Coherent sheaves on elliptic curves.

Aleksei Pakharev

April 5, 2017

Abstract

We describe the abelian category of coherent sheaves on an elliptic curve, and construct an action of a central extension of $SL_2(\mathbb{Z})$ on the derived category.

Contents

1	Coherent sheaves on elliptic curve	1
2	(Semi)stable sheaves	2
3	Euler form	4
4	Derived category of coherent sheaves	5
5	$\mathrm{SL}_2(\mathbb{Z})$ action	6
6	Classification of indecomposable sheaves	7
7	Braid group relations	8

1 Coherent sheaves on elliptic curve

Definition 1.1. An elliptic curve over a field k is a nonsingular projective algebraic curve of genus 1 over k with a fixed k-rational point.

Remark 1.2. If the characteristic of k is neither 2 nor 3, an elliptic curve can be alternatedally defined as the subvariety of \mathbb{P}^2_k defined by an equation $y^2z = x^3 - pxz^2 - qz^3$, where $p, q \in k$, and the polynomial $x^3 - pxz^2 - qz^3$ is square-free. In this case, the fixed point is (0:1:0).

Remark 1.3. Over the field of complex numbers, there is even a simpler description. An elliptic curve is precisely a quotient \mathbb{C}/Λ of \mathbb{C} by a nondegenerate lattice $\Lambda \subset \mathbb{C}$ of rank 2.

Remark 1.4. Any elliptic curve carries a structure of a group, with the fixed point being the identity.

Fix an elliptic curve X over a field k. We do not assume that k is algebraically closed, since the main example is the finite field \mathbb{F}_q .

Recall that a coherent sheaf \mathcal{F} on X is a sheaf of modules over \mathcal{O} such that for every open affine $U \subset X$ the restriction $\mathcal{F}|_U$ is isomorphic to \widehat{N} for some finitely generated $\mathcal{O}(U)$ -module N.

Example 1.5. The structure sheaf \mathcal{O} is indeed a coherent sheaf. Also, one can consider the ideal sheaf $\mathfrak{m}_x = \mathcal{O}(-x)$ corresponding to a closed point $x \in X$. Then the cokernel of the inclusion $\mathcal{O}(-x) \to \mathcal{O}$ is the so called *skyscrapper sheaf* \mathcal{O}_x , which is coherent as well.

Theorem 1.6. Coherent sheaves on X form an abelian category Coh(X).

Theorem 1.7 (Global version of Serre theorem). Any coherent sheaf \mathcal{F} on a smooth projective variety of dimension n over a field k admits a resolution $\mathcal{F}_n \to \mathcal{F}_{n-1} \to \ldots \to \mathcal{F}_1 \to \mathcal{F}_0$ where each \mathcal{F}_i is finitely generated and locally free (\simeq vector bundle).

Theorem 1.8 (Grothendieck's finiteness theorem). Any coherent sheaf \mathcal{F} on a smooth projective variety of dimension n over a field k has finite dimensional cohomologies over k.

Corollary 1.9. For any coherent sheaves \mathcal{F} and \mathcal{G} the space $\operatorname{Hom}(\mathcal{F},\mathcal{G})$ has finite dimension over k, since $\operatorname{Hom}(\mathcal{F},\mathcal{G}) = \Gamma(\mathcal{H}om(\mathcal{F},\mathcal{G}),X) = H^0(\mathcal{H}om(\mathcal{F},\mathcal{G}),X)$.

Theorem 1.10 (Grothendieck's vanishing theorem). Any coherent sheaf \mathcal{F} on a smooth projective variety of dimension n over a field k has no i-th cohomologies for i > n.

Definition 1.11. An abelian category C is called *hereditary* if $\operatorname{Ext}^2(-,-)=0$.

Corollary 1.12. The category Coh(X) is hereditary.

2 (Semi)stable sheaves

To a coherent sheaf we can associate two numbers, the Euler characteristic $\chi(\mathcal{F})$ and the rank $\mathrm{rk}(\mathcal{F})$.

Definition 2.1. The Euler characteristic $\chi(\mathcal{F})$ is the alternating sum $\sum_i (-1)^i \dim_k H^i(\mathcal{F}, X)$. In our case, it is equal to $\dim_k H^0(\mathcal{F}, X) - \dim_k H^1(\mathcal{F}, X)$.

Definition 2.2. The rank $\operatorname{rk}(\mathcal{F})$ is the dimension of the stalk \mathcal{F}_{ξ} of \mathcal{F} at a generic point ξ of X over the residue field. It is independent of ξ .

Example 2.3. We have $\chi(\mathcal{O}) = 0$, $\operatorname{rk}(\mathcal{O}) = 1$, $\chi(\mathcal{O}_x) = 1$, $\operatorname{rk}(\mathcal{O}_x) = 0$.

Proposition 2.4. Given a short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, we have $\chi(\mathcal{F}) = \chi(\mathcal{F}') + \chi(\mathcal{F}'')$ and $\operatorname{rk}(\mathcal{F}) = \operatorname{rk}(\mathcal{F}') + \operatorname{rk}(\mathcal{F}'')$.

Definition 2.5. The slope $\mu(\mathcal{F})$ of a nontrivial coherent sheaf \mathcal{F} is the quotient $\chi(\mathcal{F})/\operatorname{rk}(\mathcal{F})$. In the case $\operatorname{rk}(\mathcal{F}) = 0$ we set $\mu(\mathcal{F}) = \infty$.

Lemma 2.6. Given a short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, we have three options:

- $\mu(\mathcal{F}') < \mu(\mathcal{F}) < \mu(\mathcal{F}'');$
- $\mu(\mathcal{F}') = \mu(\mathcal{F}) = \mu(\mathcal{F}'');$
- $\mu(\mathcal{F}') > \mu(\mathcal{F}) > \mu(\mathcal{F}'')$.

Proof. We have

$$\mu(\mathcal{F}') = \frac{\chi(\mathcal{F}')}{\mathrm{rk}(\mathcal{F}')},$$

$$\mu(\mathcal{F}'') = \frac{\chi(\mathcal{F}'')}{\mathrm{rk}(\mathcal{F}'')},$$

$$\mu(\mathcal{F}) = \frac{\chi(\mathcal{F})}{\mathrm{rk}(\mathcal{F})} = \frac{\chi(\mathcal{F}') + \chi(\mathcal{F}')}{\mathrm{rk}(\mathcal{F}') + \mathrm{rk}(\mathcal{F}'')}$$

Since both $\operatorname{rk}(\mathcal{F}')$ and $\operatorname{rk}(\mathcal{F}'')$ are nonnegative, we indeed get the lemma.

Definition 2.7. A coherent sheaf \mathcal{F} is called *stable (resp. semistable)* if for any nontrivial short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ we have $\mu(\mathcal{F}') < \mu(\mathcal{F})$ (resp. $\mu(\mathcal{F}') \leq \mu(\mathcal{F})$).

General theory gives us the following

Theorem 2.8 ([1] Harder-Narasimhan filtration). For a coherent sheaf \mathcal{F} , there is a unique filtration

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_n \subset \mathcal{F}_{n+1} = \mathcal{F}$$

such that all $A_i = \mathcal{F}_{i+1}/\mathcal{F}_i$ are semistable and $\mu(A_i) > \mu(A_{i+1})$ for each i.

In our case, we can derive much stronger proposition. Before stating it, note two useful statements.

Proposition 2.9. If \mathcal{F} and \mathcal{G} are semistable sheaves, and $\mu(\mathcal{F}) > \mu(\mathcal{G})$, then $Hom(\mathcal{F}, \mathcal{G}) = 0$

Proof. Suppose we have a nontrivial map $f: \mathcal{F} \to \mathcal{G}$. Then $\mu(\mathcal{F}) \leq \mu(\mathcal{F}/\ker f) = \mu(\operatorname{im} f) \leq \mu(\mathcal{G})$. Contradiction.

Another property of Coh(X) we will need is

Proposition 2.10 (Calabi-Yau property). For any two coherent sheaves \mathcal{F} and \mathcal{G} , there is an isomorphism $\text{Hom}(\mathcal{F},\mathcal{G}) \simeq \text{Ext}^1(\mathcal{G},\mathcal{F})^*$.

Proof. From Remark 1.4 we know that the canonical bundle K is trivial, $K \simeq \mathcal{O}$. Also by Serre duality we get

$$\operatorname{Hom}(\mathcal{F},\mathcal{G}) = \operatorname{Ext}^0(\mathcal{F},\mathcal{G}) \simeq \operatorname{Ext}^1(\mathcal{G},\mathcal{F} \otimes K)^* = \operatorname{Ext}^1(\mathcal{G},\mathcal{F})^*.$$

We are ready to prove

Theorem 2.11. Any nontrivial coherent sheaf is a direct sum of indecomposable semistable sheaves.

Proof. We only need to prove that any indecomposable sheaf is semistable. Suppose some indecomposable sheaf \mathcal{F} is not semistable. Then the Harder-Narasimhan filtration of \mathcal{F} is nontrivial. Consider only the case of length 1 filtration, it captures the main idea. So, we have a short exact sequence $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$, where both \mathcal{F}' and \mathcal{F}'' are semistable, and $\mu(\mathcal{F}') > \mu(\mathcal{F}'')$. By Proposition 2.9 we get $\operatorname{Hom}(\mathcal{F}', \mathcal{F}'') = 0$. By Proposition 2.10 we obtain $\operatorname{Ext}^1(\mathcal{F}'', \mathcal{F}') = \operatorname{Hom}(\mathcal{F}', \mathcal{F}'')^* = 0$. Therefore the exact sequence splits, contradiction with the assumption that \mathcal{F} is indecomposable.

Definition 2.12. Denote the full subcategory of semistable coherent sheaves on X of slope μ by C_{μ} .

Proposition 2.13. The category C_{μ} is abelian, artinian, and closed under extensions. The simple objects in C_{μ} are stable sheaves of slope μ .

Corollary 2.14. Coh(X) is the direct sum of all C_{μ} (on the level of objects).

3 Euler form

Since rk and χ are well defined on $K_0(Coh(X))$, we can consider

Definition 3.1. The Euler form $\langle \mathcal{F}, \mathcal{G} \rangle$ of two elements $\mathcal{F}, \mathcal{G} \in K_0(Coh(X))$ is equal to $\dim \operatorname{Hom}(\mathcal{F}, \mathcal{G}) - \dim \operatorname{Ext}^1(\mathcal{F}, \mathcal{G})$.

Proposition 3.2. We have $\langle \mathcal{F}, \mathcal{G} \rangle = \text{rk}(\mathcal{F})\chi(\mathcal{G}) - \chi(\mathcal{F}) \text{rk}(\mathcal{G})$.

Proof. First notice that the RHS only depends on the classes of \mathcal{F} and \mathcal{G} in the Grothendieck group $K_0(Coh(X))$. Therefore it is sufficient to check the equality for some generators of the Grothendieck group, for example, for locally free sheaves. If \mathcal{F} is locally free, the LHS reduces to $\chi(\mathcal{F}^{\vee} \otimes \mathcal{G})$. Note that in the case of elliptic curve, the Hirzebruch-Riemann-Roch theorem gives us that $\chi(\mathcal{E}) = \deg(\mathcal{E})$ for any coherent sheaf \mathcal{E} . Applying it here, we get

$$LHS = \chi(\mathcal{F}^{\vee} \otimes \mathcal{G}) = \deg(\mathcal{F}^{\vee} \otimes \mathcal{G}) = \operatorname{rk}(\mathcal{F}) \operatorname{deg}(\mathcal{G}) - \operatorname{deg}(\mathcal{F}) \operatorname{rk}(\mathcal{G}) = \operatorname{rk}(\mathcal{F}) \chi(\mathcal{G}) - \chi(\mathcal{F}) \operatorname{rk}(\mathcal{G}) = RHS.$$

Definition 3.3. The charge map is

$$Z = (\operatorname{rk}, \chi) \colon K_0(\operatorname{Coh}(X)) \to \mathbb{Z}^2.$$

It is surjective, since we have both (1,0) and (0,1) in the image. We have a canonical nondegenerate volume form on \mathbb{Z}^2 , $\langle (a,b),(c,d)\rangle = ad-bc$, and it is equal to the push-forward of the Euler form.

Proposition 3.4. The kernel of the Euler form coincides with the kernel of Z, equivalently, $K_0(Coh(X))/\ker\langle,\rangle\simeq\mathbb{Z}^2$.

Also we can now write some relations between different C_{μ} and $C_{\mu'}$.

Proposition 3.5. Suppose \mathcal{F} and \mathcal{F}' are indecomposable, and $Z(\mathcal{F}) = (r, \chi)$, $Z(\mathcal{F}') = (r', \chi')$.

- If $\chi/r > \chi'/r'$, then $\operatorname{Hom}(\mathcal{F}, \mathcal{F}') = 0$, $\dim \operatorname{Ext}^1(\mathcal{F}, \mathcal{F}') = \chi r' \chi' r$;
- If $\chi/r < \chi'/r'$, then dim $\operatorname{Hom}(\mathcal{F}, \mathcal{F}') = \chi'r \chi r'$, $\operatorname{Ext}^1(\mathcal{F}, \mathcal{F}') = 0$.

Proof. By Proposition 2.10 and Proposition 2.9 we know that

- if $\chi/r > \chi'/r'$, then $\operatorname{Hom}(\mathcal{F}, \mathcal{F}') = 0$;
- if $\chi/r < \chi'/r'$, then $\operatorname{Ext}^1(\mathcal{F}, \mathcal{F}') = 0$.

Proposition 3.2 concludes the proof.

4 Derived category of coherent sheaves

Let us show that Corollary 1.12 implies a neat description of the derived category $D^b(Coh(X))$ of bounded complexes of coherent sheaves on X.

Theorem 4.1. Suppose C is a hereditary abelian category. Then any object $L \in D^b(C)$ is isomorphic to the sum of its cohomologies, i. e. $L = \bigoplus_i H^i L[-i]$.

Proof. Let L be a complex $\dots \stackrel{d^{i-1}}{\to} L^i \stackrel{d^i}{\to} L^{i+1} \stackrel{d^{i+1}}{\to} \dots$ Fix any i. We have a short exact sequence $0 \to \ker d^{i-1} \to L^{i-1} \to \operatorname{im} d^{i-1} \to 0$. Apply $\operatorname{RHom}(H^iL, -)$. This gives rise to an exact sequence $\operatorname{Ext}^1(H^iL, L^{i-1}) \to \operatorname{Ext}^1(H^iL, \operatorname{im} d^{i-1}) \to \operatorname{Ext}^2(H^iL, \ker d^{i-1})$. Since $\operatorname{Coh}(X)$ is hereditary, we obtain a surjection from $\operatorname{Ext}^1(H^iL, L^{i-1})$ to $\operatorname{Ext}^1(H^iL, \operatorname{im} d^{i-1})$. In particular, there exists M^i such that the following diagram commutes

$$0 \longrightarrow L^{i-1} \longrightarrow M^{i} \longrightarrow H^{i}L \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \operatorname{im} d^{i-1} \longrightarrow \ker d^{i} \longrightarrow H^{i}L \longrightarrow 0$$

Then the following morhphism

of complexes is a quasi-isomorphism. If we compose its inverse with the morphism

we get a morphism $H^iL[-i] \to L$ in $D^b(Coh(X))$ which is isomorphism in the *i*-th cohomology, and zero elsewhere. Therefore, if we sum up all this morphisms, we obtain an isomorphism $\bigoplus_i H^iL[-i] \to L$.

Corollary 4.2. The derived category $D^b(Coh(X))$ is the direct sum of \mathbb{Z} copies of Coh(X), a sheaf \mathcal{F} in the i-th copy goes to \mathcal{F} .

Since $K_0(D^b(Coh(X))) = K_0(Coh(X))$, Z is defined on $K_0(D^b(Coh(X)))$ as well. Note that $Z(\mathcal{F}[i]) = (-1)^i Z(\mathcal{F})$.

Remark 4.3. The corollary works for any smooth projective curve X. Another example of a hereditary category is the category of representations of a quiver.

5 $\operatorname{SL}_2(\mathbb{Z})$ action

Proposition 3.2 suggests to define $\langle L, M \rangle = \sum_i (-1)^i \dim \operatorname{Hom}(L, M[i])$ for any two objects $L, M \in D^b(\operatorname{Coh}(X))$. Therefore the Euler form is preserved by any autoequivalence of $D^b(\operatorname{Coh}(X))$. In other words, any autoequivalence $f \in \operatorname{Aut}(D^b(\operatorname{Coh}(X)))$ gives a corresponding automorphism of \mathbb{Z}^2 preserving the volume form, i.e. gives an element $\pi(f) \in \operatorname{SL}_2(\mathbb{Z})$.

Definition 5.1. Say that an object $\mathcal{E} \in D^b(Coh(X))$ is spherical if $Hom(\mathcal{E}, \mathcal{E}) = k$ (and consequently $Hom(\mathcal{E}, \mathcal{E}[1]) = k$).

Example 5.2. The structure sheaf \mathcal{O} and the skyscrapper sheaf at a rational k-point are spherical.

Definition 5.3. A Forier-Mukai transform with a kernel $\mathcal{L} \in D^b(Coh(X \times Y))$ is a functor $\Phi_{\mathcal{L}} \colon D^b(Coh(X)) \to D^b(Coh(Y))$ which sends an object $\mathcal{F} \in D^b(Coh(X))$ to $R\pi_{2*}(\pi_1^*\mathcal{F} \otimes^L \mathcal{L})$, where $\pi_1 \colon X \times Y \to X$ and $\pi_2 \colon X \times Y \to X$ are the natural projections.

Definition 5.4. For a spherical object $\mathcal{E} \in D^b(Coh(X))$, which is a complex of locally free sheaves, we can define a twist functor $T_{\mathcal{E}} \colon D^b(Coh(X)) \to D^b(Coh(X))$ to be equal to a Forier-Mukai transform with the kernel $cone(\mathcal{E}^{\vee} \boxtimes \mathcal{E} \to \mathcal{O}_{\Delta}) \in D^b(Coh(X \times X))$.

Theorem 5.5 ([2]). For a spherical object $\mathcal{E} \in D^b(Coh(X))$ the twist functor $T_{\mathcal{E}}$ is an exact equivalence which sends an object \mathcal{F} to $cone(\mathrm{RHom}(\mathcal{E},\mathcal{F}) \otimes^L \mathcal{E} \xrightarrow{ev_{\mathcal{F}}} \mathcal{F})$.

Remark 5.6. The evaluation works by applying $ev: \operatorname{Ext}^i(\mathcal{E}, \mathcal{F}) \otimes \mathcal{E}[-i] \to \mathcal{F}$ on each grading. Let us see how $T_{\mathcal{E}}$ acts on Grothendieck group.

Proposition 5.7. The action of $T_{\mathcal{E}}$ on $K_0(D^b(Coh(X)))$ is given by $[\mathcal{F}] \mapsto [\mathcal{F}] - \langle \mathcal{E}, \mathcal{F} \rangle [\mathcal{E}]$.

Proof. Indeed,
$$[T_{\mathcal{E}}(\mathcal{F})] = [\mathcal{F}] - [\operatorname{RHom}(\mathcal{E}, \mathcal{F}) \otimes^{L} \mathcal{E}] = [\mathcal{F}] - \langle \mathcal{E}, \mathcal{F} \rangle [\mathcal{F}].$$

Corollary 5.8.
$$\pi(T_{\mathcal{O}}) = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \ \pi(T_{\mathcal{O}_x}) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Proof. Since \mathbb{Z}^2 are generated by the charges of \mathcal{O} and \mathcal{O}_x , we can check this on \mathcal{O} and \mathcal{O}_x only.

$$T_{\mathcal{O}}([\mathcal{O}]) = [\mathcal{O}] - \langle \mathcal{O}, \mathcal{O} \rangle [\mathcal{O}] = [\mathcal{O}],$$

$$T_{\mathcal{O}}([\mathcal{O}_x]) = [\mathcal{O}_x] - \langle \mathcal{O}, \mathcal{O}_x \rangle [\mathcal{O}] = [\mathcal{O}_x] - [\mathcal{O}],$$

$$T_{\mathcal{O}_x}([\mathcal{O}]) = [\mathcal{O}] - \langle \mathcal{O}_x, \mathcal{O} \rangle [\mathcal{O}_x] = [\mathcal{O}] + [\mathcal{O}_x],$$

$$T_{\mathcal{O}_x}([\mathcal{O}_x]) = [\mathcal{O}_x] - \langle \mathcal{O}_x, \mathcal{O}_x \rangle [\mathcal{O}_x] = [\mathcal{O}_x].$$

Proposition 5.9. $T_{\mathcal{O}_x}$ is in fact just the tensor product with $\mathcal{O}(x)$.

Proof. The formula for the adjoint of a Forier-Mukai transform gives that the inverse of $T_{\mathcal{O}_x}$ is the Forier-Mukai transform with the kernel $cocone(\mathcal{O}_{\Delta} \to \mathcal{O}_{(x,x)})$. The map inside a cocone is nonzero. But any nonzero map $\mathcal{O}_{\Delta} \to \mathcal{O}_{(x,x)}$ is a nonzero multiple of the natural surjection $\mathcal{O}_{\Delta} \to \mathcal{O}_{(x,x)}$. Therefore the cocone is equal to the kernel of this map, or just $\mathcal{O}_{\Delta} \otimes \pi_1^*(\mathcal{O}(-x))$. Now note that the sheaf \mathcal{O}_{Δ} in the kernel trivializes all pullbacks and pushforwards we do to the identity maps between sheaves on X and X and X and X and X are X and X and X and X are X and X and X are X and X and X are X and X a

The matrices $\pi(T_{\mathcal{O}})$ and $\pi(T_{\mathcal{O}_x})$ generate $\mathrm{SL}_2(\mathbb{Z})$, therefore, $\pi: Aut(D^b(Coh(X))) \to \mathrm{SL}_2(\mathbb{Z})$ is surjective.

6 Classification of indecomposable sheaves

Note that indecomposable torsion sheaves lie in C_{∞} , and generate C_{∞} . Moreover, we have

Theorem 6.1. Indecomposable torsion sheaves are parametrized by a positive integer s > 0 and a closed point $x \in X$. The corresponding torsion sheaf is $\mathcal{O}/\mathcal{O}(-sx)$.

Proof. Indeed, we reduce to the case of one point, then the local ring is PID, and the claim follows. \Box

In addition to that, $SL_2(\mathbb{Z})$ action allows us to prove

Theorem 6.2. For each $\mu \in \mathbb{Q}$ we have a canonical isomorphism $C_{\mu} \simeq C_{\infty}$.

Proof. Indeed, let μ be equal to a/b for coprime a and b. Choose some $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ which sends (a,b) to (0,1), and lift it to an autoequivalence $\tilde{f} \in Aut(D^b(Coh(X)))$ of the derived category. Take any indecomposable sheaf $\mathcal{F} \in C_{\mu}$. Then $\tilde{f}(\mathcal{F})$ is an indecomposable object in $D^b(Coh(X))$ with the slope ∞ . Therefore, it is of form $\mathcal{G}[k]$, where \mathcal{G} is a torsion sheaf, and k is some integer. Denote by $\overline{f} \colon C_{\mu} \to C_{\infty}$ a map which sends an indecomposable sheaf \mathcal{F} to a sheaf \mathcal{G} defined in this way. It is easy to see that if we begin with the inverse matrix f^{-1} , then we get a map $\overline{f^{-1}} \colon C_{\infty} \to C_{\mu}$ which is inverse to \overline{f} . Also \overline{f} does not depend on a lift \tilde{f} . So C_{μ} and C_{∞} are canonically isomorphic. \square

Summarizing, we have

Theorem 6.3. Indecomposable sheaves are parametrized by a pair (rk, χ) in the right half of \mathbb{Z}^2 and a closed point $x \in X$.

Let us show how this describes indecomposable sheaves with charges (1,1) and (1,0).

Proposition 6.4.

$$T_{\mathcal{O}}(\mathcal{O}) = \mathcal{O}, \quad T_{\mathcal{O}}(\mathcal{O}(x)) = \mathcal{O}_x,$$

 $T_{\mathcal{O}_x}(\mathcal{O}) = \mathcal{O}(x), \quad T_{\mathcal{O}_x}(\mathcal{O}_x) = \mathcal{O}_x.$

Proof. The second line is a consequence of Proposition 5.9. The first line is an easy computation based on Theorem 5.5. \Box

Proposition 6.5. The indecomposable sheaves of charge (1,1) are the sheaves $\mathcal{O}(x)$. The indecomposable sheaves of charge (1,0) are the sheaves $\mathcal{O}(x-y)$.

Proof. The autoequivalence $T_{\mathcal{O}}^{-1}$ maps the charge (0,1) to (1,1), so we can use it to obtain the indecomposables of charge (1,1). Given an indecomposable \mathcal{O}_x of charge (0,1), its image is $\mathcal{O}(x)$ by Proposition 6.4. The first part follows.

Then we can apply $T_{\mathcal{O}_y}^{-1}$ to the latter indecomposables. We get that the indecomposables of charge (1,0) are $\mathcal{O}(x-y)$.

7 Braid group relations

For matrices $A=\left(\begin{smallmatrix}1&-1\\0&1\end{smallmatrix}\right)$ and $B=\left(\begin{smallmatrix}1&0\\1&1\end{smallmatrix}\right)$ we have the following relations

$$ABA = BAB$$
$$(AB)^3 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

We expect similar relations to hold for $T_{\mathcal{O}}$ and $T_{\mathcal{O}_x}$.

Theorem 7.1 ([2]).

$$T_{\mathcal{O}}T_{\mathcal{O}_x}T_{\mathcal{O}} \simeq T_{\mathcal{O}_x}T_{\mathcal{O}}T_{\mathcal{O}_x}$$

 $(T_{\mathcal{O}}T_{\mathcal{O}_x})^3 \simeq i^*[1],$

where $i: X \to X$ is the inverse map of X.

We can prove the braid relation using the following

Proposition 7.2 ([2]). Given two spherical objects E_1 and E_2 , we have

$$T_{E_1}T_{E_2} = T_{T_{E_1}(E_2)}T_{E_1}$$

Proof. Using the computations in Proposition 6.4, we can write

$$T_{\mathcal{O}}T_{\mathcal{O}_x}T_{\mathcal{O}} = T_{\mathcal{O}}T_{T_{\mathcal{O}_x}(\mathcal{O})}T_{\mathcal{O}_x} = T_{\mathcal{O}}T_{\mathcal{O}(x)}T_{\mathcal{O}_x} = T_{T_{\mathcal{O}}(\mathcal{O}(x))}T_{\mathcal{O}}T_{\mathcal{O}_x} = T_{\mathcal{O}_x}T_{\mathcal{O}}T_{\mathcal{O}_x}.$$

This shows that $T_{\mathcal{O}}$ and $T_{\mathcal{O}_x}$ generate the group $\widetilde{\mathrm{SL}_2}(\mathbb{Z})$ in $Aut(D^b(Coh(X)))$, the central extension of $\mathrm{SL}_2(\mathbb{Z})$ by \mathbb{Z} .

References

- [1] Harder, Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212, 1975.
- [2] Seidel, Thomas, Braid group actions on derived categories of coherent sheaves, arxiv:math/0001043