
LECTURE 1: REMINDER ON AFFINE HECKE ALGEBRAS

SETH SHELLEY-ABRAHAMSON
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1. Goals

The purpose of this talk is to introduce affine and double affine Hecke algebras and certain
structural results regarding these algebras. When possible, I will make all definitions and
statements for general Cartan types. However, I will emphasize the type A case and use
this case as an example throughout, as in the later parts of the seminar we will be primarily
concerned with type A.

The main references are Macdonald’s book [M] and Kirillov Jr.’s lecture notes [K]. Essen-
tially everything in these notes can be found in those references in a more complete form.

2. Review of Coxeter Groups and Their Hecke Algebras

In this section we will quickly review Coxeter groups and their associated Hecke algebras.
All statements and their proofs can be found in (one of) the references [GP] or [H]. We will
largely omit proofs in this section, as these results and definitions are standard.
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2.1. Coxeter Groups. Let I be a finite set, and let m : I × I → Z≥1 ∪ {∞} be a function
satisfying m(i, j) = m(j, i) ≥ 2 for all i 6= j ∈ I and m(i, i) = 1 for all i ∈ I. One may view
this data equivalently as a finite (Z∪{∞})-labeled undirected graph Γ with vertex set I and
edge labels at least 3 (by convention, a missing edge between i and j indicates m(i, j) = 2);
we refer to Γ as the Coxeter graph. Given this data, let W be the group generated by the
set

{si : i ∈ I}
with the relations

(sisj)
m(i,j) = 1

(whenever m(i, j) <∞). The groups W appearing in this manner are called Coxeter groups,
and such a pair (W, I) is called a Coxeter system. Note that the generators si satisfy s2i = 1.
This allows the defining relations to be replaced with the braid relations

sisjsi · · · = sjsisj · · ·
for all i 6= j ∈ I whenever m(i, j) <∞ (with m(i, j) factors on each side) and the quadratic
relations

s2i = 1

for all i ∈ I. This presentation will be particularly convenient for us when we consider
associated braid groups and Hecke algebras shortly.

Any Coxeter such group W admits a faithful real representation in which the generators si
act by reflections; using this representation, one can show that for any i 6= j ∈ I the order of
the product sisj in W is precisely m(i, j). In particular, the function m(i, j), and hence the
Coxeter graph Γ, describing the relations among the generators, is uniquely recovered from
the Coxeter system (W, I). Note, however, that this data is not uniquely recovered from the
Coxeter group W as an abstract group, and an abstract group may be a Coxeter group in
many different ways. For example, when n > 4 is an odd integer, the Coxeter group Bn is
isomorphic as an abstract group to the product A1 ×Dn (take the nontrivial element in A1

to be −1 ∈ Bn).
Recall that a finite real reflection group is a finite subgroup W ⊂ GL(V ) of the general lin-

ear group GL(V ) of a finite-dimensional real vector space V that is generated by reflections,
i.e. by elements s ∈ W satisfying rank(s − 1) = 1 and s2 = 1. The following characterizes
the finite Coxeter groups as the finite (real) reflection groups (with additional structure):

Theorem 2.1.1. A finite group W is a real reflection group if and only if there is a generating
subset I ⊂ W such that (W, I) is a finite Coxeter system.

Proof Sketch. This theorem is proved, for example, in Humphrey’s book [H]. The idea
of proof is as follows. Any Coxeter group admits a faithful representation generated by
reflections in a finite-dimensional real vector space, and in particular finite Coxeter groups
are finite real reflection groups. Conversely, given a finite real reflection group W with
reflection representation V , choose a component C of the disconnected space

V reg := V \ ∪s∈Ref(W ) ker(s− 1),

where Ref(W ) ⊂ W denotes the set of reflections in W with respect to its action on V .
We refer to C as an (open) fundamental chamber for W . Then C is a simplicial cone with
boundary defined by hyperplanes ker(s) for a certain subset I ⊂ Ref(W ) of the reflections
(the simple reflections). Then I generates W , and (W, I) is a Coxeter system. The numbers
m(s, s′) are obtained as the order of the products ss′ for s, s′ ∈ I with s 6= s′. These orders
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m(s, s′) themselves are easily read off by the angle 2π/m(s, s′) between the hyperplanes
ker(s) and ker(s′). �

In particular, it follows from the classification of finite reflection groups that the irreducible
finite Coxeter groups coincide with the finite Weyl groups (which come in types A through
G) along with the dihedral groups I2(m) for m ≥ 3 and the exceptional non-crystallographic
Coxeter groups H3 and H4.

Again let (W, I) be a Coxeter system, finite or infinite. Any w ∈ W equals some product
s1 · · · sq of simple reflections. Let the length l(w) of w be the minimal length of such an
expression, and refer to any such minimal expression w = si1 · · · sil(w)

as a reduced expression.
A typical element w of W admits many distinct reduced expressions, and it will be important
to us to understand the relationship between these expressions. This question is answered
by Matsumoto’s Theorem. In particular, let RE denote the set of reduced expressions
s = (si1 , ..., sil). Let ∼= denote the equivalence relation on RE given by s ∼= s′ if and only
if si1 · · · sil = si′1 · · · si′l . Let ∼br denote the equivalence relation on RE generated by the
braid relations, i.e. by replacing a sequence (si1 , si2 , ...) of length m(i1, i2) with the sequence
(si2 , si1 , ...) of length m(i1, i2). We then have:

Theorem 2.1.2 (Matsumoto). ∼= = ∼br .
In other words, any two reduced expressions for the same element w ∈ W are connected

by a sequence of braid relations. The proof can be found in [L].

2.2. Braid Groups. Let (W, I) be a Coxeter system. The braid group BW associated to
(W, I) is the group generated by the set {Ti : i ∈ I} subject to the braid relations

TiTj · · · = TjTi · · ·
(m(i, j) factors on each side) for i 6= j ∈ I with m(i, j) 6= ∞. In other words, the braid
group BW has a description by generators and relations identical to that of W except that
the quadratic relations s2i = 1 are omitted.

For any w ∈ W and reduced expression w = si1 · · · sl(w), it follows from the definition of
the braid group and Matsumoto’s theorem that the product Ti1 · · ·Til(w)

is independent of
the choice of reduced expression for w. We denote any such product by the symbol Tw. As
Ti1 = Tsi1 , it follows that the set {Tw : w ∈ W} generates BW , and it is immediate that the
relation

TwTw′ = Tww′ whenever l(ww′) = l(w) + l(w′)

holds in BW . It is easy to see that this gives another presentation for BW . Similarly, we
may give a presentation for BW by specifying generators {Tw : w ∈ W} with relations

TsiTw = Tsiw whenever l(siw) > l(w)

(or the analogous “right handed” relations, or both types of relations simultaneously).
Clearly, there is a surjection BW → W sending Ti to si, with kernel generated by the

elements T 2
i . The kernel PW is the pure braid group.

Remark 2.2.1. When W is finite, so W is a finite real reflection group with reflection
representation V , the braid group has a standard topological interpretation. In particular,
let VC denote the complexification of V , and let V reg

C denote the set of points in VC with
trivial stabilizer in W (i.e., the complement of the reflection hyperplanes). Then there are
identifications π1(V

reg
C /W ) = BW and π1(V

reg
C ) = PW compatible with the obvious short

exact sequences.
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Example : Type A The symmetric group Sn on n letters is a real reflection group with
respect to its standard representation by coordinate permutations in Rn - the transposition
(i, j) is given by reflection through the hyperplane xi = xj. This representation is faithful
but not irreducible - the space {x :

∑
i xi = 0} is the irreducible reflection representation

for Sn. A set of simple reflections can be given by the adjacent transpositions (i, i + 1)
for 1 ≤ i < n, and the corresponding Coxeter graph is a line of n − 1 connected dots (by
convention an unlabeled connection indicates m = 3), and this type of reflection group is
said to be of type An−1. When W = Sn, the braid group BSn is the familiar standard braid
group Bn on n strands, and the pure braid group PSn is the standard pure braid group on n
strands.

2.3. Hecke Algebras. In this section we will recall certain deformations of group algebras
of Coxeter groups, the Hecke algebras. Let (W, I) be a Coxeter system. Let τ : I → C×
be a function such that τ(i) = τ(j) whenever si and sj are conjugate in W , and write
τi = τsi = τ(i). The Hecke algebra Hτ (W, I) attached to the Coxeter system (W, I) and
parameter τ is the C-algebra with generators {Ti : i ∈ I} and relations consisting of the
braid relations seen above and the Hecke relations (or quadratic relations)

(Ti − τi)(Ti + τ−1i ) = 0

for all i ∈ I. We will write Hτ (W ) rather than Hτ (W, I) when the meaning is clear.
It is immediate from the Hecke relations that the generators Ti are invertible and that the

Hecke relations can be equivalently written

Ti − T−1i = τi − τ−1i .

In particular, there is a natural surjection

CBW → Hτ (W ), Ti 7→ Ti.

It follows that the Hecke algebra Hτ (W ) has an alternative description as the quotient of
the complex group algebra CBW by the Hecke relations. We use the notation Tw for w ∈ W
to denote both elements of the braid group and their images in Hτ (W ) when the meaning
is clear.

When τ is the constant function 1, the Hecke relations read

T 2
i = 1,

and in particular the Hecke algebra H1(W ) is identified with the group algebra CW of W .
In this way, the family of algebras Hτ (W ) form a deformation of CW . As it happens, this
deformation is flat:

Theorem 2.3.1. The set {Tw : w ∈ W} forms a C-basis of Hτ (W ).

The proof is standard. In particular, it is clear that the elements Tw span Hτ (W ) because
the span of the Tw contains 1, is stable under multiplication by the Ti, and the Ti generate
Hτ (W ). So, what one needs to do is to prove linear independence. This is achieved by the
standard trick of writing down a representation of Hτ (W ) in a space in which the linear
operators by which the Tw act are manifestly linearly independent. In this case, one uses the
regular representation as a model. In particular, one considers the C-vector space H ′ with
basis {ew : w ∈ W} and tries to define a representation of Hτ (W ) in this space by letting
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the generator Ti act by

Ti(ew) =

{
esiw if l(siw) > l(w)

esiw + (τi − τ−1i )ew if l(siw) < l(w).

It is obvious that the Ti satisfy the Hecke relations, so to see that this defines a representation
of Hτ (W ) one need only check the braid relations. For this, one considers the operators on H ′

that should correspond to right multiplication by Ti, and checks that the “left multiplication”
operators commute with the “right multiplication” operators, reducing the check of the braid
relations to the check that the braid relations hold when applied to the element e1, which is
obviously true. Details can be found, for example, in Humphrey’s book [H].

Remark 2.3.2. The same proof shows that when the parameter τ is viewed as a formal
invertible variable(s), the Hecke algebra Hτ (W ) is a free C[τ±1i ]-module with basis {Tw : w ∈
W}. The case of numeric τ is then obtained by specialization to C.

Remark 2.3.3. In some other contexts, the presentation/definition of Hecke algebras at-
tached to (W, I) looks slightly different in that the Hecke relation seen above. Specifically,
the Hecke relation may be of the form (T + 1)(T − q) = 0 (as one sees, for example, in
the context of Hecke algebras attached to BN pairs) or (T − 1)(T + q) (as one sees, for
example, in the context of the KZ functor appearing for rational Cherednik algebras). These
two forms involving q are easily reconciled by a rescaling of the generators Ti (notice that
the braid relations are homogenous). The version seen above with τ (often the letter v is
used instead) amounts to choosing a square root of q and rescaling the generators, which is
important from some representation theoretic perspective that we won’t discuss here.

3. Affine Hecke Algebras

3.1. Affine Root Systems. We will assume the reader is familiar with finite root systems.
For the rest of this talk, any finite Coxeter group appearing will be a Weyl group, i.e. a
crystallographic real reflection group (i.e., types H and I are excluded). Similarly, all finite
root systems appearing will also be crystallographic. All definitions and results in this section
can be found in [M, Chapter 1]. Also, the notion of “affine root system” I will use here is
in the sense appearing in [M]; the roots appearing in these affine root systems are the real
roots of the affine root systems discussed in the context of Kac-Moody Lie algebras.

Affine root systems are related and similar in spirit to finite root systems. The essential
differences are that in the affine case there are infinitely many affine roots and an affine
root determines an affine reflection, i.e. a reflection through an affine hyperplane, while
in the finite case there are finitely many roots and a root determines an honest reflection
through a linear hyperplane. The standard theory of finite root systems has an analogue for
affine root systems. Specifically, one has an axiomatic definition and concise classification
involving diagrams closely related to Dynkin diagrams, notions of affine Weyl groups with
length functions, convenient fundamental domains (now called alcoves rather than Weyl
chambers), etc. For the sake of concreteness, simplifying the notation, and with the goals
of this seminar in mind, we will not consider arbitrary affine root systems, but rather only
certain affine root systems Ra that are easily associated to finite irreducible reduced root
systems R. This is not a significant restriction, and in fact the classification of arbitrary
affine root systems is easily stated in terms of these affine root systems Ra and some mild
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additional constructions (see [M, Chapter 1, Section 3]). For the full-fledged general case of
all the material to follow in this talk, see Macdonald’s book [M].

3.1.1. Affine functions, affine reflections, and translations. Fix a Euclidean vector space V
with inner product (·, ·). Identify V with its dual V ∗ via the inner product. Let F be the
set of affine-linear functions on V , i.e. the functions f : V → R that are sums of linear
functionals and constant functions. Then F = V ⊕Rδ, where δ ∈ F is the constant function
with value 1. For any f ∈ F , let Df ∈ V denote the projection of f to V under the splitting
F = V ⊕Rδ (then Df is the gradient of f in the usual sense of calculus, and f = Df+f(0)).
Extend the inner product (·, ·) to F by defining

(v + cδ, w + dδ) = (v, w)

for all v, w ∈ V and c, d ∈ R. On F , the form (·, ·) is a degenerate symmetric bilinear form
with kernel Rδ.

Let f ∈ F be non-constant. Then (f, f) > 0, and we define

f∨ :=
2f

(f, f)
.

The subset f−1(0) ⊂ V is an affine hyperplane, and we denote by sf the orthogonal reflection
in V through this affine hyperplane. The affine reflection sf is given by a familiar formula:

sf (x) = x− f∨(x)Df = x− f(x)Df∨.

Then sf also acts on functions g on V by the usual formula sf .g = g ◦ s−1f = g ◦ sf , and
clearly this action preserves the space F . This action of sf is given by the familiar formula

sf (g) = g − (g, f∨)f = f − (g, f)f∨.

Naturally, a translation t : V → V is an affine linear transformation of V of the form
t(x) = x + v, for some v ∈ V ; we denote this translation by t(v). For a subset X ⊂ V , we
define t(X) := {t(v) : v ∈ X}. When L ⊂ V is a lattice, t(L) is a lattice isomorphic to L.
Any translation t(v) also acts on the space F of affine-linear functions on V :

t(v)(f) = f − (v, f)δ.

3.1.2. The affine root systems Ra. Fix a finite irreducible reduced root system R ⊂ V span-
ning V (so R has rank dimV ). As usual, let Q :=

∑
α∈R Zα denote the root lattice, let

Q∨ :=
∑

α∈R Zα∨ denote the coroot lattice, let P ⊂ V be the weight lattice (i.e. those
λ ∈ V with integral pairing with all coroots), and let P∨ be the coroot lattice (i.e. those
λ ∈ V with integral pairing with all roots.

Define the associated affine root system Ra to be the subset of F given by:

Ra := {α + nδ : α ∈ R, n ∈ Z}.
We call elements a ∈ Ra affine roots. Note that R is a subset of Ra. Let W denote the Weyl
group attached to R, i.e. the subgroup of GL(V ) generated by the reflections {sα : α ∈ R}.
Similarly, let W a, the affine Weyl group, be the group of invertible affine transformations of
V generated by the sa for a ∈ Ra. Clearly, W ⊂ W a.

Proposition 3.1.1. The lattice t(Q∨) is a normal subgroup of W a and W a = W n t(Q∨).

Proof. Let a = α + nδ be an affine root. Then we have

sαsa(x) = sα(x− ((x, α) + n)α∨) = x− (x, α)α∨ + ((x, α) + n)α∨ = x+ nα∨
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so sasα = t(nα∨). It follows that t(Q∨) is a subgroup of W a. We also see that sa = t(nα∨)sα,
so W a is generated by W and t(Q∨). It’s also clear that for any w ∈ W and λ ∈ Q∨, we
have wt(λ)w−1 = t(wλ), so t(Q∨) is normal in W a and W a = W.t(Q∨). As W fixes 0 ∈ V ,
it follows that W ∩ t(Q∨) = 1 and the claim follows. �

It’s now easy to see the following:

Proposition 3.1.2.
(1) Ra spans F .
(2) sa(b) ∈ Ra for all a, b ∈ Ra.
(3) (a∨, b) ∈ Z for all a, b ∈ Ra.
(4) the action of W a on V is proper, i.e. for any compact subset K ⊂ V the set of w ∈ W a

such that wK ∩K 6= ∅ is finite.

Remark 3.1.3. The preceding proposition says that Ra is indeed an affine root system in
the axiomatic sense.

3.1.3. Alcoves and positive and simple roots. Let α1, ..., αn be a choice of simple positive
roots for the finite root system R, determining a Weyl chamber

C := {x ∈ V : αi(x) ≥ 0 for 1 ≤ i ≤ n}.
Recall that the Weyl group W of R is then a Coxeter group with respect to the corresponding
simple reflections through the walls of C. Recall also that the set of positive roots R+ ⊂ R
is given by

R+ := {α ∈ R : α(x) ≥ 0 for all x ∈ C},
the negative roots are R− := −R+, and that every positive root is a linear combination of
positive simple roots with nonnegative integer coefficients. There is a very similar story for
the affine Weyl group W a that we now explain.

The set of affine hyperplanes {a−1(0) : a ∈ Ra} is a locally finite arrangement of real
hyperplanes in V , and it follows that the complement is open and has a natural W a-action.
A connected component of this complement is called an alcove, and we denote the set of
alcoves by A. Let A denote the closure of the unique alcove A◦ contained in C and such that
0 ∈ A◦. We call A an affine Weyl chamber for Ra. Clearly, A is a n-dimensional simplex

A = {x ∈ V : ai(x) ≥ 0 for 0 ≤ i ≤ n}
with n + 1 walls given by affine hyperplanes {a−1i (0) : 0 ≤ i ≤ n} for some uniquely
determined affine roots a0, a1, ..., an. We call the ai the simple affine roots, or just simple roots
when the meaning is clear. Up to reordering, we have ai = αi for 1 ≤ i ≤ n (corresponding
to the walls that A shares with C) and a root a0 with nonzero constant term that defines the
remaining wall of A. Let I be the set {0, ..., n} and let I0 be the set I\{0}. For 0 ≤ i ≤ n,
define the ith simple reflection by si := sai . Sometimes by abuse of notation I’ll confuse i ∈ I
with si.

Let’s fix some terminology and notation. Define the positive (affine) roots Ra
+ ⊂ Ra by

Ra
+ := {a ∈ S : a(x) ≥ 0 for all x ∈ A}

and define the negative (affine) roots Ra
− by Ra

− := −Ra
+.
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Let θ ∈ R+ denote the highest root of the finite root system R. For i ∈ I0, let mi ∈ Z>0

denote the unique positive integers such that

θ =
∑
i∈I0

miαi.

Proposition 3.1.4. a0 = −θ + δ.

Proof. Certainly a0 = α + nδ for some α ∈ R and n ∈ Z. As 0 ∈ A\a−10 (0), we have
a0(0) > 0, so n > 0. Certainly for any n > 0 the simplex A′ defined by any α + nδ along
with α1, ..., αn contains A, so we have n = 1. Any root α can be written α =

∑
i kiαi, and

we have ki ≥ −mi for all i. As the 1-dimensional faces of C are given by R≥0λi, where the
λi are the fundamental weights, it is clear that simplex determined by −θ + δ and the αi is
contained in the simplex determined by any α + δ and the αi, and the claim follows. �

Corollary 3.1.5. A has the alternative, slightly more concrete description:

A = {x ∈ V : (αi, x) ≥ 0 for i ∈ I0 and (x, θ) ≤ 1}.

We can now give a convenient description of the positive affine roots and see that the
simple positive affine roots give a basis for Ra in the same familiar way that the simple
positive roots give a basis for R:

Corollary 3.1.6.
(1) Ra

+ has the following description:

Ra
+ = {α + rδ : α ∈ R, r ≥ χ(α)}

where χ is the indicator function on R of the subset R− ⊂ R of negative roots.
(2) Ra = Ra

+

∐
Ra
− and every positive affine root a ∈ Ra

+ is of the form

a =
∑
i∈I

niai

for some non-negative integers ni.

Proof. (1) follows easily from the previous corollary (in particular, note that any root α ∈ R
is positive if and only if α(x) ∈ [0, 1] for all x ∈ A). (2) follows from (1) and the fact that
for any root α ∈ R the difference θ−α is a sum of positive simple roots αi with nonnegative
coefficients. �

3.1.4. W a as a Coxeter group, and its length function. Proofs of the following two proposi-
tions can be found in [H, Chapter 4].

Proposition 3.1.7.
(1) The simple affine reflections s0, ..., sn generate W a, and in fact the pairs (W a, I) and

(W, I0) are Coxeter systems. As usual, the entries m(i, j) of the Coxeter matrix are read
off from the relative angles of the affine hyperplanes a−1i (0) (equivalently, from the pairings
(a∨i , aj)).

(2) W a acts simply transitively on the set A of alcoves, and A is a fundamental domain
for the action of W a on V .

Let l : W a → Z≥0 be the length function on W a as a Coxeter group with generating simple
reflections s0, ..., sn.
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Proposition 3.1.8. For any w ∈ W a, the length l(w) can be equivalently described as:
(a) The length of a reduced expression for w.
(b) l(w) = |Ra

+ ∩ w−1Ra
−|

(c) The number of affine hyperplanes a−1(0) with a ∈ Ra
+ separating A and wA.

3.2. Extended Affine Weyl Groups. In light of the decomposition W a = W n t(Q∨),
we can enlarge the group W a by replacing the coroot lattice Q∨ with a larger lattice L′ on
which W acts.

Definition 3.2.1. The extended affine Weyl group W ae attached to Ra is the semidirect
product

W ae := W n t(P∨).

Clearly, W ae admits a natural action on V extending that of W a.

Proposition 3.2.2. The extended affine Weyl group W ae acts on the affine roots Ra.

Proof. For a coweight λ ∈ P∨, the translation t(λ) acts on F by

t(λ)(a) = a− (λ, a)δ.

Any λ ∈ P∨ has integral pairing with any a ∈ Ra, and the claim follows. �

So it follows as well that W ae acts on the set of affine hyperplanes and the set of alcoves
A etc., but the action on the alcoves is no longer faithful.

Now we want to relate the extended affine Weyl group W ae to the affine Weyl group W a:

Definition 3.2.3. Extend the definition of the length function l from the affine Weyl group
W a to the extended affine Weyl group W ae by either of the two equivalent definitions (b) or
(c) appearing in Proposition 3.1.8

Definition 3.2.4. Let Ω be the finite group

Ω := {w ∈ W ae : l(w) = 0} = {w ∈ W ae : wA = A}.

Definition 3.2.5. Recall that a weight λ ∈ P is called miniscule if 0 ≤ (λ, α∨) ≤ 1 for
every positive root α ∈ R+. Similarly, recall that a coweight λ′ ∈ P∨ is called miniscule if
0 ≤ (λ′, α) ≤ 1 for every positive root α ∈ R+.

Recall that the miniscule weights form a system of representatives for P/Q, just as the
miniscule coweights do for P∨/Q∨.

Proposition 3.2.6.
(1) W ae = Ω nW a.
(2) Ω ∼= P∨/Q∨. In particular, every πr ∈ Ω is of the form

πr = t(br)wr

for some miniscule coweight br ∈ P∨ and wr ∈ W a.

Proof. (1) follows immediately from the facts that W a acts simply transitively on the set of
alcoves and that Ω is the set-wise stabilizer of the alcove A. (2) follows from the semidirect
product decomposition/definition of W a and W ae and the fact that the minscule coweights
form a system of representatives for P∨/Q∨. �

Remark 3.2.7. In fact, in (2) above one has wr ∈ W (see [M, Chapter 2, Section 5]).
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Remark 3.2.8. The faithful action of Ω on the alcove A gives rise to a faithful action of
Ω on the set of walls of A, and therefore on the set of simple roots. If πr(ai) = aj, then
πrsiπ

−1
r = sj. This describes the semidirect product appearing in (1) concretely, and we see

that the action of Ω on W a is by diagram automorphisms.

Let P+ denote the dominant weights (i.e. those λ ∈ P with (λ, α∨i ) ≥ 0 for all i ∈ I0) and
let P∨+ denote the dominant coweights (i.e. those λ′ ∈ P∨ with (λ′, αi) ≥ 0 for all i ∈ I0).
As usual, let ρ ∈ P+ denote the half sum of the positive roots.

We have the following facts about the length function l on the extended affine Weyl group
W ae:

Proposition 3.2.9.
(1) The restriction of the length function on W ae to W a coincides with the usual length

function, and l(πw) = l(wπ) = l(w) for all π ∈ Ω, w ∈ W ae.

(2) l(wsi) =

{
l(w) + 1 if w(ai) ∈ Ra

+

l(w)− 1 if w(ai) ∈ Ra
−

(3) If w ∈ W ae an λ ∈ P∨, then

l(wt(λ)) =
∑
α∈R+

|(λ, α) + χ(wα)|

where χ is the indicator function of the negative roots R− ⊂ R.

Proof. (1) is immediate from the definition and (2) follows from (1), the definition of l, and
the fact that si permutes the set Ra

+\{ai}. A proof of (3) can be found in [M, Chapter 2] -
it is not difficult and it makes use of the description

Ra
+ = {α + rδ : α ∈ R, r ≥ χ(α)}.

�

The translation elements t(λ) ∈ W ae will be of particular relevance in what follows, so we
record some facts about these elements and the length function in the following corollary:

Corollary 3.2.10.
(1) If λ ∈ P∨, then l(t(λ)) = 2(λ+, ρ), where λ+ is the dominant coweight lying in the

W -orbit of λ.
(2) If λ ∈ P∨+ , then l(wt(λ)) = l(w) + l(t(λ)).
(3) If (λ, αi) = 0 for any i ∈ I0, then l(t(λ)si) = l(sit(λ)) = l(t(λ)) + 1
(4) If (λ, αi) = −1, then l(sit(λ)) = l(t(λ))− 1.

Proof. Follows immediately from Proposition 3.2.9(3). �

3.3. Affine and Extended Affine Braid Groups.

Definition 3.3.1. The affine braid group Ba attached to the affine Weyl group W a is the
braid group attached to the Coxeter system (W a, I). The extended affine braid group Bae

attached to the extended affine Weyl group W ae has exactly the same description as Ba except
with W ae and its length function in place of W a. In particular, Bae has generators Tw for
w ∈ W ae and relations TwT

′
w = Tww′ whenever l(ww′) = l(w) + l(w′).

Remark 3.3.2. Like for finite-type braid groups, the affine braid group Ba has a topological
interpretation as the fundamental group π1(V

reg
C /W a) where

V reg
C = (C⊗R V )\ ∪a∈Ra (1⊗ a)−1(0)
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(this quotient is sensible because the action of W a on V is proper). In light of the decom-
position W a = W n t(Q∨), it is easy to see that V reg

C /W a can also be described as T reg/W ,
where T = V reg

C /t(Q∨) is the complement of the corresponding hypersurfaces in the complex
torus VC/t(Q

∨).

Theorem 3.3.3. The elements Tπ with π ∈ Ω form a subgroup of Bae isomorphic to Ω, and
we have

Bae = Ω nBa

where the action of Ω on Ba is by the same diagram automorphisms discussed earlier, i.e. if
πr(ai) = aj then πrTiπ

−1
r = Tj, where Ti denotes Tsi and πr denotes Tπr .

Proof. This is easy to see from our previous discussion of braid groups and the fact that
πrsi = sjπr and that l(πrsi) = 1 = l(si) etc. �

Along with the description of Ba by generators and relations from our discussion of Coxeter
groups, this gives a more tractable description of Bae by generators and relations.

Recall that the affine and extended affine Weyl groups had the semidirect product decom-
positions

W a = W n t(Q∨) W ae = W n t(P∨).

We now will upgrade this decomposition to the affine and extended affine braid groups,
which will allow us to do the same for the affine Hecke algebras to come.

Definition 3.3.4. For λ ∈ P∨, define elements Y λ ∈ Bae by
(1) Y λ = Tt(λ) if λ ∈ P∨+
(2) Y λ = Y µ(Y ν)−1 if λ = µ− ν with µ, ν ∈ P∨+ .

Theorem 3.3.5. Y λ is well-defined for all λ ∈ P∨, and we have Y λY µ = Y λ+µ for all
λ, µ ∈ P∨. The mapping λ 7→ Y λ determines a lattice isomorphism between P∨ and the
subgroup {Y λ : λ ∈ P∨} of Bae.

Proof. Clearly the Y λ are well-defined for λ ∈ P∨+ and satisfy Y λY µ = Y λ+µ. It follows imme-
diately that the Y λ are well-defined for all λ ∈ P∨ and satisfy Y λY µ = Y λ+µ. The restriction
of the natural surjection Bae → W ae gives the inverse lattice isomorphism, completing the
proof.

�

We will now describe the commutation relations between elements Y λ and Ti. Note that
as the lattice {Y λ : λ ∈ P∨} is generated by the elements Y ωi , where the ωi ∈ P∨+ are the
fundamental dominant coweights, it suffices to explain the commutation relations between
Y λ and Ti in the case that (αi, λ) ∈ {0, 1}.
Theorem 3.3.6.

(1) The elements Y λ, λ ∈ P∨, and the elements T1, ..., Tn together generate Bae as a group.
(2) If (λ, αi) = 0 for some i ∈ I0, then TiY

λ = Y λTi.
(3) If (λ, αi) = 1 for some i ∈ I0, then Y λ = TiY

siλTi.

Proof. For statement (1), in view of the decomposition Bae = Ω n Ba, it follows that the
elements Y λ together with the T0, ..., Tn generate Bae, so we need only understand why
generator T0 is redundant in this collection. But this follows from the equality s0sθ = t(θ∨)
in W a. Indeed, note that

sθ(a0) = sθ(−θ + δ) = θ + δ ∈ Ra
+
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so the expression s0 · sθ is reduced (i.e. l(s0sθ) = l(s0) + l(sθ)). It follows that we have an
equality

T0Tsθ = Tt(θ∨) = Y θ∨

in the affine braid group.
In the case λ ∈ P∨+ , (2) follows from Corollary 3.2.10 which says that l(t(λ)si) = l(sit(λ)) =

l(t(λ)) + 1. This then gives

TiY
λ = TiTt(λ) = Tsit(λ) = Tt(λ)si = Y λTi

as needed. The general case then follows from the fact that any λ ∈ P∨ with (λ, αi) = 0 can
be written as λ = µ− ν with µ, ν ∈ P∨+ and (µ, αi) = (ν, αi) = 0.

For case (3), we can again reduce to the case λ ∈ P∨+ by noticing that any λ ∈ P∨

satisfying (λ, αi) = 1 can be written as λ = µ − ν for some µ, ν ∈ P∨+ satisfying (µ, αi) = 1
and (ν, αi) = 0. So take any λ ∈ P∨+ satisfying (λ, αi) = 1. Define another element

π := λ+ siλ = 2λ− α∨i .
Note that π ∈ P∨+ . From Corollary 3.2.10, we know that if l(t(λ)) = 2(λ, ρ) = p then
l(t(π)) = 2p − 2. From the same corollary (statement (3)) we also know that l(sit(π)) =
l(t(π)) + 1 = 2p − 1, and from statement (4) we know that l(t(λ)si) = l(t(λ)) − 1 = p − 1.
It follows that each side of the equality

si · t(π) = (t(λ)si) · t(λ)

is a reduced expression, and therefore that

TiY
π = Tt(λ)siY

λ.

But Y π = Y siλY λ and Tt(λ)si = Tt(λ)T
−1
i = Y λT−1i . Rearranging the above equality, we get

TiY
siλTi = Y λ

as needed. �

We can now state a presentation for Bae analogous to the decomposition W ae = Wnt(P∨)
of the extended affine Weyl group W ae seen earlier.

Theorem 3.3.7. The extended affine braid group Bae is generated by the finite-type braid
group B (generated by T1, ..., Tn) and the lattice Y P∨

subject only to the relations appearing
in (2) and (3) of the previous Theorem 3.3.6.

The proof can be found in [M, Section 3.3]. The idea is to define elements T0 and Ui in the
group described by generators and relations in the theorem, and then to show by calculation
that the relations of the extended affine braid group hold.

3.4. Affine Hecke Algebras. We now define affine Hecke algebras as quotients of group
algebras of extended affine braid groups, in complete analogy with the Coxeter case seen
earlier:

Definition 3.4.1. Let {τa}a∈Ra be a collection of complex numbers indexed by the affine roots
such that τa = τb whenever sa and sb are conjugate in W ae. Write τi = τai for the simple
affine roots a0, ..., an. The affine Hecke algebra Hτ (W

ae) and parameter τ is the quotient of
the group algebra C[Bae] by the relations

(Ti − τi)(Ti + τ−1i ) = 0, i = 0, ..., n.
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Remark 3.4.2. One could just as well consider the τa to be formal invertible commuting
variables, in which case the algebra defined above arises as a specialization.

When the meaning is clear, we will use the notation Tw for w ∈ W ae and Y λ for λ ∈ P∨ to
denote both elements of the extended affine braid group Bae and their images in Hτ (W

ae).
There is a nice description of the interaction of generators Ti with elements Y λ in Hτ (W

ae)
that follows from Theorem 3.3.6:

Lemma 3.4.3. For any i = 1, ..., n and λ ∈ P∨, the following relation holds:

TiY
λ − Y si(λ)Ti = (τi − τ−1i )

si − 1

Y −α
∨
i − 1

Y λ := (τi − τ−1i )
Y siλ − Y λ

Y −α
∨
i − 1

.

Proof of Lemma 3.4.3. The key observation is that if the relation holds for Y λ, Y µ, then it
also holds for Y −λ and Y λ+µ, which follows from a straightforward calculation. So, it suffices
to establish the relation when (λ, αi) = 1 and when (λ, αi) = 0. In the case (λ, αi) = 0,
the relation reads Y λTi = TiY

λ, which is Theorem 3.3.6(2). When (λ, αi) = 1 we have
Y si(λ) = Y λ−α∨

i so the relation reads

TiY
λ − Y si(λ)Ti = (τi − τ−1i )Y λ

which follows immediately from Theorem 3.3.6(3) and the identity

Ti = T−1i + τi − τ−1i

in Hτ (W
ae). �

3.5. Two Presentations. Recall that we have seen two presentations of the extended affine
braid group Bae, one describing Bae in terms of the affine braid group Ba and some group Ω
of diagram automorphisms, and the other in terms of the finite-type braid group B and the
lattice P∨. Each of these immediately gives a presentation for the Hecke algebra Hτ (W

ae) in
which one just adds the quadratic Hecke relations to the mix. We’ll refer to the presentation
for Hτ (W

ae) arising from the presentation of the extended affine braid group appearing in
Theorem 3.3.3 as the Coxeter presentation, and we’ll refer to the the presentation of Hτ (W

ae)
arising from the presentation in Theorem 3.3.7 as the Bernstein presentation. In this section
we elaborate on these presentations slightly, describing certain subalgebras of and bases for
Hτ (W

ae).

Theorem 3.5.1. The subalgebra of Hτ (W
ae) generated by the Ti for i ∈ I is isomorphic to

the usual Hecke algebra Hτ (W
a) attached to the Coxeter system (W a, I), and similarly for

the finite-type Hecke algebra Hτ (W ). Furthermore, Hτ (W
ae) has the following description:

Hτ (W
ae) ∼= Ω nHτ (W

a),

where the action of πr ∈ Ω on Ti is the same as seen earlier for the extended affine braid
group. In particular, the set {Tw : w ∈ W ae} forms a C-basis for Hτ (W

ae).

Proof. Clear, given our earlier discussion of Coxeter and braid groups. �

In view of Theorem 3.5.1, we will regard Hτ (W
a) and Hτ (W ) as subalgebras of Hτ (W

ae).
In addition to the “Coxeter presentation” above, we would also like to have a description

of Hτ (W
ae) involving the finite Weyl group W and the lattice P∨, as we did for Bae and

W ae.
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Theorem 3.5.2. The natural map

Hτ (W )⊗ CY P∨ → Hτ (W
ae)

given by multiplication is an isomorphism of vector spaces. In particular, the elements
{TwY λ : w ∈ W,λ ∈ P∨} form a C-basis for Hτ (W

ae).

Proof. We’ve seen that the elements Ti and Y λ generate the extended affine braid group
B, and so they also generate Hτ (W

ae). From our discussion of Hecke algebras attached to
Coxeter groups, we know that any product of the Ti generators lies in the span of the Tw. It
then follows from the relations in Lemma 3.4.3 that the set {TwY λ : w ∈ W,λ ∈ P∨} spans
Hτ (W

ae), so we need only to prove linear independence. Consider a linear relation of the
form ∑

w,λ

cw,λTwY
λ = 0

wth almost all cw,λ = 0. There is a dominant coweight µ ∈ P∨+ such that µ + λ is also
dominant for any of the finitely many λ ∈ P∨ satisfying cw,λ 6= 0. Multiplying on the right
by Y µ, we may assume that all (w, λ) with cw,λ 6= 0 satisfy λ ∈ P∨+ . But for such λ we have

TwY
λ = TwTt(λ) = Twt(λ)

(the first equality by the definition of Y λ, and the second by Corollary 3.2.10(2)). The
linear independence then follows from that of the basis {Tw : w ∈ W ae} and the description
W ae = W n t(P∨) of W ae. �

Remark 3.5.3. Obviously, we have right- and left-handed versions of the previous theorem.

3.6. Cherednik’s Basic Representation. To simplify the notation slightly, let’s write
C[Y ] to denote CY P∨

. Recall that by Theorem 3.5.2 we have an isomorphism

C[Y ]⊗Hτ (W ) ∼= Hτ (W
ae)

of C-vector spaces. In particular, for any representation E of the finite Hecke algebra Hτ (W ),
we can form the induced representation

IndE := Hτ (W
ae)⊗Hτ (W ) E

that as a C[Y ]-module has the convenient description

IndE ∼=C[Y ] C[Y ]⊗C E.

In particular, taking E = C to the the deformed trivial representation of Hτ (W ) in which
each generator Ti acts by the scalar τi, we obtain a representation of Hτ (W

ae) in the space

IndC = C[Y ]⊗C C = C[Y ].

Lemma 3.6.1. In the representation C[Y ], the elements Ti for i ∈ I0 (note we exclude i = 0
here) act by the formulas

Ti 7→ τisi + (τi − τ−1i )
si − 1

Y −α
∨
i − 1

.

Proof. This is an immediate consequence of the definition of the representation C[Y ] and of
Lemma 3.4.3. In particular, for any f(Y ) ∈ C[Y ] and i ∈ I0, by Lemma 3.4.3 we have

Tif(Y ) = (sif(Y ))Ti + (τi − τ−1i )
si − 1

Y −α
∨
i − 1

f(Y ).

As Ti acts on C by the scalar τi, the claim follows. �
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We call this representation of Hτ (W
ae) in C[Y ] the polynomial representation. In order

to define double affine Hecke algebras (DAHA), we will need to introduce a related repre-
sentation of Hτ (W

ae), Cherednik’s basic representation. First, we need to discuss the affine
weight lattice.

Let P̂ = P ⊕ Zδ denote the affine weight lattice of the root system R. Let C[X] denote
the group algebra of the weight lattice P , where the element of C[X] corresponding to λ ∈ P
will be denoted Xλ. Let e ∈ Z>0 be the positive integer satisfying

(P, P∨) =
1

e
Z

(for example, when R is of type An−1, we have e = n, as you can compute). Fix a nonzero
complex number q that is NOT a root of unity, and fix a primitive eth root q0 = q1/e of q. We
can extend the definition of the Xλ ∈ C[X] to include affine functions of the form f = λ+rδ
with r ∈ 1

e
Z by defining

Xf := qrXλ

(we’ve implicitly used our chosen eth root q0 of q in the above definition of Xf ). Such Xf

act on C[X] by multiplication.
Recall that any element w ∈ W ae of the extended affine Weyl group is (uniquely) of the

form w = t(λ′)v for some λ′ ∈ P∨ and v ∈ W , and that such w acts on any affine linear
function f on V by

w · f = vf − (λ′, vf)δ.

In particular, we can define an action of the affine Weyl group W on C[X] by setting, for
such w = t(λ′)v,

w(Xµ) = Xwµ = q−(λ
′,vµ)Xvµ.

Obviously, this action is faithful, because q is not a root of unity.
We can now define Cherednik’s basic representation, which is a deformation of the repre-

sentation of W ae in C[X] discussed above:

Theorem 3.6.2. There is a representation β (Cherednik’s basic representation) of Hτ (W
ae)

in the space C[X] in which the generators Ti for i ∈ I (note we are now including i = 0!)
and πr ∈ Ω act as follows:

β : Ti 7→ τisi + (τi − τ−1i )
si − 1

Xai − 1
πr 7→ πr.

Proof. Replacing the root system R with its dual R∨ does not change the finite Weyl group
W or its Hecke algebra Hτ (W ). It therefore follows from Lemma 3.6.1 that the operators
β(Ti) operators for i ∈ I0 define a representation of the finite Hecke algebra Hτ (W ), i.e. that
these operators satisfy the Hecke and braid relations. Indeed, replacing R by its dual root
system R∨ in Lemma 3.6.1 (and the basis αi of R with the basis −α∨i of R∨, P∨ with P ,
etc.), the operators by which the Ti act in the resulting induced representation C[X] coincide
with the β(Ti).

Furthermore, it is clear that for any πr ∈ Ω and and i ∈ I (including i = 0), the operators
πr and Ti satisfy

πrTiπ
−1
r = Tj when πr(ai) = aj.

Therefore, the only relations among the operators β(Ti) and β(πr) remaining to be checked
are the Hecke and braid relations involving β(T0). For this, note that the fact that the
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operators β(Ti) and β(Tj) for i, j ∈ I0, i 6= j, satisfy the Hecke and braid relations is a
statement about the rank 2 root subsystem generated by ai and aj. When R is not of type
A1, the subsystem generated by a0 and any ai for i 6= 0 is a finite-type root system of
rank 2, and the Hecke and braid relations follow in that case again by comparison with the
polynomial representation. When R is of type A1, there are no braid relations between T0
and T1 to check, and the Hecke relations follow again by comparison with the polynomial
representation. It follows that the Hecke and braid relations involving β(Ti) and β(Tj) for
any i, j ∈ I (allowing i = 0 or j = 0) hold. �

Theorem 3.6.3. The operators Xλβ(Tw) with λ ∈ P and w ∈ W ae on C[X] are linearly
independent, as are the operators β(Tw)Xλ.

Lemma 3.6.4. Let F be a field, and let ϕ1, ..., ϕn be distinct automorphisms of F . Then
ϕ1, ..., ϕn are linearly independent as elements of the F -vector space of functions ϕ : F → F .

Proof. This lemma is standard. A proof can be found in most introductory algebra textbooks.
�

Proof of Theorem 3.6.3. We will prove that the operators Xλβ(Tw) are linearly independent
- the proof for the operators β(Tw)Xλ is entirely analogous.

Let w ∈ W ae and let w = πrsi1 · · · sip be a reduced expression with πr ∈ Ω and all ij ∈ I0.
Then we have

β(Tw) = πrβ(Ti1) · · · β(Tip).

By the definition of the operators β(Ti) it follows that β(Tw) is of the form

β(Tw) =
∑
v≤w

fvw(X)v

where fvw ∈ C(X), the field of fractions of the Laurent polynomial algebra C[X]. Note that
we have

fww(X) 6= 0

for all w ∈ W ae.
For contradiction, now suppose there is a linear dependence among the Xλβ(Tw). It

follows that there is a relation of the form∑
w∈Wae

gw(X)β(Tw)

with the gw(X) ∈ C[X] not all 0 (but only finitely many nonzero). From the above expression
for β(Tw), this gives a relation ∑

v≤w∈Wae

gw(X)fvw(X)v = 0.

The group elements v act on C(X) by field automorphisms, and these automorphisms are
distinct as the action of W ae on C[X] is faithful. We therefore have∑

w≥v

gw(X)fvw(X) = 0

for all v ∈ W ae. As gw = 0 for all but finitely many w, choose w ∈ W ae maximal in the
Bruhat ordering among those w with gw 6= 0. The above equation then reads

gw(X)fww(X) = 0.
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As fww(X) 6= 0, this implies gw = 0, a contradiction. �

Corollary 3.6.5. The basic and polynomial representations of Hτ (W
ae) are faithful.

Proof. The set {Tw : w ∈ W} is a basis for Hτ (W
ae), so the claim for the basic representation

follows immediately from Theorem 3.6.3. For the polynomial representation, it suffices to
prove the claim with the root system R with its basis αi replaced by the dual root system
R∨ with its basis −α∨i . Denote the corresponding affine Hecke algebra by Hτ (W

∨). It has a
basis XλTw with λ ∈ P and w ∈ W (finite Weyl group); its polynomial representation is in
the space C[X], and the action of any such element XλTw in the polynomial representation
C[X] is precisely by the operator Xλβ(Tw), and the claim follows. �

Corollary 3.6.6. The center Z(Hτ (W
ae)) coincides with the invariant Laurent polynomials

C[Y ]W .

Proof. First note that it follows immediately from the relations in Lemma 3.4.3 and the fact
that Hτ (W

ae) is generated by C[Y ] and the Ti for i ∈ I0 that any f ∈ C[Y ]W is central in
Hτ (W

ae). By the same Lemma, for any f ∈ C[Y ] and i ∈ I0 we have the relation

Tif(Y )− (sif)(Y )Ti = g(Y )

for some g(Y ) ∈ C[Y ]. If f is central, this gives

(f(Y )− (sif)(Y ))Ti = g(Y )

which implies that f(Y )− (sif)(Y ) = 0, so that f = sif . In particular, f is W -invariant.
It therefore suffices to check that any central element z ∈ Hτ (W

ae) is a Laurent polynomial.
But such z commutes with all Laurent polynomials on the faithful polynomial representation,
so z itself must indeed be a Laurent polynomial. �

3.7. DAHA Definition and PBW Theorem. Cherednik’s basic representation gives an
easy definition of DAHA:

Definition 3.7.1. The double affine Hecke algebra (DAHA) Hq,τ = Hq,τ (R) attached to
the finite root system R and parameters q, τ as in the previous section is the subalgebra of
EndC(C[X]) generated by the operators XλTw for λ ∈ P and w ∈ W ae.

The algebra Hq,τ can be alternatively described by generators and relations as follows:

Theorem 3.7.2. The algebra Hq,τ is generated by the Ti with i ∈ I (including i = 0),
πr ∈ Ω, and Xλ with λ ∈ P subject to the relations:

(1) the relations of the affine Hecke algebra among the Ti and πr
(2) X0 = 1 and XλXµ = Xλ+µ

(3) for any i ∈ I (including i = 0) and µ ∈ P ,

TiX
µ = XµTi if (µ, a∨i ) = 0

TiX
µ = Xsi(µ)T−1i if (µ, a∨i ) = 1

(4) πrX
µπ−1r = Xπr(µ).

Remark 3.7.3. The parameter(s) τ appears in the Hecke relations in (1). The parameter
q, slightly more hidden, appears in the second relation in (3). In particular, for i = 0, we
have a0 = −θ + δ, and if (µ, a∨0 ) = 1 so that s0(µ) = µ− a0 = µ+ θ − δ, the relation reads

T0X
µ = Xsi(µ)T−10 = Xµ−aiT−10 = q−1Xµ+θT−10 .
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Proof of Theorem 3.7.2. That the elements generate Hq,τ follows from the definition. Rela-
tions (1), (2), (4) and the (µ, a∨i ) = 0 case of (3) are clear from the definition of the basic
representation and the fact that it is a representation of Hτ (W

ae). As T−1i = Ti− (τi− τ−1i ),
it’s easy to verify the (µ, a∨i ) = 1 case of (3) as well by a direct computation from the
definition of the operators β(Ti). In particular, all of the relations (1)-(4) hold in Hq,τ .

Let H′q,τ be the algebra given by generators and relations as in the theorem. Then we have
a surjection H′q,τ → Hq,τ arising from the basic representation. As the affine Hecke algebra
relations hold among the Ti and πr, we can define elements Tw ∈ H′q,τ for w ∈ W ae as for the
affine Hecke algebra. It is then clear from the other relations that the elements of the form
XµTw (or just as well TwX

µ) with µ ∈ P and w ∈ W ae span H′q,τ . But these elements are
linearly independent in the basic representation, and it follows that the map H′q,τ → Hq,τ is
an isomorphism and that the relations (1)-(4) are a complete set of relations. �

Define elements Y λ ∈ Hq,τ as we did for the affine Hecke algebra Hτ (W
ae).

Corollary 3.7.4. (PBW Theorem for DAHA) The set {XµTwY
λ : µ ∈ P,w ∈ W,λ ∈ P∨}

(or {Y λTwX
µ : λ ∈ P∨, w ∈ W,Xµ}) forms a basis for the DAHA Hq,τ .

Proof. Immediate from Theorem 3.7.2, the basis TwY
λ for Hτ (W

ae), and the linear indepen-
dence of the operators Xµβ(Tw). �

3.8. Affine Hecke Algebras for GLn. So far we’ve discussed affine Hecke algebras in the
generality of affine root systems of the form Ra, where R is a reduced irreducible finite root
system. In most of this seminar, we will be concerned with type A structures. We’ll now
discuss how the results of this talk look in the GLn case.

In type An−1, it is actually quite natural to consider a slight enlargement of the affine Hecke
algebra, and this is what is often done. This is entirely analogous to considering the reducible
reflection representation Rn of Sn rather than the irreducible reflection representation {x ∈
Rn :

∑
i xi = 0}. In particular, in this approach one defines the affine Hecke algebra Haff

n,τ for
GLn via the Bernstein presentation, but replacing the coweight lattice P∨ (which coincides
with the weight lattice P in type An−1) with the permutation lattice L :=

⊕n
i=1 Zεi = Zn

and its obvious Sn-action. (see, e.g., [A, Chapter 13]).
Specifically, what we get by following this recipe is the following. Let ε1, ..., εn be the

standard basis for Rn, and choose simple roots αi := εi+1 − εi ∈ Rn, i = 1, .., n − 1, for the
root system Rn of type An−1. For 1 ≤ i < n, let si be the simple reflection si = (i, i + 1)
attached to simple root αi, and let Ti be the associated braid group/Hecke algebra generator.
Identify C[Y L] with the Laurent polynomial ring C[Y ±11 , ..., Y ±1n ] by identifying Yi = Y εi . The
commutation identities TiY

λ = Y λTi when (λ, αi) = 0 and Y λ = TiY
siλTi when (λ, αi) = 1

for all λ ∈ L and 1 ≤ i < n are then equivalent to the commutation identities Yi+1 = TiYiTi
for 1 ≤ i < n and TiYj = YjTi when j 6= i, i+ 1. So we have the following definition:

Definition 3.8.1. Let τ ∈ C×. The affine Hecke algebra Haff
n,τ for GLn is the C-algebra

given by generators T1, ..., Tn−1 and Y ±11 , · · · , Y ±1n and relations:
(1) YiY

−1
i = Y −1i Yi = 1, YiYj = YjYi (1 ≤ i, j ≤ n)

(2) TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n)
(3) TiTj = TjTi (|i− j| > 1)
(4) (Ti − τ)(Ti + τ−1) = 0 (1 ≤ i < n)
(5) Yi+1 = TiYiTi (1 ≤ i < n), TiYj = YjTi (j 6= i, i+ 1).
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The affine Hecke algebra of type An−1 and the affine Hecke algebra forGLn are very related.
Using the same methods as for the algebra Hτ (S

ae
n ), one can show that Haff

n,τ has a basis of the

form {Y k1
1 · · ·Y kn

n w : w ∈ Sn, ki ∈ Z} (and similarly of the form {wY k1
1 · · ·Y kn

n : w ∈ Sn, ki ∈
Z}), that the center coincides with the invariant Laurent polynomials C[Y ±11 , ..., Y ±1n ]Sn , etc.
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