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Abstract

We describe the abelian category of coherent sheaves on an elliptic curve, and
construct an action of a central extension of SL2(Z) on the derived category.
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1 Coherent sheaves on elliptic curve

Definition 1.1. An elliptic curve over a field k is a nonsingular projective algebraic curve
of genus 1 over k with a fixed k-rational point.

Remark 1.2. If the characteristic of k is neither 2 nor 3, an elliptic curve can be alternatevily
defined as the subvariety of P2

k defined by an equation y2z = x3− pxz2− qz3, where p, q ∈ k,
and the polynomial x3 − pxz2 − qz3 is square-free. In this case, the fixed point is (0 : 1 : 0).

Remark 1.3. Over the field of complex numbers, there is even a simpler description. An
elliptic curve is precisely a quotient C/Λ of C by a nondegenerate lattice Λ ⊂ C of rank 2.

Remark 1.4. Any elliptic curve carries a structure of a group, with the fixed point being the
identity.
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Fix an elliptic curve X over a field k. We do not assume that k is algebraically closed,
since the main example is the finite field Fq.

Recall that a coherent sheaf F on X is a sheaf of modules over O such that for every open
affine U ⊂ X the restriction F|U is isomorphic to N̂ for some finitely generated O(U)-module
N .

Example 1.5. The structure sheaf O is indeed a coherent sheaf. Also, one can consider the
ideal sheaf mx = O(−x) corresponding to a closed point x ∈ X. Then the cokernel of the
inclusion O(−x)→ O is the so called skyscrapper sheaf Ox, which is coherent as well.

Theorem 1.6. Coherent sheaves on X form an abelian category Coh(X).

Theorem 1.7 (Global version of Serre theorem). Any coherent sheaf F on a smooth projec-
tive variety of dimension n over a field k admits a resolution Fn → Fn−1 → . . .→ F1 → F0

where each Fi is finitely generated and locally free (' vector bundle).

Theorem 1.8 (Grothendieck’s finiteness theorem). Any coherent sheaf F on a smooth pro-
jective variety of dimension n over a field k has finite dimensional cohomologies over k.

Corollary 1.9. For any coherent sheaves F and G the space Hom(F ,G) has finite dimension
over k, since Hom(F ,G) = Γ(Hom(F ,G), X) = H0(Hom(F ,G), X).

Theorem 1.10 (Grothendieck’s vanishing theorem). Any coherent sheaf F on a smooth
projective variety of dimension n over a field k has no i-th cohomologies for i > n.

Definition 1.11. An abelian category C is called hereditary if Ext2(−,−) = 0.

Corollary 1.12. The category Coh(X) is hereditary.

2 (Semi)stable sheaves

To a coherent sheaf we can associate two numbers, the Euler characteristic χ(F) and the
rank rk(F).

Definition 2.1. The Euler characteristic χ(F) is the alternating sum
∑

i(−1)i dimkH
i(F , X).

In our case, it is equal to dimkH
0(F , X)− dimkH

1(F , X).

Definition 2.2. The rank rk(F) is the dimension of the stalk Fξ of F at a generic point ξ
of X over the residue field. It is independent of ξ.

Example 2.3. We have χ(O) = 0, rk(O) = 1, χ(Ox) = 1, rk(Ox) = 0.

Proposition 2.4. Given a short exact sequence 0→ F ′ → F → F ′′ → 0, we have χ(F) =
χ(F ′) + χ(F ′′) and rk(F) = rk(F ′) + rk(F ′′).

Definition 2.5. The slope µ(F) of a nontrivial coherent sheaf F is the quotient χ(F)/ rk(F).
In the case rk(F) = 0 we set µ(F) =∞.

Lemma 2.6. Given a short exact sequence 0→ F ′ → F → F ′′ → 0, we have three options:

2



• µ(F ′) < µ(F) < µ(F ′′);

• µ(F ′) = µ(F) = µ(F ′′);

• µ(F ′) > µ(F) > µ(F ′′).

Proof. We have

µ(F ′) =
χ(F ′)
rk(F ′)

,

µ(F ′′) =
χ(F ′′)
rk(F ′′)

,

µ(F) =
χ(F)

rk(F)
=

χ(F ′) + χ(F ′)
rk(F ′) + rk(F ′′)

Since both rk(F ′) and rk(F ′′) are nonnegative, we indeed get the lemma.

Definition 2.7. A coherent sheaf F is called stable (resp. semistable) if for any nontrivial
short exact sequence 0→ F ′ → F → F ′′ → 0 we have µ(F ′) < µ(F) (resp. µ(F ′) ≤ µ(F)).

General theory gives us the following

Theorem 2.8 ([1] Harder-Narasimhan filtration). For a coherent sheaf F , there is a unique
filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ Fn+1 = F

such that all Ai = Fi+1/Fi are semistable and µ(Ai) > µ(Ai+1) for each i.

In our case, we can derive much stronger proposition. Before stating it, note two useful
statements.

Proposition 2.9. If F and G are semistable sheaves, and µ(F) > µ(G), then Hom(F ,G) =
0.

Proof. Suppose we have a nontrivial map f : F → G. Then µ(F) ≤ µ(F/ker f) = µ(im f) ≤
µ(G). Contradiction.

Another property of Coh(X) we will need is

Proposition 2.10 (Calabi-Yau property). For any two coherent sheaves F and G, there is
an isomorphism Hom(F ,G) ' Ext1(G,F)∗.

Proof. From Remark 1.4 we know that the canonical bundle K is trivial, K ' O. Also by
Serre duality we get

Hom(F ,G) = Ext0(F ,G) ' Ext1(G,F ⊗K)∗ = Ext1(G,F)∗.

We are ready to prove
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Theorem 2.11. Any nontrivial coherent sheaf is a direct sum of indecomposable semistable
sheaves.

Proof. We only need to prove that any indecomposable sheaf is semistable. Suppose some
indecomposable sheaf F is not semistable. Then the Harder-Narasimhan filtration of F is
nontrivial. Consider only the case of length 1 filtration, it captures the main idea. So, we
have a short exact sequence 0→ F ′ → F → F ′′ → 0, where both F ′ and F ′′ are semistable,
and µ(F ′) > µ(F ′′). By Proposition 2.9 we get Hom(F ′,F ′′) = 0. By Proposition 2.10 we
obtain Ext1(F ′′,F ′) = Hom(F ′,F ′′)∗ = 0. Therefore the exact sequence splits, contradiction
with the assumption that F is indecomposable.

Definition 2.12. Denote the full subcategory of semistable coherent sheaves on X of slope
µ by Cµ.

Proposition 2.13. The category Cµ is abelian, artinian, and closed under extensions. The
simple objects in Cµ are stable sheaves of slope µ.

Corollary 2.14. Coh(X) is the direct sum of all Cµ (on the level of objects).

3 Euler form

Since rk and χ are well defined on K0(Coh(X)), we can consider

Definition 3.1. The Euler form 〈F ,G〉 of two elements F ,G ∈ K0(Coh(X)) is equal to
dim Hom(F ,G)− dim Ext1(F ,G).

Proposition 3.2. We have 〈F ,G〉 = rk(F)χ(G)− χ(F) rk(G).

Proof. First notice that the RHS only depends on the classes of F and G in the Grothendieck
group K0(Coh(X)). Therefore it is sufficient to check the equality for some generators of
the Grothendieck group, for example, for locally free sheaves. If F is locally free, the LHS
reduces to χ(F∨⊗G). Note that in the case of elliptic curve, the Hirzebruch-Riemann-Roch
theorem gives us that χ(E) = deg(E) for any coherent sheaf E . Applying it here, we get

LHS = χ(F∨ ⊗ G) = deg(F∨ ⊗ G) = rk(F) deg(G)− deg(F) rk(G) =

rk(F)χ(G)− χ(F) rk(G) = RHS.

Definition 3.3. The charge map is

Z = (rk, χ) : K0(Coh(X))→ Z2.

It is surjective, since we have both (1, 0) and (0, 1) in the image. We have a canonical
nondegenerate volume form on Z2, 〈(a, b), (c, d)〉 = ad−bc, and it is equal to the push-forward
of the Euler form.

Proposition 3.4. The kernel of the Euler form coincides with the kernel of Z, equivalently,
K0(Coh(X))/ker 〈, 〉 ' Z2.
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Also we can now write some relations between different Cµ and Cµ′ .

Proposition 3.5. Suppose F and F ′ are indecomposable, and Z(F) = (r, χ), Z(F ′) =
(r′, χ′).

• If χ/r > χ′/r′, then Hom(F ,F ′) = 0, dim Ext1(F ,F ′) = χr′ − χ′r;

• If χ/r < χ′/r′, then dim Hom(F ,F ′) = χ′r − χr′, Ext1(F ,F ′) = 0.

Proof. By Proposition 2.10 and Proposition 2.9 we know that

• if χ/r > χ′/r′, then Hom(F ,F ′) = 0;

• if χ/r < χ′/r′, then Ext1(F ,F ′) = 0.

Proposition 3.2 concludes the proof.

4 Derived category of coherent sheaves

Let us show that Corollary 1.12 implies a neat description of the derived categoryDb(Coh(X))
of bounded complexes of coherent sheaves on X.

Theorem 4.1. Suppose C is a hereditary abelian category. Then any object L ∈ Db(C) is
isomorphic to the sum of its cohomologies, i. e. L =

⊕
iH

iL[−i].

Proof. Let L be a complex . . .
di−1

→ Li
di→ Li+1 di+1

→ . . .. Fix any i. We have a short exact
sequence 0 → ker di−1 → Li−1 → im di−1 → 0. Apply RHom(H iL,−). This gives rise
to an exact sequence Ext1(H iL,Li−1) → Ext1(H iL, im di−1) → Ext2(H iL, ker di−1). Since
Coh(X) is hereditary, we obtain a surjection from Ext1(H iL,Li−1) to Ext1(H iL, im di−1).
In particular, there exists M i such that the following diagram commutes

0 // Li−1 //

��

M i //

��

H iL // 0

0 // im di−1 // ker di // H iL // 0

Then the following morhphism

· · · // 0 // 0 // H iL // 0 // · · ·

· · · // 0 //

OO

Li−1 //

OO

M i //

OO

0 //

OO

· · ·
of complexes is a quasi-isomorphism. If we compose its inverse with the morphism

· · · // 0 //

��

Li−1 //M i //

��

0 //

��

· · ·

· · · // Li−2 // Li−1 // Li // Li+1 // · · ·

we get a morphism H iL[−i] → L in Db(Coh(X)) which is isomorphism in the i-th coho-
mology, and zero elsewhere. Therefore, if we sum up all this morphisms, we obtain an
isomorphism

⊕
iH

iL[−i]→ L.
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Corollary 4.2. The derived category Db(Coh(X)) is the direct sum of Z copies of Coh(X),
a sheaf F in the i-th copy goes to F .

Since K0(Db(Coh(X))) = K0(Coh(X)), Z is defined on K0(Db(Coh(X))) as well. Note
that Z(F [i]) = (−1)iZ(F).

Remark 4.3. The corollary works for any smooth projective curve X. Another example of a
hereditary category is the category of representations of a quiver.

5 SL2(Z) action

Proposition 3.2 suggests to define 〈L,M〉 =
∑

i(−1)i dim Hom(L,M [i]) for any two ob-
jects L,M ∈ Db(Coh(X)). Therefore the Euler form is preserved by any autoequiva-
lence of Db(Coh(X)). In other words, any autoequivalence f ∈ Aut(Db(Coh(X))) gives
a corresponding automorphism of Z2 preserving the volume form, i. e. gives an element
π(f) ∈ SL2(Z).

Definition 5.1. Say that an object E ∈ Db(Coh(X)) is spherical if Hom(E , E) = k (and
consequently Hom(E , E [1]) = k).

Example 5.2. The structure sheaf O and the skyscrapper sheaf at a rational k-point are
spherical.

Definition 5.3. A Forier-Mukai transform with a kernel L ∈ Db(Coh(X × Y )) is a functor
ΦL : Db(Coh(X))→ Db(Coh(Y )) which sends an object F ∈ Db(Coh(X)) to Rπ2∗(π

∗
1F ⊗L

L), where π1 : X × Y → X and π2 : X × Y → X are the natural projections.

Definition 5.4. For a spherical object E ∈ Db(Coh(X)), which is a complex of locally free
sheaves, we can define a twist functor TE : Db(Coh(X)) → Db(Coh(X)) to be equal to a
Forier-Mukai transform with the kernel cone(E∨ � E → O∆) ∈ Db(Coh(X ×X)).

Theorem 5.5 ([2]). For a spherical object E ∈ Db(Coh(X)) the twist functor TE is an exact

equivalence which sends an object F to cone(RHom(E ,F)⊗L E evF→ F).

Remark 5.6. The evaluation works by applying ev : Exti(E ,F)⊗E [−i]→ F on each grading.

Let us see how TE acts on Grothendieck group.

Proposition 5.7. The action of TE on K0(Db(Coh(X))) is given by [F ] 7→ [F ]−〈E ,F〉 [E ].

Proof. Indeed, [TE(F)] = [F ]− [RHom(E ,F)⊗L E ] = [F ]− 〈E ,F〉 [F ].

Corollary 5.8. π(TO) = ( 1 −1
0 1 ), π(TOx) = ( 1 0

1 1 ).

Proof. Since Z2 are generated by the charges of O and Ox, we can check this on O and Ox
only.

TO([O]) = [O]− 〈O,O〉 [O] = [O],

TO([Ox]) = [Ox]− 〈O,Ox〉 [O] = [Ox]− [O],

TOx([O]) = [O]− 〈Ox,O〉 [Ox] = [O] + [Ox],
TOx([Ox]) = [Ox]− 〈Ox,Ox〉 [Ox] = [Ox].
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Proposition 5.9. TOx is in fact just the tensor product with O(x).

Proof. The formula for the adjoint of a Forier-Mukai transform gives that the inverse of
TOx is the Forier-Mukai transform with the kernel cocone(O∆ → O(x,x)). The map inside a
cocone is nonzero. But any nonzero map O∆ → O(x,x) is a nonzero multiple of the natural
surjection O∆ → O(x,x). Therefore the cocone is equal to the kernel of this map, or just
O∆ ⊗ π∗1(O(−x)). Now note that the sheaf O∆ in the kernel trivializes all pullbacks and
pushforwards we do to the identity maps between sheaves on X and on ∆ ' X. The
proposition follows.

The matrices π(TO) and π(TOx) generate SL2(Z), therefore, π : Aut(Db(Coh(X))) →
SL2(Z) is surjective.

6 Classification of indecomposable sheaves

Note that indecomposable torsion sheaves lie in C∞, and generate C∞. Moreover, we have

Theorem 6.1. Indecomposable torsion sheaves are parametrized by a positive integer s > 0
and a closed point x ∈ X. The corresponding torsion sheaf is O/O(−sx).

Proof. Indeed, we reduce to the case of one point, then the local ring is PID, and the claim
follows.

In addition to that, SL2(Z) action allows us to prove

Theorem 6.2. For each µ ∈ Q we have a canonical isomorphism Cµ ' C∞.

Proof. Indeed, let µ be equal to a/b for coprime a and b. Choose some γ ∈ SL2(Z) which
sends (a, b) to (0, 1), and lift it to an autoequivalence f̃ ∈ Aut(Db(Coh(X))) of the derived
category. Take any indecomposable sheaf F ∈ Cµ. Then f̃(F) is an indecomposable object
in Db(Coh(X)) with the slope ∞. Therefore, it is of form G[k], where G is a torsion sheaf,
and k is some integer. Denote by f : Cµ → C∞ a map which sends an indecomposable sheaf
F to a sheaf G defined in this way. It is easy to see that if we begin with the inverse matrix
f−1, then we get a map f−1 : C∞ → Cµ which is inverse to f . Also f does not depend on a
lift f̃ . So Cµ and C∞ are canonically isomorphic.

Summarizing, we have

Theorem 6.3. Indecomposable sheaves are parametrized by a pair (rk, χ) in the right half
of Z2 and a closed point x ∈ X.

Let us show how this describes indecomposable sheaves with charges (1, 1) and (1, 0).

Proposition 6.4.

TO(O) = O, TO(O(x)) = Ox,
TOx(O) = O(x), TOx(Ox) = Ox.
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Proof. The second line is a consequence of Proposition 5.9. The first line is an easy compu-
tation based on Theorem 5.5.

Proposition 6.5. The indecomposable sheaves of charge (1, 1) are the sheaves O(x). The
indecomposable sheaves of charge (1, 0) are the sheaves O(x− y).

Proof. The autoequivalence T−1
O maps the charge (0, 1) to (1, 1), so we can use it to obtain

the indecomposables of charge (1, 1). Given an indecomposable Ox of charge (0, 1), its image
is O(x) by Proposition 6.4. The first part follows.

Then we can apply T−1
Oy

to the latter indecomposables. We get that the indecomposables
of charge (1, 0) are O(x− y).

7 Braid group relations

For matrices A = ( 1 −1
0 1 ) and B = ( 1 0

1 1 ) we have the following relations

ABA = BAB

(AB)3 =
( −1 0

0 −1

)
We expect similar relations to hold for TO and TOx .

Theorem 7.1 ([2]).

TOTOxTO ' TOxTOTOx

(TOTOx)3 ' i∗[1],

where i : X → X is the inverse map of X.

We can prove the braid relation using the following

Proposition 7.2 ([2]). Given two spherical objects E1 and E2, we have

TE1TE2 = TTE1
(E2)TE1

Proof. Using the computations in Proposition 6.4, we can write

TOTOxTO = TOTTOx (O)TOx = TOTO(x)TOx = TTO(O(x))TOTOx = TOxTOTOx .

This shows that TO and TOx generate the group S̃L2(Z) in Aut(Db(Coh(X))), the central
extension of SL2(Z) by Z.

References

[1] Harder, Narasimhan, On the cohomology groups of moduli spaces of vector bundles on
curves, Math. Ann. 212, 1975.

[2] Seidel, Thomas, Braid group actions on derived categories of coherent sheaves,
arxiv:math/0001043

8


	Coherent sheaves on elliptic curve
	(Semi)stable sheaves
	Euler form
	Derived category of coherent sheaves
	SL2(Z) action
	Classification of indecomposable sheaves
	Braid group relations

