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1. Introduction

In this seminar the elliptic Hall algebra (EHA) was introduced as the limit of

the spherical double affine Hecke algebras of gln and we have written an explicit

presentation in terms of generators and relations [2]. In this talk, we will define it

as an algebra that specializes to a certain subalgebra of the Hall algebra of every

elliptic curve over a finite field, definition that will explain its name.

The plan for this talk is the following. We begin by defining the Hall algebra, and

explaining when one can construct a coproduct, when this algebra is a bialgebra

with respect to these operations, or a Hopf algebra. A Hall algebra HA can be

defined for any abelian category A with certain finitary properties, but we will see

that this algebra has richer properties for global dimension one categories. A natural

supply of such categories are the abelian categories of representations of a quiver

over a finite field and of coherent sheaves over a projective curve C over a finite

field. We are interested in the curves C of genus one, and inside the Hall algebras

of these curves we will find specializations of EHA as defined in the previous talks.

In the second part of the talk, we focus on the elliptic curve case, for which we
1
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show that the derived equivalences of DbCoh (X) act by algebra automorphisms on

the Drinfeld double of HA. This action will be used in proving a PBW theorem

for certain subalgebras of the Hall algebra, and in identifying this algebra with the

EHA defined by generators and relations in [2].

2. Hall algebras

2.1. Definition of the product and of the coproduct. We start with a small

abelian category A of finite global dimension. We say that A is finitary if for all

objects M and N in A, we have that

|Hom(M,N)|, |Exti(M,N)| <∞.

In most examples, these finitary categories will be linear over a finite field k. Ex-

amples of such categories are the categories of k−representations of a quiver, or of

a finite dimensional algebra over k, and the categories of coherent sheaves on any

projective smooth scheme over k.

For two objects M and N of A, define

〈M,N〉 := (
∞∏
i=0

|Exti(M,N)(−1i)|)1/2.

This defines the multiplicative Euler form 〈, 〉 : K(A) × K(A) → C×. When A is

k−linear, we have that 〈M,N〉 = vχ(M,N), where v2 = q is a square root of q, the

number of elements of the field k.

We are now ready to define the Hall algebra HA. As a vector space,

HA :=
⊕

M iso class in A
CM.

Given M,N, and R three objects in A, we define PRM,N to be the number of short

exact sequences 0→ N → R→M → 0, and ap := |Aut (P )|.
We observe that

PRM,N

aMaN
= |{L ⊂ R|L ∼= N,R/L ∼= M}|.

Proposition 2.1. (Ringel) The multiplication

[M ] · [N ] = 〈M,N〉
∑
R

PRM,N

aMaN
[R]

defines an associative algebra structure on HA, with unit [0], zero object of A.

Proof. Because Ext1(M,N) is finite, the definition of [M ] · [N ] is an element of

HA. It is immediate to check that [0] is the unit. For the associativity, direct
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computations give that, for three objects M,N, and L of A, we have:

([M ] · [N ]) · [L] = 〈M,N〉〈R,L〉〈M,L〉
∑
R

cRM,N,L[R],

where cRM,N,L counts the number of elements of the set {0 ⊂ B ⊂ A ⊂ R|B ∼=

L,A/B ∼= N,R/A ∼= M}. Computing [M ] · ([N ] · [L]) gives the same result. �

Observe that the multiplication of a Hall algebra encodes all the ways in which

one can extend one object by another object. One can define a Hall algebra for any

exact category with the above finitary conditions.

Further, observe that HA is naturally graded by the classes in the Grothendieck

group K(A).

Example. Let A be a semisimple category with Si the simple objects. Then for

i 6= j we have [Si][Sj ] = [Si ⊕ Sj ] = [Sj ][Si], and [Si][Si] = |End (Si)|
1
2 (|End (Si)|+

1)[Si ⊕ Si].
It is natural to ask whether we can define a comultiplication on the vector space

HA. It should involve all possible ways to break an object into two smaller objects

in A. Usually we can break an object in infinitely many ways into two objects, so

we need to introduce certain completions of the Hall algebra in order to define the

coproduct. We will gloss over some of the details, see [4] for full explanations.

For a, b ∈ K(A), we define

HA[a]⊗̂HA[b] =
∏

Mof class a,N of class b

C[M ]⊗ C[N ].

Elements of this vector space are simply formal (infinite) linear combinations∑
M of class a,N of class b

cM,N [M ]⊗ [N ].

Further, we define

HA⊗̂HA :=
∏
a,b

HA[a]⊗̂HA[b].

Thus, the elements of this completed tensor product are all formal (infinite) linear

combinations
∑

M,N cM,N [M ]⊗ [N ].

Proposition 2.2. (Green) The coproduct

∆[R] =
∑
M,N

〈M,N〉
PRM,N

aR
[M ]⊗ [N ]

puts on HA the structure of a (topological) coassociative coalgebra with counit ε :

HA → C defined by ε[M ] = δM,0.
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Observe that the coproduct takes values in the finite part HA ⊗ HA if and only

if for any object R, there exist only finitely many subobjects N ⊂ R. It holds for

categories of representations of quivers, but not for categories of coherent sheaves

on a projective variety. Indeed, any subrepresentation of the k−representation (Vi)

of a quiver Q is specified by subspaces of the Vi, of which there are finitely many

possibilities, and maps between the corresponding spaces, of which there are finitely
many.

It is not clear how to check coassociativity of ∆ given this formula, because it is

not clear that (∆⊗ 1)∆ makes sense. Fortunately, it makes sense because the only

terms in HA⊗̂HA that contribute to [M1]⊗ [M2]⊗ [M3] are of the form [N ]⊗ [M3],

where N is an extension of M1 by M2, of which there are finitely many.

As one last comment about the coproduct, sometimes the Grothendieck group

K(A) is not finitely generated, which happens for the category of coherent sheaves

on an elliptic curve. It is preferable to work with a smaller K−group, like the

numerical K−group for an arbitrary curve, in these situations. In these cases the

definition of the completion H⊗̂H needs to be slightly changed, see [1].

Next, we investigate when these two operations define a bialgebra. One cannot

take the product of two elements in the completed product of the Hall algebra, but

one can take the product if they are in the image of the comultiplication ∆, see [4]

for more details.

In order to state the next theorem, which gives an answer to when these two

operations put a bialgebra structure on HA, we need to twist the multiplication,

or, alternatively, we need to add a degree zero piece to HA. Let K = C[K(A)] be

the group algebra of the Grothendieck group of A, and denote by ka the class of

the element a ∈ K(A). Define the vector space H′A = HA ⊗K. We want to put an

algebra structure on this space extending the algebra structure on the two factors

of the tensor product. We only need to explain how ka and [M ] commute, for which

we introduce the relation

ka[M ]k−1
a = 〈a,M〉〈M,a〉[M ].

We can also extend the comultiplication as follows: ∆(ka) = ka ⊗ ka and

∆([R]ka) =
∑
M,N

〈M,N〉
PRM,N

aR
[M ]kN+a ⊗ [N ]ka.

For the next theorem, we need to assume that the global dimension gldim (A) 6 1.

Recall that the global dimension n of an abelian category is the smallest integer n

with the property that Extn+1(A,B) = 0 for all objects M,N ∈ A. Recall that for

A a category with enough injectives and projectives, this number is the same as

the supremum after all projective dimensions of elements in A and the same as the

supremum after all injective resolutions of elements in A.
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Theorem 2.3. The comultiplication map

∆ : H′A → H′A ⊗H′A

is an algebra morphism.

We can also extend the counit map to ε([M ]ka) = δM,0. Then the theorem says

that (H′A, i,m, ε,∆) is a (topological) bialgebra.

Remember that if A satisfies the finite subobject condition, there is no need to in-

troduce the completion. Further, if the symmetrized Euler product 〈M,N〉〈N,M〉 =

1, then there is no need to introduce the factor C[K(A)]. For a k−linear category

A, this happens when χ(M,M) = 0, for all M ∈ A, for example for A = Coh (X),

where X is an elliptic curve. A final observation is that even if one can define Hall

algebras for exact categories, Green’s theorem holds for abelian categories only.

It is natural to ask when this bialgebra is actually a Hopf algebra. For this,

we would need to construct an antipode map which satisfies the axioms of a Hopf

algebra. Xiao managed to construct one such antipode map S : H′A → H′A for

categories of representations of a quiver.

The Hall algebras for categories of gldim (A) 6 1 come with (at least) one other

piece of extra structure: a nondegenerate Hopf pairing:

Proposition 2.4. The scalar product (, ) : HA ⊗HA → C defined by

([M ]ka, [N ]kb) =
δM,N

aM
〈a, b〉〈b, a〉

is a non-degenerate Hopf pairing, that is, it satisfies (xy, z) = (x⊗ y,∆(z)) for any

x, y, x ∈ H′A.

2.2. Examples. We have already computed the product of some elements in a

semisimple category A. The next easiest example is provided by categories of nilpo-

tent k−representations of quiver Rep (Q). Recall that k is a finite field. For us,

a quiver will be allowed to have multiple edges or cycles, but no loops. Therefore

gldim Rep(Q) 6 1. Such a quiver has simple objects Si with a one dimensional

vector space k in the ith vertex, and zero everywhere else.

Let’s compute relations for the A2 quiver. There are only two simple objects S1

and S2, and they have a unique nontrivial extension I12 corresponding to Ext1(S1, S2) =

k. Observe that Ext1(S2, S1) = 0. Further, the only indecomposable objects are

S1, S2, and I12. We can prove the following relations in the Hall algebra of this

quiver:

(1) [S1][S2] = v−1([S1⊕S2] + [I12]) because there is only one subobject isomor-

phic to S1 in both S1 ⊕ S2 and I12,

(2) [S2][S1] = [S1 ⊕ S2] because there are no extensions of S1 by S2,
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(3) [S2][S1]2 = v(v2 + 1)[S2][S2
1 ] = v(v2 + 1)[S2

1 ⊕ S2] is similar to item (2),

(4) [S1]2[S2] = v(v2 + 1)[S2
1 ][S2] = v−1(v2 + 1)([S2

1 ⊕ S2] + [S1 ⊕ I12]) is similar

to item (1),

(5) [S1][S2][S1] = [S1][S1⊕S2] = (v2 + 1)[S2
1 ⊕S2] + [S1⊕ I12] because there are

P1(End (S1, S1)) subobjects S1 ⊂ S1 ⊕ S1.

Putting the last three relations together, we get that

(6) [S1]2[S2]− (v + v−1)[S1][S2][S1] + [S2][S1]2 = 0.

Similarly we can also prove that

(7) [S2]2[S1]− (v + v−1)[S2][S1][S2] + [S1][S2]2 = 0.

In fact, any relation satisfied by [S1] and [S2] is a consequence of one of the two

above relations. Indeed, relations (5) and (6) provide us with an algebra morphism

Φ : Uv(b)→ HQ,

where in this case Q is the A2 quiver and b ⊂ sl2 is the positive Borel subalgebra−
we recall the structure of the quantum group in the next paragraph. The map Φ

is automatically a surjection because the Hall algebra is generated by the classes of

the simple objects [S1] and [S2]. To show injectivity, observe that Uv(b) = Uv(n)⊗
C[K±1 ,K

±
2 ] and H′ = H ⊗ C[k±S1

, k±S2
]. The dimensions of the (n,m)−graded piece

of the quantum group Uv(n) can be computed by the PBW theorem as the number

of ways to write (n,m) as the sum a1(1, 0) + a2(0, 1) + a3(1, 1), where (1, 0), (0, 1),

and (1, 1) are the dimension vectors of the positive roots. The dimension of the

(n,m)−graded piece of HQ is the same number, because (1, 0), (0, 1), and (1, 1) are

the dimension vectors for the indecomposable representations of Q.

The above connection between a quantum group and the A−2 quiver is far from

being isolated. Recall that for g a Kac-Moody algebra associated to the matrix

A, we can define a quantum group Uv(g
′) with positive Borel part Uv(b

′
+). Here

g′ = [g, g]. The quantum group Uv(b
′
+) is generated by Ei, Ki, K

−1
i , for i ∈ I, with

the relations

• KiK
−1
i = K−1

i Ki = 1,

• KiKj = KjKi,

• KiEjK
−1
i = vaijEj , for all i, j ∈ I,

• the quantum Serre relation involving the Eis, see [4].

• the coproduct is defined via ∆(Ki) = Ki⊗Ki and ∆(Ei) = E1⊗1+Ki⊗Ei,

• the antipode is defined by S(Ki) = K−1
i , S(Ei) = −K−1

i Ei.

Theorem 2.5. (Ringel, Green) The assignment Ei → [Si], ki → kSi for i ∈ I

defines an embedding of Hopf algebras

Φ : Uv(b
′
+)→ H′Q.
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The map Φ is an isomorphism if and only if Q is of finite type, or, equivalently, if

g is a simple Lie algebra.

One can prove that the coefficients PRM,N are polynomials in v with rational

coefficients. Using these polynomials as structure constants for multiplication and

comultiplication, we can define a universal (or generic) version HQ of the Hall

algebra over C[t1/2, t−1/2], which recovers the Hall algebra of a quiver over k when

t = q the number of elements of the field k.

Before we start discussing examples coming from geometry, we need to discuss

one other quiver example, the Jordan quiver. The reason is the following: the

torsion category of sheaves on a smooth projective curve X splits as follows

Tor (X) =
∏
x∈X

Torx.

Each category Torx is the category of torsion sheaves supported at x, which is the

same as the category of finite dimensional modules over the discrete valuation ring

Ox,X . This category if the same as nilpotent representations of the Jordan quiver

over the finite field kx = Ox,X/mx,X .

For k a finite field, denote by Nk the category of nilpotent representations of the

Jordan quiver over k. There exists exactly one indecomposable object I(r) of any

length r ∈ N. Further, all objects are of the form Iλ = I(λ1) ⊕ · · · ⊕ I(λs) for a

partition λ = (λ1, · · · , λs).
Denote by Λt the (Macdonald) ring of symmetric functions over Q[t, t−1], and

by eλ and pλ the elementary symmetric functions and the power sum symmetric

functions, respectively. Recall the Macdonald ring is defined via the projective

limit Λ = limC[t, t−1, x1, · · · , xn]Σ(n) where the maps between consecutive rings

send the biggest index variable to zero, and the multiplication is induced from the

multiplication on each of the individual polynomial rings. The coproduct is defined

via the inclusion

C[t, t−1x1, · · · , x2n]Σ(2n) ↪→ C[t, t−1, x1, · · · , xn]Σ(n) ⊗ C[t, t−1, xn+1, · · · , x2n]Σ(n).

Then the following theorem gives us a very explicit description of the Hall algebra

associated to Nk.

Theorem 2.6. (Macdonald)

The assignment [I(1)r ]→ ur(r−1)er extends to a bialgebra isomorphism

Φk : HNk
→ Λt|t=u2 .

Set Fr := Φ−1
l (pr). Then:

(i) Fr =
∑
|λ|=r nu(l(λ)− 1)[Iλ], where nu(l) :=

∏l
i=1(1− u−2i),
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(ii) ∆(Fr) = Fr ⊗ 1 + 1⊗ Fr,
(iii) (Fr, Fs) = δrs

rur

u−r−ur .

2.3. Hall algebras for projective curves. Let x be a closed point of the (smooth)

projective curve X over a finite field k. denote by deg(x) the degree of the finite

extension kx/k, where kx = Ox,X/mx,X . Recall that Nkx is equivalent to Torx. Let

Φkk : HTorx → Λy|t=v2 deg(x)

be the isomorphism provided by Macdonald’s theorem, where v2 = k−1.

For r a natural number, define

T
(∞)
r,x

[r]
=

deg(x)

r
Φ−1
kx

(p r
deg(x)

) if deg(x)|r

and by zero otherwise. We put T (∞) =
∑

x T
(∞)
r,x which is a finite sum, as there are

only finitely many points on X of a given degree.

For P1, Kapranov proved a Ringel-Green style theorem, comparing the Hall al-

gebra with the positive part Uv(Lb+) ⊂ Uv(Lsl2) of the quantum loop algebra of

sl2. For more details, see [4][page 64].

Theorem 2.7. (Kapranov) There exists an embedding of algebras

Φ : Uv(Lb+)→ HP1 .

2.4. The Drinfeld double construction. We have seen in the above examples

that the Hall algebra (as defined in the beginning of these notes) recovers the positive

nilpotent part of a quantum group. Adding the group algebra of the Grothendieck

group C[K(A)] corresponds to adding the Cartan part to the quantum group. It is

natural to try to construct the full quantum group this way. A possible idea is to

change the category we are looking at. We know that we should get two copies of the

Hall algebra, so we would like to replace the abelian category A with a variant that

contains two copies of A. However, there exists a completely algebraic procedure

from which one can double a quantum group, which we will explain in this section.

In our case, we can start with the (topological) bialgebra HX and construct

another (topological) bialgebra DHX which is generated by the Hall algebra HX

and its dual H∗X with opposite coproduct. In our case, we can identify the dual

of the Hall algebra with the Hall algebra via the Hopf pairing. Thus DHX will be

generated by two copies H+
X and H−X of the Hall algebra. The set of relations we

impose is the following: for any pair (h, g) of elements in HX , there is one relation

R(h, g) given by

∑
i,j

h
(1)−
i g

(2)+
j (h

(2)
i , g

(1)
j ) =

∑
i,j

g
(1)+
j h

(2)−
i (h

(1)
i , g

(2)
j ),
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where ∆(x) =
∑

i x
(1)
i ⊗ x

(2)
i .

In our case, even if the coproduct takes values in the completed tensor product,

the relations R(h, g) actually contain finitely many terms. It is worth noticing that

one can prove a PBW theorem for the Drinfeld double, saying that the multiplication
map

m : H−X ⊗H+
X → DHX

is a vector space isomorphism.

Drinfeld used this technique to construct the full quantum group Uv(g) as a

quotient of Drinfeld double of the quantum group Uv(b+).

3. The Hall algebra of an elliptic curve

3.1. Coherent sheaves on an elliptic curve. In this subsection, we recap some

of the material from the previous talk [3]. Let X be an elliptic curve over an

arbitrary field k. The slope of a sheaf F ∈ Coh (X) is defined as

µ(F ) =
deg(F )

Rank (F )
∈ Q ∪ {∞}.

A sheaf F is called stable/ semistable if for all proper subsheaves G ⊂ F , we have

µ(G) < (6)µ(F ). Also, any sheaf F has a unique Harder-Narasimhan filtration,

that is, a filtration by subsheaves such that the quotients are semistable of strictly

increasing slope. Define the category Cµ as the full subcategory of Coh (X) of

semistable sheaves of slope µ [1]; one can show Cµ is an abelian subcategory of

Coh (X). For two slopes b < a, we define C[b, a] to be the full subcategory of

Coh (X) whose objects are the elements of Cµ for b 6 µ 6 a.

Theorem 3.1. (Atiyah) The following hold:

(i) the Harder-Narasimhan filtration of any coherent sheaf splits (non canoni-

cally). In particular, any indecomposable coherent sheaf is stable.

(ii) the stable sheaves of slope µ are the simple objects in the category Cµ.

(iii) there exist equivalences (canonical using the chosen rational point on the

elliptic curve X) of abelian categories

εa,b : Ca → Cb

for any a, b ∈ Q ∪ {∞}.

To define the extended Hall algebra, we added as a degree zero part the algebra

of K0(X). In our case, the symmetrized Euler form vanishes, so it is not necessary

to add this part to the Hall algebra. Also, it is preferable in some situations to work

with the numerical K−group, which is finitely generated:

K0(X)→ K ′0(X) = Z2,
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which sends a sheaf F to (rank (F ),deg(F )).

Recall from last time the discussion about derived equivalences of DbCoh (X):

examples include the shift functor [1], automorphism induced by automorphisms of

the curve X itself, tensoring with line bundles, and the Seidel-Thomas autoequiva-

lences. The Seidel-Thomas equivalences are defined as follows: given a spherical ob-

ject object E ∈ Coh (X), namely a sheaf E with Hom (E,E) = Hom (E,E[1]) = k,

define TE : D(X)→ D(X) by

TE(F ) = cone (RHom(E,F )⊗ E → F ).

The autoequivalences TO and TO§ satisfy the braid group relation

TOxTOTOx = TOTOxTO.

The group generated by TO, TOx , and [1] is the universal covering ˜SL(2,Z) of

SL(2,Z) [1]. The only derived equivalences we will be interested in will be ele-

ments of this group. It is important to keep in mind that given a spherical object

E, the autoequivalence TE descends to an automorphism of K ′0(X) = Z2, and that

this automorphism can be written explicitly, see [1][page 1177] for more details.

The image of the abelian category Coh (X) under a Seidel-Thomas derived equiv-

alence TE , for E a spherical object, is given by a tilted heart Cohv(X); we will first

state the definition of Cohv(X) and then we will explain how to compute v from

E. Recall that Coh6v(X) is the full subcategory of Coh (X) consisting of sheaves

F whose all direct summands have slope 6 v; Coh>v(X) is defined in a similar

manner. Now, the tilted heart Cohv(X) is the full subcategory of DbCoh (X) with

objects the complexes F ⊕ G[1], where F ∈ Coh>v(X) and G ∈ Coh6v(X). For a

spherical sheaf E of class (r, d) ∈ K ′0(X) and of slope µ = d
r , the autoequivalence

TE establishes an autoequivalence between Coh (X) and Cohv(X) where v = −∞
for µ =∞ and v = µ− 1

r2
otherwise.

We have mentioned earlier that the most naive approach from a geometrical point

of view for doubling the Hall algebra in order to pass from the positive part of a

quantum group to the full quantum group is to look for a double version (in some

way) of the abelian category A. For this purpose, define the root category RX

as the orbit category RX = Db(X)/[2]; RX has a triangulated structure [4]. One

can think of RX as the category of 2−periodic complexes of coherent sheaves on

X. For any object A ∈ Coh (X), we denote by A+ the image of A in RX and by

A− the image of A[−1] in RX . We define the semistable objects of RX to be the

objects A±, where A is semistable in Coh (X). The action of the group ˜SL(2,Z)

breaks to an action of SL(2,Z)× Z/2Z in RX because [1]2 = id in RX . From now

on, whenever we refer to the action of SL(2,Z) on RX , we refer to this particular
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action. Using tilted hearts, one can prove that the set of semistable objects of the

root category RX is invariant under the action of SL(2,Z).

3.2. A PBW theorem for the full Hall algebra. The algebra we are interested

in, the elliptic Hall algebra, will be defined as a subalgebra of the Hall algebra of X.

One of the main theorems we will prove about the EHA is a PBW theorem. Before

doing it, we need a PBW theorem for HX which is significantly easier to prove.

First, we need to fix some notation. Let Ha
X ⊂ HX be the subspace spanned

by classes of sheaves F ∈ Ca. The category Ca is stable under extensions, thus

Ha
X is a subalgebra of the Hall algebra. Further, Atiyah’s theorem provides algebra

isomorphisms

εa,b : Hb
X → Ha

X .

Proposition 3.2. (PBW theorem for the Hall algebra) The multiplication map

m : ⊗aHa
X → HX

is an isomorphism.

Proof. We have that Hom (G,F ) = Ext (F,G) = 0 for F ∈ Ca and G ∈ Cb, where

a < b. Thus, up to a power of v, we have that

[F1] · · · [Fr] = [F1 ⊕ · · · ⊕ Fr],

where Fi ∈ Cai and a1 < · · · < ar. Any sheaf can be decomposed in such a direct

sum of semistable sheaves by Theorem 3.1.1, so the multiplication map is surjective.

To show injectivity, pick a finite sum S with the minimal number of terms possible

which sums up to zero
∑

µ(F1)<···<µ(Fa) c[F1] · · · [Fa] = 0, where all the sheaves Fi

appearing in the sum are semistable; then
∑
c′[F1

∑
· · ·

∑
Fa] = 0 ∈ HX . Assume

that the not all coefficients are zero. Let F be a sheaf with maximal slope appearing

in the sum, and which is not contained in any other sheaf G appearing in the sum.

All the terms [F1 · · · Fa] that are equal, up to a constant, to a term that contains

the sheaf F must have the last term Fa = F . Then
∑

Fa=F c[F1] · · · [Fa−1] = 0,

which by the minimality of the chosen sum implies that all the coefficients in the

sum
∑

Fa=F c[F1] · · · [Fa−1] = 0 are zero, and thus that [F ] appears with coefficient

zero in the sum S, which contradicts our assumption on [F ]. Thus m is injective

and thus an isomorphism. �

3.3. Drinfeld double of the Hall algebra. The Drinfeld double of the Hall

algebra carries more symmetries than the Hall algebra alone− for example, the

derived equivalences of D(X) give algebra automorphisms of the Drinfeld double

DHX . As we have already seen in the previous talks, this symmetry can be used

reduce general statements to simpler ones, see the proof of Theorem 3.10.
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Before we start proving that derived equivalences give algebra automorphisms of

DHX , we want to find generators and relations for DHX . We can actually phrase

all the relations in terms of semistable sheaves only.

Proposition 3.3. The Hall algebra HX is isomorphic to the K−algebra generated

by {xF |F semistable} subject to the relations P ([F ], [G]):

xFxG = v−χ(F,G)
∑
H

cHF,GxH ,

where F and G are semistable, and xH := v
∑

i<j〈Hi,Hj〉xH1 · · ·xHr , where H = ⊕Hi

is the Harder Narasimhan decomposition of H.

We can also rephrase the Drinfeld double relations R([F ], [G]) in fairly explicit

terms. We will not write all these relations, see [1], but here is an example: suppose

F is a−semistable and G is b−semistable and a < b. The relation R([F ], [G])

becomes

[F ]−[G]+ = v〈F,G〉
∑
B,C

v−〈C,B〉c
B[1]⊕C
F [1],G [C]+[B]−,

where c
B[1]⊕C
F [1],G is the number of distinguished triangles

G→ B[1]⊕ C → F [1].

In our case, the relation for a = b says that the two halves commute, and this will

be used in the proof of Theorem 3.10

Theorem 3.4. Let Φ be an autoequivalence of D(X) in the group ˜SL(2,Z). The

assignment [F ] → [ΦF ] for F semistable object of RX extends to an algebra auto-

morphism of DHX .

Proof. The algebra DHX is isomorphic to the K−algebra generated by [F ]+ and

[F ]−, where F is a semistable sheaf, subject to:

(i) the Hall algebra relations P ([F ]+, [G]+),

(ii) the Drinfeld double relations R([F ], [G]).

Le F be a−semistable and G be b−semistable, and Φ a derived equivalence in

SL(2,Z). Denote by F̃ [i] and G̃[j] their images under Φ, and we can assume that

i and j are both 0 or −1. The sheaves F̃ and G̃ are semistable, of slopes ã and b̃,

respectively. We need to check that the relations P ([F̃ ], [G̃]) and R([F̃ ], [G̃]) hold

in DHX . It is clear that after applying the autoequivalence [1] the sheaves will

continue to satisfy the two relations.
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(1) Assume that i = j. Assume that a > b; then ã > b̃. We thus get an

isomorphism of Hall algebras for exact categories

Φ : C[b, a]→ C[b̃, ã]

preserving all the Hall algebra constants, and thus the relations P ([F ], [G]) are

mapped to P ([F̃ ], [G̃]).

(2) Assume that i and j are different, and say for simplicity that i is odd and

j is even. Also assume that a > b. This case can only happen for E = Ox. Once

again, an easy computation shows that ã < b̃. By the description of the derived

equivalences via tilted hearts, there exists an integer b 6 k < a such that

Φ(Cφ) ∈ Coh (X)[i]

for k < φ 6 a and

Φ(Cφ) ∈ Coh (X)[i− 1]

for b 6 φ 6 k.

Split any extension H of G by F as H = H0 ⊕H1, where H0 has all semistable

factors with slopes 6 k, and H1 has all direct summands with slopes > k. Relation

P ([F ], [G]) becomes

[F ][G] = v−〈F,G〉
∑
H0,H1

cH0⊕H1
F,G v〈H0,H1〉[H0][H1].

Now, Φ(F ) = F̃ [i],Φ(H1) = H̃1[i− 1],Φ(G) = G̃[i], and Φ(H0) = H̃0[i]. We also

have 〈F,G〉 = −〈F̃ , G̃〉 and 〈H0, H1〉 = −〈H̃0, H̃1〉.
The relation P (Φ(F ),Φ(G)) we need to prove is actually

[F̃ ]−[G̃]+ = v〈F̃ ,G̃〉
∑
H̃0,H̃1

v−〈H̃0,H̃1〉c
H̃0⊕H̃1[1]

F̃ [1],G̃
[H̃0]+[H̃1]−.

The equality to be proven is simply the Drinfeld double relation for F̃ and G̃.

The relations R([F̃ ], [G̃]) can be checked in a similar manner. �

Corollary 3.5. The universal cover S̃L(2,Z) acts by algebra automorphisms on

DHX .

3.4. The Elliptic Hall Algebra. Recall the elements T
(∞)
r =

∑
T

(∞)
r,x defined in

section 2.3, T
(∞)
r ∈ H(∞)

X . For arbitrary µ ∈ Q, define

T (µ)
r = εµ,∞(T (∞)

r ).

Observe that εa,b(T
(b)
r ) = T

(a)
r , for any slopes a and b.
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Definition 3.6. Let U+
X ⊂ H+

X be the subalgebra generated by all elements T
(µ)
r ,

for r > 1 and µ ∈ Q ∪ {∞}. Define U−X ⊂ H−X similarly and let UX ⊂ DHX be the

subalgebra generated by U+
X and U−X .

We will introduce different notation for the generators of UX : for µ = l
n with l and

n relatively prime, n > 1, write T(±rn,±rl) = (T
(µ)
r )± ∈ U+

X , T(0,r) = (T
(∞)
r )+, T(0,0) =

1. Also define (Z2)± = {(q, p) ∈ Z2| ± q > 0 or ± q = 0, p > 0} and similarly for the

minus half. Then U±X is the subalgebra of DHX generated by T(q,p) for (q, p) ∈ (Z2)±.

The S̃L(2,Z) action on DHX preserves UX . This action factors through SL(2,Z),

as mentioned earlier, and for γ ∈ SL(2,Z) we have γT(p,q) = Tγ(p,q).

Finally, in some situations it will be more convenient to use another set of gen-

erators for the algebra UX . For a ∈ (Z2)+ define

1ssa =
∑

Hsstable slope a

[H] ∈ H+
X [a].

For a = (q, p) with q and p relatively prime, a computation using torsion sheaves

and Macdonald’s theorem shows that

1 +
∑
r>1

1ssras
r = exp(

∑
r>1

T ra

[r]
sr).

This makes transparent that the elements 1ssa with a ∈ (Z2)± generate U±X . In

the next part, we list some results about the generators of UX that will be used

later in the talk. We do not provide (complete) proofs, which can be found in [1]:

(1) If a = (p, q) with p and q coprime, then Ta = 1ssa . This is immediate from

the above identity.

(2) Macdonald’s theorem implies that ∆(T(0,n)) = T(0,n) ⊗ 1 + 1⊗ T(0,n).

(3) If we define 1a =
∑

F of class a[F ] ∈ HX , we have that 1(0,l) = 1ss(0,l) and

1(1,l) =
∑

F=(1,l)[F ] = 1ss(1,l) +
∑

d>0 v
d1ss(1,l−d)1(0,d) as any coherent sheaf on

X of rank one splits uniquely as the sum of a line bundle and of a torsion

sheaf.

(4) ∆a,b(1a+b) = v〈a,b〉1a⊗1b. This is a general result for Hall algebras of abelian

categories of gldim 6 1. Here, ∆a,b : UX [a+ b]→ UX [a]×UX [b] is the (a, b)

component of the coproduct ∆.

The next two results will be used in the proof of Theorem 3.10 which gives

generators and relations for the EHA. We denote by ci(X) =
|X(Fqi )|v

i[i]

i .
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(5) Let x = (q, p) ∈ (Z2)+, and define r = gcd(p, q). Then

(Tx, Tx) =
cr(X)

v−1 − v
.

One can use the SL(2,Z) action and reduce the computation to the

case x = (0, r). By Macdonald’s theorem, one can compute explicitly

(T
(∞)
r,x , T

(∞)
r,x ) = vr[r]d

r(v−1−v)
. Also, recall that Macdonalds theorem also says

that T
(∞)
r,x are orthogonal to each other.

This computation is used in proving the next result:

(6) For any n > 0 and any a = (r, d) ∈ (Z2)+ we have

[T(0,n), 1a] = cn(X)
vrn − v−rn

v − v−1
1a+(0,n).

We will only say a few words about the argument, a full proof can be found

in [1][Lemma 4.11]. One introduces the elements 1vec =
∑

F v.b. class a[F ] ∈

U+
X . Because 1a can be written explicitly in function of 1veca , using identities

similar to the ones in item (3), one reduces the above statement to the one

where 1a is replaced by 1veca . The first part of the proof is showing that

[T(0,n), 1a] ∈ Hvec
X .

Next, one computes directly the coefficient of a vector bundle [V ] in the

commutator [[T ], 1veca ], where T is a torsion sheaf. The answer ends up

depending on T and the rank of V only. This implies that [T(0,n), 1
vec
a ] =

ur1
vec
a , where ur is a constant depending on r only.

The general case can be reduced to the rank one case. In the rank one case,

by the SL(2,Z) action we can assume that a = (1, 0). Then u1 is computed

by expressing the scalar product (T(0,n)T(1,0), 1(1,n)) in two different ways,

one using the Hopf pairing and item (4), and one using item (3).

3.5. A PBW theorem for the EHA. Recall the PBW decomposition we have

obtained for the Hall algebra in Section 3.2: the multiplication map induces iso-

morphisms ⊗aHa,±
X → H±X and ⊗aHa,+

X ⊗⊗aHa,−
X → HX . In this section, we prove

the analogous theorem for the EHA.

Theorem 3.7. (Burban-Schiffmann) The multiplication map induces isomorphisms

of K−vector spaces ⊗aUa,±X → U±X and ⊗aUa,+X ⊗⊗aUa,−X → UX .

Proof. Let Hvec
X = m(⊗a<∞Ha,+

X ) be the subspace generated by classes of vector

bundles.

Claim: U+
X ⊂ Hvec

X ⊗ U∞X .
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Let’s assume the claim for the moment. For any slope a, there exists c ∈ SL(2,Z)

such that c(a) = ∞. Recall that SL(2,Z) acts on DHX , preserves the subalgebra

UX , and permutes the factors Ha,+
X . Using the claim, we obtain:

c(U+
X) ⊂ U+

X ⊗ U−X ⊂ (⊗a<∞Ha,+
X ⊗ U∞,+X )⊗ (⊗a<∞Ha,−

X ⊗ U∞,−X ),

from which we deduce, after applying c−1, that

U+
X ⊂ ⊗µ<aH

µ,+
X ⊗ Ua,+X ⊗⊗µ>aUa,+X .

This is true for all slopes a, and thus

U+
X ⊂ ⊗aU

a,+
X ,

as desired.

We still need to establish the above claim in order to finish the proof. Consider

an element u ∈ U+
X [a], and expand it as u =

∑
l ul, where ul =

∑
i u
′
l,iu
′′
l,i, where

u′l,i ∈ Hvec
X and u′′l,i ∈ H(∞)

X [(0, l)] for all i and l. Denote by π : HX → Hvec
X . We can

compute that

(π ⊗ 1)∆a−(0,l),(0,l)(u) = v〈a−(0,l),(0,l)〉ul.

On the other hand, the fact above tells us that

∆a−(0,l),(0,l)(u) ∈ U+
X [a− (0, l)]⊗ U+

X [(0, l)].

From these two relations we deduce that ul ∈ Hvec
X ⊗U+

X [(0, l)], and thus that u has

the claimed property.

�

3.6. EHA via generators and relations. Once we have proven the PBW theo-

rem, we can start identifying the algebra UX defined in these notes with the EHA

defined by generators and relations as defined in [2]. To differentiate between the

two algebras, we will call the latter E . Let’s review the definition of E .

Let o be the origin in Z2, and let Conv′ be the set of all convex paths p =

(x1, · · · , xr) satisfying ∠x1L0 > · · · > ∠xrLo > 0; here, the notation ∠x1L0 means

the angle between the vector ox1 and the vector L0 which joins the origin o and

the point (0,−1). Two convex paths p and q are equivalent if they are obtained

from each other by a permutation of their edges. Let Conv be the set of equivalence

classes of convex paths Conv′, Conv+ its subset of convex paths with all angles > π,

and Conv− its subset with all paths < π. Concatenation gives an identification

Conv = Conv+ × Conv−.

The PBW theorem proved in the previous section says that the elements {Tp|p ∈

Conv±} are a K−basis of U±X , where to a path p = (x1, · · · , xr) we associate the
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element Tp := Tx1 · · ·Txr ∈ UX . For x ∈ Z2 − o, define deg(x) := gcd(p, q) ∈ N.

Also, for x, y ∈ Z2 − o noncollinear, denote by ε(x, y) = sign (det(x, y)) ∈ {−1, 1}.

Definition 3.8. Fix σ, σ̄ ∈ C − {0,−1, 1}, and let v := (σσ̄)−1/2 and ci(σ, σ̄) =

(σi/2 − σ−i/2)(σ̄i/2 − σ̄−i/2) [i]v
i .

Let Eσ,σ̄ be the C−algebra generated by {tx|x ∈ Z2 − o} modulo the following

relations:

(1) if x and y belong to the same line in Z2, then [tx, ty] = 0,

(2) if x is of degree one and y is another nonzero lattice point such that ∆(x, y)

has no interior lattice points, then

[ty, tx] = ε(x, y)cdeg(y)(σ, σ̄)
θx+y

v−1 − v
,

where the elements θz, for z ∈ Z2 − o, are defined as follows:∑
i

θix0s
i = exp((v−1 − v)

∑
t>1

trx0s
r),

for any degree one element x0 ∈ Z2 − o.

We also denote by E±σ,σ̄ the subalgebras generated by tx with x ∈ (Z2)±.

Let X be an elliptic curve over Fqr . Then by Hasse’s theorem there exist complex

numbers σ and σ̄ such that σσ̄ = q, and

|X(Fqr)| = qr + 1− (σr + σ̄r).

Observe that ci(σ, σ̄) =
vi[i]|X(Fqi )|

i = ci(X).

Theorem 3.9. (Burban-Schiffmann)

The assignment Ω : tx → Tx for all x ∈ Z2 − o extends to an isomorphism

Ω : Eσ,σ̄ → UX ⊗K C.

Proof. The proof consists of three parts. First, we need to check that Ω is well

defined, that is, we need to check that the generators Tx of the Hall algebra UX
satisfy relations (1) and (2) from definition 3.9. The second part is a counting

dimensions argument which will show that Ω restricts to isomorphisms to both

halves. One can use their inverses to construct a map of vector spaces

Ω−1 : UX ⊗K C→ Eσ,σ̄,

which restricts to algebra isomorphisms on both halves. The third part is checking

that Ω−1 is well-defined, that is, that the Drinfeld double relations hold in Eσ,σ̄.

The first step is checking that relations (1) and (2) in definition 3.9 hold for UX .

For (1), by the SL(2,Z) invariance of both algebras, we can assume that x = (0, r)
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and y = (0, s), Then the relation follows because H(∞)
X is commutative [1]. For

relation (2), since deg(x) = 1, we cannot have both deg(y) and deg(x+ y) equal to

2 by arithmetic reasons, or one of them > 3 and the other > 2 by an application of

Pick’s theorem. Thus we have either deg(x+ y) = 1 or deg(y) = 1. We only discuss

the first possibility. Using the SL(2,Z) action, we can assume x = (1, 0), and if

det(x, y) = r, we can further assume y = (s, r) with 0 6 s < r. Because there are

no lattice points in ∆(x, y), we deduce that y = (0, r). We thus need to check (2)

for T(1,0) and T(0,r). The relation we need to prove is

[T(0,r), T(1,0)] = cr(σ, σ̄)
θ(1,r)

v−1 − v
.

Observe that θ(1,r) = (v−1−v)t(1,r), and thus the relation we need to prove becomes

[T(0,r), T(1,0)] = crT(1,r),

which is exactly relation (6) in section 3.4. This implies that Ω is extends to a

surjective SL(2,Z) equivariant algebra morphism.

By the PBW theorem for the algebras E+−
σ,σ̄ , we deduce that Ω restricts to iso-

morphisms on both halves of these two algebras. Denote their inverses by

Ω−1
± : U±X ⊗K C→ E±σ,σ̄.

Recall that the algebra UX is generated by the two halves U±X modulo the Drinfeld

double relations R(h, g), for h, g ∈ U+
X both classes of semistable sheaves. We need

to check that these relations hold in Eσ,σ̄ in order to conclude that Ω−1 is an algebra

morphism.

There are two cases to consider. The first one is when the slopes of g and h are

equal to µ. With some work, one can see that the relation R(h, g) says that the

algebras U+,µ
X and U−,µX commute, which is true in Eσ,σ̄ by relation (1). The second

case is when the slopes are different. There exists an element c ∈ SL(2,Z), such

that c(g) ∈ U+
X and c(h) ∈ U−X . Once again, we want to show that the relation

Ω−1(R(h, g)) holds in E . The relation R(h, g) holds in UX ; applying c we obtain

that the relation cR(h, g) in U+
X . Because Ω is an algebra isomorphism on the two

halves, we obtain the relation Ω−1(cR(h, g)) in E+. By the SL(2,Z)−equivariance

property of E , we obtain the relation cΩ−1(R(h, g)) in E+, and, consequently, the

relation Ω−1(R(h, g)) in E , which is what we wanted to prove.

�
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