplication. Now, for i = 1,...,n, define the trigonometric derivative by 0;(X;) = d;;X;. So ¥
acts by the trigonometric Dunkl operator

1
Dtrlg — t@ + 20217

x (id —s45) — 2cis;
i#j

Corollary 2.4.14. The following are subalgebras of HYE
(1) The group algebra of the extended affine Weyl group of gl,,, which is isomorphic to the

subalgebra of HYe generated by s1,...,8n—1, de, N
(2) The degenerate affine Hecke algebra of gl,,, which is isomorphic to the subalgebra of M8
generated by S1,...,80—1,Y1, -+, Yn-

Let us remark that we also have a difference-rational polynomial representation of HY'®. This is
the representation of H''® on the space Cle, t][91, - - -, Un] which is defined as follows. The element
7; just acts by multiplication, the element s; acts by the Demazure-Lusztig operator:

1
SZ' = 57, — 267A N (51 — ld)
Yi — Yi+1
where §; is the operator on Cle, t][91, - . ., Jn] that transposes the variables ; and g;11. To state the

action of X, first define the operator 7 : Cle, t][91, . .., Un] — Cle, t][U1, - . ., Un] by

W(f(glvvgn)) :f@%---»ﬁm@l—t)

And now define the action of X; to be by the operator S;_1---S17wS,_1---.5;. This is known as
the difference-rational Dunkl operator.
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2.4.6. Rational degeneration. Now we define the rational degeneration for the DAHA H,,. Similarly
to what was done for the case of Ay, let X; = exp(hx;), y; := hy;. Then s1,...,80-1,Y1, -, Yn, T1, ...
satisfy the following relations modulo h.

SiTiSi = Tixl, Si¥iSi = Yiv1, Sivj =xjsi(i # J,j—1), siy; =vyjs:(i # 7,5 —1),
ity — Y = 2csi5, 0 # § (Y1 yn)ry =t ai(y o+ yn)

Note that, in view of all the other relations, the last relation is equivalent to y;x; — x;y; =
t —2c) ;4 sij- These are the defining relations for the rational DAHA of gl,,, Hrat,

Lemma 2.4.15. Every element h € HI*" can be written as

h = Z af,w,gf(x)wg(y)y Afw,g € C[C, t]

feClz]
wESy
9€Cly]
We have the polynomial representation Cle, t][x1,...,z,] of H''. Here, S, acts by permutation

of the indices, x; acts by multiplication, and y; acts via the rational Dunkl operator

d 1
D i=t— —2c id —si;
’ du; Z T — X ( )
JF#i
Let us remark that similar degenerations H"8, H"™" exist for a general root system R. This will
be the subject of Section [

2.4.7. Braid group action. The main goal of this section is to produce a braid group action on H,,
by algebra automorphisms.

Lemma 2.4.16. The following assignment can be extended to an automorphism of Hy,:

(2.4.7) () =T,i=1,...,n—1, p1(X;)=X;,7=1,...,n, pi(n)= Xflw
Proof. The only relation that is not immediate to check that it is preserved is n"7T; = T;n™. Using

the relations 7er._1 = Xijrlﬂr ifi<n

(X tm) - (X = XX - (rX
_ X1_1X2_1-~X,jl7r"

Which is the product of a symmetric polynomial in the X/s and 7”. Both terms commute with all
T;. From here, the result follows. O

For completeness, let us give a formula for p;(Y;). Recall that we have Y1 =T} - - - Tp_1m~ L, so

p1(Y1) =Ty T, 17 1 X1 = Y1 X;. Now, using the fact that TZ-_IY{T;1 = Y11 we get:
(24.8) p1(Yi) = ViXy(T 2y - T7 (T TY)

The following lemma can be checked similarly to Lemma [2.4.16

Lemma 2.4.17. The following assignment can be extended to an automorphism of H,:

(24.9)  pTy) =Ti=1,....,n=1; p2(Yj) =Y}, pa(X;) = X;Y(Tj1-- - T0)(T1 - - Tja).

Remark 2.4.18. Note that ps = epie, where € : H — H 1is the C-linear involution defined in
Lemmal|2.4.9.
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Let us give a formula for p,*. We have that p, ' (T}) = T}, p; ' (Y;) = Y;, while

py  (Xj) = X;(T Y -1 (T T )Y

Lemma 2.4.19. Consider the braid group on three strands, Bs := (01,09 : 010201 = 0201032). The
assignment

-1
01+ p1, 02+ Py

gives an action of Bs on H,.

Proof. We need to check that p1, py ! satisfy the relation:

(2.4.10) prpy oL = 3 prpyt

It is obvious that when we evaluate both sides on T; we just get T;. Then, thanks to the action
relations and the fact that both sides of (2.4.10)) are automorphisms, we just need to check that
plpglpl (X1) = pglplpgl(Xl), and a similar equation for Y;. We have:

p1py p1(X1) = Pllpg_l({(l) = Pl(Xllyfll) = X1)1(1—1y1—1 =yt
Py p1py (X1) =py (Y 7) =Y

It is similarly easy to check that p1p2_1p1(Y1) = pz_lplpg_l(Yl) = Y1X1Y1_1. The lemma, follows.
O

Let us remark that the automorphisms p1, po descend to the rational degeneration of H,.

Lemma 2.4.20. The following define automorphisms of HE*:

pi(si) =si  pi(zg) =z p1(yy) = yj + 5
pa(si) = si p2(xj) =z;+y;  p2(yj) =y

We still have the relations p1p2_1p1 = p_lplpgl. Moreowver, (p1p51p1)4 =1id, so that we have an
‘~

action of SLa(Z) on HP*, ¢f. Lemma

n

It is interesting to note that, according to [C2, 2.12.4], the automorphisms p1, p2 have no trigono-
metric analogue.

3. THE POLYNOMIAL REPRESENTATION

3.1. Upper triangularity of Y*. We study the polynomial representation more carefully. Our
first goal is to see that the operators Y are upper triangular with respect to a certain partial order
on P. First of all, recall that we have the partial order < on PT, which is defined by v > pu if
v —p € PT. We extend this order to P.

Definition 3.1.1. For u € P, let u* € P be the dominant weight lying in the orbit W . Define
a partial order on the weight lattice P as follows: v < pu if vt < u™, or vt = u* and v > p (note
the change of signs!)

Let us give some properties of the order < that will be useful later.

Lemma 3.1.2. Let p € P and let « € Ry
(1) If (p, ")y =1 > 0, then so(p) = w, while p—a,...,p— (r—Da < p.
(2) If (u, ")y = —r <0, then p+a,...,u+ (r — Do, sq (@) < p.

Proof. See e.g. [M, Section 2.6]. O
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Recall now from Seth’s talk that, if A € P} is such that t(\) = m,s;, - - - s;, is areduced expression,
then Y = w15, - - - T;,. We would like to use this to obtain some information about the operator
Y. First of all, if a € R is a root, define the operator

id —s,

X-ao—1
where 7, = 7; if w(a) = a; for some element w € W*. Note that T; = s;G(a;) and, if w € W,
G(w(a)) = wG(a)w™!. In particular, if s is a reflection we have G(a)s = sG(s(a)). Thus, for
A € PY we have

G(a) :==To+ (1o — 7, 1)

YV = mos5,Glai,)si, Glai, ) 5i,Glay,) = t(N)G(a?) - G(a),
where o) = s;, - - si;_ (ai;).
Theorem 3.1.3. For A € PV, € P we have
YAXM) = cppX”
v=p
with ¢, € Cy 7.

Proof. Assume first that A\ € PY, so that in particular Y3 = t(A\)G(a¥)---G(aW) with o) =
a; +kid, oy € RT. So let a = a + kd with o« € R*. Then we have:

Xsalw) — xp
G(a)XH = 7, XH + (14 — Tcrl) 1—-X—¢

Now assume that («V, u) =r > 0, so s,(¢) = pu — ra. Thus, we have

G(a)XH = 7o XH — (7o — 7, )(XP 4+ XH70 oo X0y — X0 4
where the ellipsis stands for lower order terms, see Lemmal[3.1.2] The case (a", u) < 0 is similar, for
(¥, ) = 0 we just have G(a)X* = 7,X*. Since t()\) is diagonal, we have that Y is a composition
of upper triangular operators and the result follows.

Now if A = X — X with X', \" € PY, then Y* = Y (Y*")~1. Since the inverse of an upper
triangular operator is again upper triangular, the result follows. ]
3.2. Difference operators. The goal of this section is to produce some difference operators on
the space C,,[X] using the representation theory of DAHA. Recall from the proof of Theorem

that for every w € W2, the extended affine Weyl group, the action of T\, on C, ,[X] may be
written as

(321) Ty = Z g)\,wt()‘)wv Iz w € (C(IJ'(X)

AePY
weW

so in particular the same is true for Y» € #Y C H. Recall that the center of HY is precisely
Lemma 3.2.1. Let f(Y) € C,,[Y]V. Then, the action of f(Y) on Cy.[X] preserves the space of
W -invariants Cy,[X]V.

Proof. Note that, from the formula for the action of Tj, i = 1,...,n, on C,.[X] it follows that
p(X) € Cy -[X] is W-invariant if and only if

Tip(X)=mp(X),i=1,...,n
From here, the result follows easily using the fact that f(Y) commutes with T;. ]
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Now let f be an operator on C, ,[X] of the form (3.2.1). We define its restriction by

Res(f) = 3 gawr(V)

xepPY
weWw

In particular, Res(f) is a difference operator on Cg-[X] and fl¢, xjw = Res(f)|c, xjw- For
f € Cu- Y)W, we denote Ly := Res(f). This is a difference operator on C,.[X] preserving the
space of invariants C, ,[X]"W

Corollary 3.2.2. The operators Ly, f € (Cq,T[Y}W, are pairwise commutative and W -invariant.

Proof. Let f,g € Cy,[Y]". Then L;L, = Res(f)Res(g). Since g is W-invariant, Res(f) Res(g) =
Res(fg) = Res(gf). Since now f is W-invariant, we get Res(gf) = Res(g) Res(f) = LyLy. O

Remark 3.2.3. It follows from Theorem that the operators Ly : Cy [ X|W — Cy [ X]V are
upper triangular with respect to the basis formed by {xx := > e XN} yept and the dominance

ordering on PT.

The operators L; are intimately related to the theory of Macdonald’s polynomials. This will be
the subject of a subsequent talk.

3.2.1. Example: Ay. Let us consider the example of a root system of type A;. We keep the notation
of Section with one small caveat. Now we set X := X, so that C,,[X] is the algebra of
polynomials in X*/2, With this convention, the action of T is given by

s—id
X -1

While the action of ¢(p) is t(p)(X) = ¢*X, so t(p)f(X) = f(¢°X) and, in particular, 7,(X) =
t(p)s(X) = ¢ 2X~'. Note that we have

TS+ (T — T_l)

id —s
YP = D P
t(p) <7‘—|— (r—71 )X_l — 1>
Let us now deal with Y =7 =T _17Tp. Here we will use the reflection sg on the affine Weyl group: it
is easy to check that we have a relation 7,7~ 7, = T, !, so that Y= = 7,7y ' = m,(To+ (771 —1)).
Thus,
C2X 117 (T =7)
t(a)s — g2 X1
= t(p)s <7't(a)s +(r—7171) (Z)_"ZX_ql —
t(—a) — ¢ %Xs
g 2X -1
t(—p) — Xt(p)s
X -1

Y= =, (7‘50 +(r—7171

= Tt(=p) + (1 =7 )t(p)

= rt(=p) + (=)

X — 71 1

X -1 X-1-1
T X1 -1 X — 771

~=1 1 P+ ——t=p)

This is (a scalar multiple of ) Macdonald’s difference operator for A;. The symmetric polynomials
here are spanned by binomials of the form X%/2 4 X %2 ¢ > 0. It is an easy exercise to check that

the operator (3.2.2) indeed preserves the space of symmetric polynomials, and that it is upper
triangular with respect to the basis x; := X2 4+ X /2,

Thus, ResY? = 7t(p), ResY 7 = t(=p)+ (r—7171 t(p). So

(3.2.2) Res(Y? +Y ) =
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3.3. Spherical DAHA. We have seen that the operators Ly, f € C,N[X]W define difference
operators on the space of W-invariant polynomials on X. We can actually define a smaller algebra
than the DAHA H which includes all the operators Ly and which acts on C,-[X]". This is known
as the spherical DAHA and it is constructed as follows.

Let C, be the 1-dimensional (over C;) representation of the finite Hecke algebra H where T;
acts by 7, ¢ = 1,...,n. We can realize this representation as C, = He, where e € H is an
idempotent which is constructed as follows. For w € W let 7, := 73, - - - 73, where w = s;, - -+ 55,
is a reduced decomposition. Note that 7, is well-defined, since it is the scalar by which w acts on
the representation C,. Now define € := EweW Twlw-

Lemma 3.3.1. Fori=1,...,n, we have Tje = 7;€.

Proof. We will do a direct calculation. We will need the following equation that we have already
seen in Seth’s talk. In the finite Hecke algebra H:

T, if £(sjw) > £(w)
Ty = ’ -1 .
T+ (i —7; )Ty if l(sjw) < £(w)

where the length ¢ is the usual one in W, i.e., the length of a reduced expression of w. Thus, we
have:

weW weWw
L(siw)>L(w) £(siw)<l(w)
Now we find the coefficient of T}, in the previous expression. We have two cases. If {(s;w) < ¢(w),
then we have that the coefficient of Ty, is 7gw + Tw (7 — Ti_l) = TiTw, since Ty = TiTs;w. If

{(s;w) > L(w), then the coefficient of T, is simply 7s,. = 7;7w. We are done.
Remark 3.3.2. Similarly, we can see that €T; = 1;e fori=1,...,n.

Thanks to the previous lemma, €% = > i TwTw€ = Y., To€. Thus

-1
e:= (Z Ti) e
weW

Definition 3.3.3. Define the spherical DAHA as SH := eHe. This is a non-unital subalgebra of
H, with unit e.

is an idempotent.

Remark 3.3.4. In the gl,, case, note that the automorphisms p1, p2 of H,, preserve the idempotent
e, hence they also preserve the spherical subalgebra. So we have an action of By on SH,,.

The following result will be important to connect DAHA’s to EHA’s, which is one of the objectives
of the course. First, we recall a well-known result. For a proof, see e.g. [KT), Appendix A].

Lemma 3.3.5. The group SLao(Z) is a quotient of the braid group on three strands Bz = (01,079 :
010201 = 0901032). The quotient map Bs — SLo(Z) is given by

NER (10
a1 0 1) o2 11

the kernel of this map is generated by (o10201)%.

Theorem 3.3.6. The braid group action on SH,, factors through SLa(Z), that is, (p1p§101)|§Hn =
idSHn-
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Proof. According to [C2, 3.2.2], (p1p5 L p1)?* is conjugation by TJOQ, where wy is the longest element

of S,. Since Ty, e = Ty, €, the result follows easily. O
Note that, if M is a H-module, then e M becomes a SH-module. For the polynomial representa-
tion we have:
eCy (X ={f €Cy [X]: Tif =7if,i=1,...,n} = Cy,[X]V
Now note that, for f € C,.[Y]", we have that eLyrelc, xjw = L¢lc, . xjw- Thus, the action
of the spherical DAHA SH on C, - [X]" already includes the operators L defined above.
4. DEGENERATIONS

In this section, we give definitions that generalize the degenerate (trigonometric and rational)
DAHA’s from Sections [2.3.4], 2.3.5] 2.4.5 2.4.6] These algebras can be obtained from H in a very

similar manner to what was done there.

4.1. Trigonometric degeneration. Let us first define the trigonometric DAHA. In order to do
this, let ¢;, ¢ = 0,...,n be formal variables such that ¢; = ¢; whenever s; and s; are conjugate. We
will also take commuting variables 41, ..., 9, and, for b € PV, we will denote

=Y (b, ;)i
Let us remark that the extended affine Weyl group W = W xt(P) acts on the space Clc, t|[y1, - . . , Un]

by algebra automorphisms. Indeed, we need to define the action of s1, ..., s, and t(\), A € P on el-
ements of the form §,,b € PV. We have that s;j, = s, vy for i =1,...,n, while t(\)gp = 95— (A, b)t.

Definition 4.1.1. The trigonometric DAHA, H'™# is the Clc, t]-algebra generated by the extended

affine Weyl group W and pairwise commuting variables 91, ..., 9n, subject to the following rela-
tions.
(4.1.1) 8ilb — Us,(b)Si = —Cifby i), 80Uy — s0(Pb)so = co(b, 0),  TrTb = e, (1) Tr

fori=1,...,n,be PV, and 7, € Q' (& P/Q).

Let us remark that the variable ¢ appears in disguise in the second relation of .

Since, unlike the nondegenerate and rational cases, the variables X, ¢ are not symmetric, the
algebra H'& admits more than one polynomial representation. First, we have the differential
polynomial representation, which is given in terms of trigonometric differential Dunkl operators. In
order to do this, for b € PV, define the following derivation on the group algebra C|c,t][X] of the
weight lattice P:

Op(X“) = (b, a) X
We have then that H®® acts on C[c][X]. The group W acts naturally and y, acts via the
trigonometric differential Dunkl operator

ri « b7 v .
D — g+ 3 gy (0

1
where p, is the formal expression p. := = Z Ca Q.

a€ERT
We also have the difference-rational polynomial representation, on the algebra Cle, t][91, . .., Un]-

Recall that the extended affine Weyl group W% acts on this space by algebra automorphisms. We
deform this action by the Demazure-Lusztig operators:
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S; = s; + Acfz(sl —id),i =0,...,n
o
where yo, = —yp +t. And define, for w € W with w = m,s;, ---s;, a reduced expression,
Sw = mpSi, -+ S;,. According to [C2, 1.6], this still defines an action of W% on Clc, t][\]. Here we

only check that S? = id. Indeed, we have for i # 0

Sila = (Si + %(Sz - id)) Ua

= As-a +A72 As-a_Aa
i) + 5 (si(@) = ¥a)

o)

(4.1.2) Gt (ga e _Qa)
o
N C; N
= Ysi(a) + AZ (_<a;/7a>yai)
Yo,

= gsi(a) - Ci<a;/aa>'1

Thanks to (4.1.2)), we have that Si(7s,(a)) = Ja + ci(e;, a).1. Tt follows from (4.1.2)) again that
S2 = id. Let us now treat the case i = 0. First of all, note that soJa = 9a + {a,0")(t — ). Then,
we have:

N €o . N
So¥a = ~ —id) ) Ya
0Y. <So+t_y6(80 1 ))y

. ) ¢ .
= o+ {a,0Y)(t — Go) + . Oge (a,0)(t — Go)

(4.1.3)

= Ja+{a,0V)(t — gp) + co(0”,a).1
It follows from (4.1.3)), the fact that Sy clearly fixes ¢, t and 1, and that (0,6") = 2, that S5 = id.

Theorem 4.1.2 (See e.g. Proposition 1.6.3 in [C2]). The algebra H™® acts on the space Clc, t][f1, - - - , Un),
where elements of the group W act via Sy, and gy acts by multiplication. This representation is
faithful and it is known as the difference-rational polynomial representation.

For b € P, the operators Sy;) are known as the difference-rational Dunkl operators.

Corollary 4.1.3. The following are subalgebras of H™®:
(1) The group algebra of W, in a natural way.
(2) The degenerate affine Hecke algebra for W, which is the algebra generated by W and
Ty Un-
4.2. Rational degeneration. We also have a rational degeneration. Here, we substitute the group

algebras of the lattices P and PV by the vector spaces V* = V where our root systems R, R" are
defined.

Definition 4.2.1. The rational DAHA, H™, is the Clc, t]-algebra generated by C[V],C[V*] and
the group W subject to the relations

wr = w(@)w, wy=wyw [y,z]=1ty,r) =3 cr+ caly, )@’ 2)s0, wEW,z€V,yeV

The algebra H'3" admits a polynomial representation on the space C[V]. Here, W acts in a
natural way, and z € V* acts by multiplication. Now recall that y € V defines a derivation on
C[V], by setting dy(x) = (y,z), € V*. Then, we define the rational Dunkl operator

ra Oé, :
Dy ti=10, — Z Caw(ld —Sq)

a€Rt
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Theorem 4.2.2. The assignment w — w, T — T, Yy —> Dzr/at defines a representation of H* on

Cle,t][V]. This is known as the polynomial representation, and it is a faithful representation of
Hrat.

Remark 4.2.3. The hard part of the previous theorem is to prove that the Dunkl operators commute.
Corollary 4.2.4. The algebras Cle, t][V],Cle, t][V*], Cle, t|W sit naturally as subalgebras of H'™*.

Let us remark that, unlike H and H"&, the definition of the rational DAHA H'** can be gener-
alized to the case where W is a group generated by complex reflections acting on a vector space V
(so W is not necessarily the Weyl group of a root system). This has been done in [EG].

Remark 4.2.5. We can also define spherical subalgebras SH™&, SH'*" of the degenerate DAHAs.
There are defined as eH"8e, eH'e, respectively, where the idempotent e now is the trivial idem-
1

potent of the group W, that s, e = W Z w.

Remark 4.2.6. Let us remark that, just as we did in Section we can use the representation
theory of DAHA to define a large family of commuting differential (resp. difference) operators on
Cle, t][X] or Cle,t][x1,...,zn] (resp. on Cle,t][A]) that restrict to differential (resp. difference)
operators on the W-invariant subalgebras. These operators are given by elements in Cle,t][§]",
Cle, t][y]" and Cle, t][X]V, respectively.

4.3. Integrable systems. The degenerate DAHA are connected to the theory of the Olshanetsky-
Perelomov integrable systems, aka generalized Calogero-Moser integrable systems. In this section
we elaborate on this connection. Here, we treat the differential case (i.e., rational DAHA,) the
difference (i.e., trigonometric) case can be done by similar methods, see e.g. [C1]. Recall that we
have a root system R C V* =V, where V is a vector space with nondegenerate form (-, -). For the
rest of these notes, we specialize to t = 1.

Definition 4.3.1. The quantum Olshanetsky-Perelomov Hamiltonian of R is the differential op-
erator

Ho— Ay Z ColCa + 1){a, @)

a2
a€ERT
where Ay is the Laplace operator on V', and co € C are such that co = cy(q) for every w € W.

Example 4.3.2. Perhaps, the quantum Olshanetsky-Perelomov Hamiltonian has the clearest phys-
ical meaning in type A. Here (taking V = C" instead of C"1) we have

n
0? 2¢(c+1)
H=Y 25— >
= 0 1<i<j<n (i — ;)

which is the quantum Hamiltonian for a system of n particles on the line interacting with potential
clc+1)/(zi — z)%

Our goal is to see that the quantum system defined by the Olshanetsky-Perelomov Hamiltonian
is completely integrable. Let us be a bit more explicit about this. Consider the action of the Weyl
group W on the symmetric algebra S(V'). According to the Chevalley-Shepard-Todd theorem, the
algebra of invariants S(V)" is polynomial, with algebraically homogeneous generators Py, ..., P, of
degrees dy, ..., d,, respectively. Recall also that we have the symbol map, D(V) — S(V*)® S(V),
that to each differential operator associates its symbol. Note, however, that we need a slight ex-
tension of this: the hamiltonian H does not belong to D(V). We can consider the principal open
subset V" that is the complement of the union of the hyperplanes (o, ) = 0. Then, we have a
symbol map o : D(V"9) — C[V"] ® S(V). For example, o(H) = P, where P(p) = (p,p), and we
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use the inner product on V* that is dual to the inner product on V. Note also that o(H) € S(V)".

In the sequel, we will assume that V' is an irreducible representation of W. So o(H) = P; where,
recall, we denote Py, ..., P, the algebraically independent homogeneous generators of S(V)W.

Theorem 4.3.3. The system defined by the quantum Olshanetsky-Perelomov Hamiltonian is com-

pletely integrable. More precisely, there exist algebraic differential operators Hy,...,H, on V"
such that:

(1) HH=H.

(2) o(H;) = P;.

(3) [Hy, Hy] = 0.

Remark 4.3.4. If we do not assume that V is an irreducible representation of W, then Theorem
4.3.9) 1s still valid with the exception that (1) should be replaced by Hy = H, see e.g. Example

where we have Py = Y"1 | x'.

The idea to prove this theorem is similar to what we have done in Section So, first of all, if
[ =2 wew Jfww is an operator on V", where f; € D(V"), define

Res(f) = D fu

weWw

So that Res(f) is a differential operator. Note that if g is W-invariant, then Res(fg) = Res(f) Res(g)
for any operator f of a similar form. Now let y1,...,y, be an orthonormal basis of V. So, consid-
ering the algebra Clyi,...,y,] C H™" as an algebra of operators on V"% which we can do thanks
to the Dunkl representation, we have the following result, which is proven similarly to the results
in Subsection 3.2

Lemma 4.3.5. For every f € Cly1,...,yn]"", denote Ly := Res(f). Then, {Ls: f € Cly1,...,yn]"}
form a commuting family of differential operators with coefficients being rational functions on V
reqular on V"9, Moreover, cLp, = P;.

So what remains to do is to relate the operator H to Lp,.

Proposition 4.3.6. We have

Cola,
Lp =Ay — Z <a>aav

acRt

Proof. We need to compute Res(>_7" D;i), where we denote D, := D;‘?. First of all, note that
Res(DZi) = Res(D,,0y,). Now, for every y € V we have

Dydy = 02 =¥ epr Ca S (id —s50)dy
= P~ Yocrr 22 (,(id —s4) + [0y, 5a))
= 823 - ZaePﬁ M(8?J(id _Sa) + <Oé,y>(9av5)

«

From where the result follows easily. ]

Let us denote H := Lp,. It is not the quantum OP Hamiltonian, but we can get H via an
automorphism ¢ : D(V") — D(V"), which is defined by o(f) = f, f € C[V"], p(9y) =
Oy = D wcht Ca <y&a>. It is an exercise to check that ¢ indeed defines an automorphism of D(V").
The next result finishes the proof of Theorem

Lemma 4.3.7. We have p(H) = H.




24 JOSE SIMENTAL

Proof. We have

A\ 2
‘P(agi) = (8% — 2 acR+ Ca <a’ayz>>
- 832 - ZaeR+ ca<a, y> (8yia_1 + Oz_layi) + Za,o/gRJr CaCa/%
- 852 —2 ZO‘EFH C‘)‘(a’ yi>a_layi + ZO{GR+ Ca%# =+ Za,a/€R+ Coﬁg/%

So it follows that

SO(AV) = AV - EaeR“' % E?:l 2<Oé, y1>ayz + EaeR-F Z(% Z?:1<O‘7 yi>2 + Ea7a’eR+ cggf/ Z?:l <O‘a y¢><0/, yl>
S S 1 b 3 !
= Ay = Cocrr 900000y + Tacrr S LT e acar )

Thus, ¢(H) = H + > otolcR+ CaCar {22} and to prove the lemma (and hence Theorem [4.3.3

aa’

we just need to show that this last term, which we denote by P, is 0. First of all, note that the
term is clearly W-invariant. Now denote

d:= H Q
aeRt

which is sign-invariant. So §P is sign-invariant. This is a polynomial of degree n — 2. But the
smallest degree of a nonzero sign-invariant element in S(V') is n. Thus, 0P =0, and so P =0. O
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