Intertwining operators for sls.

Daniil Klyuev

1 Plan and first steps

Let g be a simple Lie algebra of rank r, b = b be a Borel subalgebra, h be
a Cartan subalgebra,
We want to prove that the center 3(g) of vertex algebra V,_(g) at the
critical level is isomorphic to Fun Opgv (D).
In order to do this we will use the homomorphism of vertex algebras
Wt Vi (8) = Wo k. = My ® Vo(b),

et

constructed in Section 4 of [W] where the notation is as follows: M, is the
Weyl vertex algebra whose underlying vector space of states is the Fock
representation of the Weyl algebra 49 and Vj(h) = 7 is the commutative
vertex algebra associated to Lb.

The plan is as follows.

1. Show that w,, is injective.

2. Show that wy_(3(8)) C mo. Hence we need to describe the image of 3(g)
in 70-

3. Construct screening operators S;,i = 1,...,r, where r is the rank of g,
g -linear maps from Wy .. to other modules.

4. Show that w,, (Vy,(g)) C kerS; for all i. Hence the image of 3(§) is

l _ _ _
contained in () ker V;[1], where V;[1] is the restriction of S; to .
i=1

5. Using the isomorphism between the Wakimoto module W' and the
Verma module My . constructed in Kenta’s lecture we will compute the



graded character of 3(g). We will show that it is equal to the character
! —
of () ker V;[1]. It follows that

l
3(8) = ﬂ ker V;[1].

6. By using Miura opers constructed in Zeyu’s talk we will show that there

l —_—
is a natural isomorphism Fun Opgv (D) = () ker V;[1]. This will yield
1=1

an isomorphism between 3(g) and Fun Opgv (_D) Moreover, all our con-
structions will be Aut O-equivariant.

In my talk T will explain the first and the second steps of this plan, this
is relatively quick. I will also explain steps 3-4 for in the case g = sls.

1.1 Steps 1 and 2

We want to prove that wy, is injective. First, we discuss a finite-dimensional
analogue of this statement.
In Daishi’s notes [K] there is a homomorphism of Lie algebras

p: g — vect(B)" = vect(Ny) @ (C[N,] @ b).
The right-hand side is contained in C[T*N, x h*], so we can extend p to
¢*: Clg*] — C[T*N, x b".

Here ¢: T*N, x h* — g* is a morphism of varieties.
We can also extend p naturally to

p: U(g) = D(Ny) @ U(b).

The map w,, is an affine analog of p. Namely, U(g) corresponds to V,_(g),
U(h) corresponds to Vy(h) and D(N, ), differential operators, corresponds to
M,, that could be realized as chiral differential operators [CDOL1|.

The injectivity of p is proved in Remark 2.4 of [K]| as follows: we take the
associated graded map of p and get gr p = ¢*. After that we show that ¢ is
dominant, equivalently, that ¢* is injective.

We will use a similar strategy below to prove that w,, is injective. In fact,
we will prove a stronger statement:



Proposition 1.1. The homomorphism w,: V. (g) = My ® 75~ " is injective
for any k.

Proof. We will introduce filtrations on V,,(g) and M;®n{ " such that w, pre-
serves filtrations and grwy is injective. The PBW filtration on U(g) induces
a filtration on V,(g): |0) has degree zero and xz,, with n < 0 has degree 1.
The filtration on W, is defined similarly with |0) in degree 0, and operators
Ay with n < 0 in degree 0 and aq,, b, with n < 0 in degree 1.

Exercise. 1. T is filtration preserving on each of the vertex algebras.

2. wy 18 filtration preserving. Hint: look at the formulas in Section 4 of [W]
or in Section 1.6 of [CDO2].

3. grw, 15 a homomorphism of graded commutative algebras with differen-
tials.

We know that grV,(g) = C[Jg| and it can be checked similarly that
gr Wy, = C[J(T* N4 x b*)]. These are the jet schemes of the varieties g = g*,
T*N, x b* considered above.

Exercise. Prove that grw, = (Jo)*, where ¢ is defined above. Hint: for
any affine variety X the algebra C[JX] is graded, the grading is unique such
that degT = —1, degC[X]| = 0. Here T is the derivation of C[JX]. For a
morphism p: X — 'Y the map

(Jo)*: C[JY] — C[JX]
s a unique homomorphism such that
1. (Jp)* restricts to ¢*: C[Y] — C[X] .
2. (Jy)* interwtwines the derivations.

Check that grw,, satisfies the properties (1) and (2).

It remains to prove that (J¢)* is injective. Exercise 2.4 in [K]| says that
@* is injective, so that ¢ is dominant. Using Exercise 1.2.13 in Vanya’s
notes |[KL| we get that J¢ is dominant, hence (J¢)* is injective. ]

We move to the second step of the plan:

Lemma 1.2. w,, (3(g)) is contained in my C Wy, .



Proof. We will use the results from Ivan’s notes [CDO1, CDO2]| that provide
an alternative construction of M and w,, using chiral differential operators.
Recall that 3(g) is the g[[t]]-invariants in Vj (g). It is enough to prove
that
Wre (Vi (g>b+[[t}]) C To.

Note that V,, (g)*+[l =V, (g)’P+. The chiral differential operator of realiza-
tion of W, ... provides a natural action of JB on W, , explained in Section
1.2-1.3 of |[CDO2|. With this action the map wy, is JBi-equivariant, it is an
exercise just before section 1.5 of [CDO?2].

It follows that

Specializing the results of section 1.5 of [CDO2| to P, = B,, m = b, we get

wr. (3(8)) € Vo(b) = mo.

2 Screening operators for sl

For A € C let My, M7 denote, respectively, the Verma and the dual Verma
module over sl; with highest weight A\. We have a short exact sequence

0> M_o— My— Ly=C —0,

where L is the trivial representation. Applying the duality functor we get a
short exact sequence

0—->C— M;— M, —0.

We want an affine analogue of this short exact sequence. We will define a
homomorphism of sly-modules

Ski Wo’k — W_ka
for non-critical level k£ and prove the following

Proposition 2.1. When k42 is not a nonnegative rational number, we have
a short exact sequence

0— Vk(ﬁlg) — WO,k: i) W_27k — 0.
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2.1 Modules over vertex algebras

We will need the notion of a module over a vertex algebra V. This is a vector
space M with a map Yy;: V — Endj[[2%!]] such that

1. YM(‘()),Z) = Idjw
2. For any u,v € V, m € M the expressions
Yar(u, 2) Y (v, t)m, Yar(v, )Yy (u, z2)m, Yu(Y(u,z —t)v,t)m

are expansions of the same element of M|[z,t]][z7%,t71, (z — ¢)!], simi-
larly to the associativity condition for vertex algebras, |D|

We have the following example. Let h = Ch be one-dimensional commu-
tative Lie algebra, so that b, is a Heisenberg Lie algebra for nonzero x and an
abelian Lie algebra for k = 0. Let V,(h) be the corresponding vertex algebra.

Consider M = M) = IndgﬁtH C,, a Verma module over 65. Foray,...,ar <0
we define

! O (2) - O h(2) -,

YM(halhaz cee hak‘0>) = (_al _ 1)] . <_ak — 1)' z

similarly to Y (hg, - - - he,|0)). It can be checked that conditions 1 and 2 are
satisfied.

We can upgrade this example. Let Wy, = Mg, @ Viio(h). Setting A = —2
and tensoring by My, we get a module W_o, = M, ® 72 over Wo k-

Now we describe basic properties of modules over vertex algebras similar
to the associativity and its corollaries for vertex algebras.

If M is a module over V and U is a vertex subalgebra of V', then M is a
module over U. In particular, if V' is a conformal vertex algebra with central
charge c, we get an action of Virasoro vertex algebra Vir. on M. If w € V' is
a conformal vector we define endomorphisms LM of M via

Yy (w,z) = Z LMyn=2,

neL

We denote LY, by T.
Recall the skew-symmetry property for vertex algebras:

Y(A,2)B =Y (B, —2)A.
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Motivated by this we define a map Yy ar: M — Hom(V, M)[[z*!]] by
Yy (B, 2)A = 7Yy (A, —2)B. (1)

The following lemma is proved similarly to the associativity property of
vertex algebras, |D]:

Lemma 2.2. For any A,C € V, B € M there exists an element f €
M|z, w]][z7Y w™, (2 — w)~] such that the formal power series

YM(A, Z)YVJ\/[(B,UJ)C, YVJ\/[(B,IU)Y(A, Z)C,

YV,]M(YV,M(Ba w — Z)A, Z)C, vaM(YM(A, Zz — ’LU)B, UJ)C

are expansions of f in

respectively.

Abusing the notation, for A € V' we write
Y(A z) = ZA(n)z_"_l, Yir(A,z) = Agyz "
Similarly, for B € M we write
Yy (B,w) =Y Beyw "

Similarly to the formula for the commutators of fields in vertex algebras D]

we have
m
[Bamy, Al =Y ( )(B(n)A)(m-i-k—n)

n
n>0

and the same formula with A, B switched:

n
n>0

[Amy: Byl = (m) (Aw) B) mk—n) (2)

It can also be checked that

YvyM(TB,Z) = GZYV’M(B,Z). (3)



Remark 2.3. Let M be a vector space, V be a vertex algebra. One can show
that to give a structure of a module over V' on M is the same as to extend
a vertex algebra structure from V to V & M such that

1. M is an ideal (this means for any v € V., m € M and integer i we have
Vi)m € M and mmpv € M)

2. For any m,n € M and integer i we have m;n = 0.

This is similar to the situation with modules over a commutative algebra: an
A-module structure on a vector space M is the same as an algebra structure
on A @ M such that A is its subalgebra, AM C M, M? = {0}.

2.2 Definition of S; and intertwining property

Definition 2.4. The screening operator Sy is the residue of

YWO,thZ,k (afl ’ - 2>) .

We will write an explicit formula for
Sk(2> = YWL),mW—z,k (CL_1| - 2)): WO,k‘ — W—Q,k

and prove that Sy = Res Si(2) intertwines the action of sl

Lemma 2.5. We have

Se(2) = a(2) ® <T2 e (5 > %z") exp (k—iz 3 %”w)) @

n<0 n>0

where T_y: wh T2 — 7%52 sends |0) to | —2) and commutes with the action of
bn,n # 0.

Proof. Since W, = My, @ 75> and | — 2)w,, = 10)a,y, @ | — 2)7r§+2, we have

YWO,k:W72,k (a-1] —2)) = YM5[2 (a-1]0),2) ® Yn§+2,w’j§2(‘ —2),z) =
a(2) ® YVirra rg2(] — 2),2). (5)

Let
Voo(z) = Yﬁgw’ﬂgzﬂ —2),2).
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It remains to compute V_s(2) in order to prove the lemma. We will do this in

two steps. First, we will express V_5(z) via V_5(2)|0). Then we will compute
V_5(2)|0).
Apply (2) to A =0_4|0), B =|—2) to get

m
[bma B(k)] = (bn’ - 2>)m+k’fn = _2B(m+k)7
n
n>0
since b,| — 2) is zero for n > 0 and —2| — 2) for n = 0. It follows that
(b, Voo(2)] = —22"V_5(2). (6)

Since vectors by, - - - b,,|0) span 752, the action of V_5(z) is determined
by V_5(2)[0) € 7¥52[[2]]. Namely,

Voa(2) = Vaal2)|0) expl g 30 22), 1)

where exp(15 Y _ z7") € End(7f)[[z7!]] is a field and V_,(2)[0) is a

k42 n>0 n
shorthand for the operator that sends by, - - - by, [0) € 7h 2 to

bay b Voo (2)|0) € 7E52[2]]

for any aq,...,a; < 0. This operator is uniquely defined by the Taylor series
V_5(2)|0) € 7%3%[[2]] that we will compute below.
Now we use equation (3) for B = | — 2) to get

8ZV_2(Z) = YV7M<T| — 2), Z)

We have the following property of vertex algebras (Corollary 2.3.3 in Frenkel’s
book or [D]): for any n,m <0 and A,B €V

1

Y{dmBom:2) = =i =

10" Y (A, 2)0;" Y (B, 2) -

Using Lemma 2.2 for A = b_,|0), B = | — 2) and expanding
YM(A, Z)ijM(B, w)C’ = vaM(YM(A, Z — ’LU)B)C
in powers of z — w similarly to |D| we get

YV7]\/[(b_1| — 2>, Z) = b(Z)V_g(Z) L.
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Using Proposition 6.2.2 in Frenkel’s book or the third section of [W] we
see that the action of T'= L_; = Y (Sg, 2)_1 on m is given by

1
T=—— bbb 1.
4(k +2) % !
Hence
—b_1|=2)=(k+2)T| - 2). (8)

It follows that
(k+2)0,V_a(z) = — 1 b(2)V_a(2) : . 9)

Using (1) for A = |0) we see that for any vertex algebra V', module M
over V and B € M we have

Yvu(B)|0) € B + zM][2]] (10)
Applying both sides of (9) to |0) we get
(k +2)0:(V_2(2)|0)) = —b4(2)V_2(2)]0).
This is a differential equation for the power series
Voal2)l0) = Yisea epa(| = 2),2)[0)
with constant term | — 2), the solution is

Voa(2)[0) = exp(ies 3 220y — ),

k+2n<0 n

Comparing this with (7) we get
1 b ., 1 b .,
Vfg(Z) = T,Q exp (k—HZEZ )exp (k;—MZEZ ) (11)
n<0 n>0
Using (5) and (7) we get
1 bn . 1 bn
Sk(z) =a(z) ® <T_2 exp (k:——i-Z nz<0 s ) exp (k:——l—2 nzw - )>,

as claimed. 0



Proposition 2.6. The map Sy is a homomorphism of sly-modules.
Proof. The plan of the proof is as follows:
1. We will compute the action of e, f,,, hn,n > 0 on a_;| — 2).

2. Using (2) for A = 2_4|0), B = a_1| —2), where z = e, f, h, we will show
that
[Aw), Bl = 0.

Since A,y = x,,, B(g) = Sk, this will prove the proposition.

We move to the first step of the plan. Recall that e, is sent to a,. Using 5A[2
relations we get

[eru a*l] = O, [hn> a*l] = 2an717 [fna CL,1] = _hnfl + k(sn,l'

Recall the formulas for other generators (6.2.3 in Frenkel’s book, follows
from formulas in section 2 of [W]):

h(z) — =2 :a"(2)a(z) : +b(2), (12)
f(2) = a*(2)%a(z) : +k0.a*(2) + a*(2)b(2). (13)

Using these formulas and the grading on the Wakimoto module by degree
of t we get

en| —2) = a,| —2) =0, n > 0; ho| —2) = fu| —2) =0, n >0,
ho| — 2) = —=2| — 2).
It follows that
ent-1] —2) = hpa_1| —2) =0, n > 0.
We also have
faaa|=2) =0,  n=1; fla—1|—2>:(—ho+/€)|—2>:(k+2)\—(124>)-

To compute the action of f; we have to look more carefully at (13). First
we use the sly relation to get

Joa—1| = 2) = a_1fo| —2) — h_1| = 2).
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Using (12), (13) and the fact that a,,| —2) = a’, 1| —2) = bpa| —2) =0
for m > 0 we get
fol = 2) = agbol = 2) = =2ag| = 2),
h_1| — 2> = (—2CL_1(IS + b—l)l - 2)
It follows that
foCL_1| - 2> = —b_1| - 2>
Using (8) we get
foa_1] = 2) = (k+2)T| —2). (15)

Now we will check that Sy, is sly-linear. Set B = a_y| — 2) for the com-
putations below. By definition, S, = Bg).
Using equation (2) for A = a_;|0) we have

(Ao Bl = 3 (1) (e Bhmsicn = 3 () (el = 2msacy =0

n>0 n>0

Using (2) for A = h_4|0) we have
m m
[Amy, Bl = (n> (Aw)B) msh—n) = <n> (hna—1] = 2))mik—n) = 0.
n>0 n>0

Using (2) for A = f_4|0), B = a_1| — 2) we have

[Awmy, Bl = (7:) (A B) msim) = Y _ (7:> (fn@-1] = 2)) mt1-n)

n>0 n>0
=m(fi-a-1] = 2))pmri—1) + (fo - az1] = 2))m+) = (14), (15)
= (k+2)m| = 2)gmsi-1) + (k + 2)(T] = 2)) m+)
Now we write
(T] = 2))ny =[=7 7" 7Y (T] = 2), 2)
= NY (| = 2),2) = (=m =D = 2)gmri-)-
It follows that
[Amy, Byl = —(k + 2)U(] = 2)) mt1-1)-
In particular, for [ = 0 we get zero.

We checked that By commutes with the action of e,,, fy, hy, for all m.
Hence B(y) = Res Si(2) is an intertwining operator. O
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Now we prove that we indeed have a short exact sequence of sly-modules.

Proposition 2.7. For k ¢ —2 4 Q>¢, the sequence
0 — Vi(sly) = Wor — W_op — 0

15 ezact.
Proof. Writing V_5(z) = > V_5_,2" we get
Sk =Res Si(2) = Y anVoa n. (16)
Recall (11):
1 by, 1 bn _
o(2) = Tgexp(—— 3 22 exp(—— Y 2.
V) = Tl S e g L S

It follows that V_5 _,,|0) = 0 when n < 0. We also have a,|0) = 0 for n > 0.
Hence S|0) = 0. Since Sj, commutes with the action of sly and the image
we(Vii(sly)) is the sly-submodule generated by |0), the image of Vi (sly) lies in
the kernel of S.

We know that ngk is isomorphic to the Verma module My, this is
Theorem 2.3 in [S] and Proposition 6.3.3 in Frenkel’s book. Similarly to
section 2.1 of [S] we can compute the formal character of W), as follows.
Let « be the positive root for sly, 6 be the grading operator by the degree of
t. Let ¢ = €% u = e®. Then the operators An, Ay 1, bny < 0 have weight
uq™™, ug—™", ¢~ respectively. It follows that

ch Wy = u? H(l —¢") (1 —ug™) (1 —u g
n>0
Therefore ch Wy, = ch M, ;, where M, ; is Verma module of level k& with
ho-weight .

Using Proposition 3.1 in [KK], it can be shown that, for k£ ¢ —2 + Qx,
the Verma module M_y, is irreducible. Since chW_y; = chM_yy, the
sly-module W_s) is also irreducible. Using (16) and the fact that V., _,
commutes with a,a* we have

Sk(agl0)) =D anaiVos n|0) = > " anaj| —2) = agag| —2) = | - 2),
n>0

so S is nonzero, hence surjective.
It follows that the character of ker S, equals to ch Mg — ch M_g .
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Exercise. ch M — chM_,, = chVj(sly), hence Vi(sly) coincides with the
kernel of Sy.

]

3 Friedan-Martinec-Shenker bosonization

3.1 The vertex algebra Il

A note on terminology. One may think that bosonization means boson-
fermion correspondence. This is not the case: FMS bosonization is boson-
boson correspondence.
We want to construct objects similar to Mg, and Wj , that depend on
two parameters. This will be convenient for taking the limit £ — —2.
Consider the Heisenberg Lie algebra with generators p,, ¢, 1 such that
1 is central and relations

[pnapm} = nénﬁm]—a [an Qm] = —7”L5n7,m1, [pm Qm] = 0.

() =S bz, g(x) = Y g

We define Fock representation II,, , of this algebra as usual: it is generated
by |A, 1) such that

We set,

pn’)\v/vo = )\(Sn,0|)\7:u>7 qn’)\7lu> = /’L(Sn,0|>\7,u>7 n > 07 1|>\,,LL> = |)\7/'I’>

Recall (11):

1 bn ., 1 bn
V_2<Z) =T, exp(m Z EZ ) GXIZ)(]{—_'_2 Z EZ )I 7T§+2 — WE;Q

n<0 n>0
Similarly to V_y we define V) ,,: Iy v — x4, given by
’ ’ )\ n n >\ n n _—
Vi(2) = Tou e exp ( _ ; %z_”) exp(— Z% %z n)

where T} , is defined similarly to T"o: it sends highest weight vector to the
highest weight vector and commutes with all p,, ¢, for nonzero n.
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We claim that
1_IO = ®n€ZHn,n

has a vertex algebra structure such that Ily is its vertex subalgebra. First,
we define T': Il — Ily using the fact that each II,,, is a module over Il .
Then we define

Y(p_1|0>, Z) = p(Z), Y(Q—1|0>’ Z) = Q(z)
Y(‘l, 1>7Z> = Vi,l(’z)? Y(‘ -1, _1>7Z) = Vfl,*l(z)
Using a formula similar to (6) we can check that V) , is mutually local with
p(z) and ¢(z). Hence the third condition of the strong reconstruction theorem
is satisfied. We also see that the four fields above generate Il;. Equation (3)
is exactly the second condition of the reconstruction theorem. The first
condition can also be checked. Hence all four conditions of the strong recon-
struction theorem are satisfied and Il gets a structure of a vertex algebra.
Similarly, we can check that for any v € C
ny = @nEZHnJr'y,nﬂ

is a module over IIj.
Let u(z) be the "integral” of p(z), similarly with v and g¢:
u(z) = — Pn o + po log 2, v(z) = — n —n + qplog z.
n#0 " n#0 n

Abusing notation we will write Vy , = e?+H,
FMS bosonization is the following realization of the vertex algebra Mj,.

Theorem 3.1. There is a unique embedding of verter algebras M — 1l
such that the fields a(z), a*(z) are mapped to

a(z) = e"*, a*(z) =(0.e7")e "’ =—:p(z)e .
Furthermore, the image of M in 1y is the kernel of Rese®.
Proof. We have [a(z),a*(t)] = 0(z — t). Since

[p(2), e @F0] = 6(2 — t)ett,
it can be checked that
[a(z),a*(t)] = d(z —t).

This map is an embedding because M is a simple vertex algebra. In this
talk we will not need the description of the image of M. ]
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The Virasoro field for M is T'(z) =: 0,a*(z)a(z) :, this can be checked
using formulas from Section 3 in [W]. This field maps to

2 p(2)? s =0.p(2)— 1 q(2)” - +0.q(2)).

The main advantage of FMS bosonization for us is that we can define
a(z)? for any complex number ~ as

a(z)? = ) Ty — 11,

3.2 Screening operators of the second kind

Let k& # —2. Consider [Ty ® 75*2. This is a vertex algebra that contains

M@nait? = Wo. and hence Vi (sly) as a vertex subalgebra. For A,y € C the
tensor product IL, ®7T’§+2 is a module over Vi (sly), hence over sly. We denote

this module by W, ) ». We also introduce the operator

b, _, b, _,
Vais2(2) = Torra) exp(— Z e ) exp(— Z P ): gyt = .

n<0 n>0

Set )
Sk(2) = a(2)" % @ Varpa(2).

Reasoning similarly to the proof of Proposition 2.6 we have the following
proposition.

Proposition 3.2. The residue Sy, = Res S’k(z): Wooke = W_(kt2)206+2) .k
intertwines the sly-actions.

The map S, or its restriction to Wor C WO,O,k is called the screening

operator of the second kind for sl,.
The main result of this subsection is the following:

Proposition 3.3. For generic k the sly-submodule Vi(sly) C Wy is equal
to the kernel of ) 3
Skt Wor = W_(r2) 20k42) k-

Proof. We sketch the proof, see Proposition 7.2.5 in Frenkel’s book for details.
It is enough to prove that Ker S = Ker S;. We can extend

S Wor — W_ap
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to
R -
S Woor — Wi_2k

by changing a(z) to a(z). We will prove a stronger statement: KerS =
Ker Sp. Let ¢(2) = =3, 4 b z=n Then similarly to the notation for Vi,
we will write

Vio(z) = e 270 Wy (2) = ¢,

With this notation we have

Sl/g(z) _ eu-i—v—(k-&-2)*1<l>7 Sk(z) — o~ (b +2u—(k+2vt+e (17)

Now the fact that KerResSi(z) = KerResSi(z) follows from equa-
tion (15.4.10) in [FBZ], as explained in Proposition 7.2.5 of Frenkel’s book.
[l
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