
Intertwining operators for sl2.

Daniil Klyuev

1 Plan and first steps

Let g be a simple Lie algebra of rank 𝑟, b = b+ be a Borel subalgebra, h be
a Cartan subalgebra,

We want to prove that the center z(ĝ) of vertex algebra 𝑉𝜅𝑐(g) at the
critical level is isomorphic to FunOp𝐺∨(𝐷).

In order to do this we will use the homomorphism of vertex algebras

𝜔𝜅𝑐 : 𝑉𝜅𝑐(g) → 𝑊0,𝜅𝑐 = 𝑀g ⊗ 𝑉0(h),

constructed in Section 4 of [W] where the notation is as follows: 𝑀g is the
Weyl vertex algebra whose underlying vector space of states is the Fock
representation of the Weyl algebra 𝒜g and 𝑉0(h) = 𝜋0 is the commutative
vertex algebra associated to 𝐿h.

The plan is as follows.

1. Show that 𝜔𝜅𝑐 is injective.

2. Show that 𝜔𝜅𝑐(z(ĝ)) ⊂ 𝜋0. Hence we need to describe the image of z(ĝ)
in 𝜋0.

3. Construct screening operators 𝑆𝑖, 𝑖 = 1, . . . , 𝑟, where 𝑟 is the rank of g,
ĝ𝜅𝑐-linear maps from 𝑊0,𝜅𝑐 to other modules.

4. Show that 𝜔𝜅𝑐(𝑉𝜅𝑐(g)) ⊂ ker𝑆𝑖 for all 𝑖. Hence the image of z(ĝ) is

contained in
𝑙⋂︀

𝑖=1

ker𝑉𝑖[1], where 𝑉𝑖[1] is the restriction of 𝑆𝑖 to 𝜋0.

5. Using the isomorphism between the Wakimoto module 𝑊+
𝜅𝑐

and the
Verma module M0,𝜅𝑐 constructed in Kenta’s lecture we will compute the
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graded character of z(ĝ). We will show that it is equal to the character

of
𝑙⋂︀

𝑖=1

ker𝑉𝑖[1]. It follows that

z(ĝ) =
𝑙⋂︁

𝑖=1

ker𝑉𝑖[1].

6. By using Miura opers constructed in Zeyu’s talk we will show that there

is a natural isomorphism FunOp𝐺∨(𝐷) ∼=
𝑙⋂︀

𝑖=1

ker𝑉𝑖[1]. This will yield

an isomorphism between z(ĝ) and FunOp𝐺∨(𝐷). Moreover, all our con-
structions will be Aut𝒪-equivariant.

In my talk I will explain the first and the second steps of this plan, this
is relatively quick. I will also explain steps 3-4 for in the case g = sl2.

1.1 Steps 1 and 2

We want to prove that 𝜔𝜅𝑐 is injective. First, we discuss a finite-dimensional
analogue of this statement.

In Daishi’s notes [K] there is a homomorphism of Lie algebras

𝜌 : g → vect(𝐵+)
𝐻 = vect(𝑁+)⊕ (C[𝑁+]⊗ h).

The right-hand side is contained in C[𝑇 *𝑁+ × h*], so we can extend 𝜌 to

𝜑* : C[g*] → C[𝑇 *𝑁+ × h*].

Here 𝜑 : 𝑇 *𝑁+ × h* → g* is a morphism of varieties.
We can also extend 𝜌 naturally to

𝜌 : 𝑈(g) → 𝐷(𝑁+)⊗ 𝑈(h).

The map 𝜔𝜅𝑐 is an affine analog of 𝜌. Namely, 𝑈(g) corresponds to 𝑉𝜅𝑐(g),
𝑈(h) corresponds to 𝑉0(h) and 𝐷(𝑁+), differential operators, corresponds to
𝑀g, that could be realized as chiral differential operators [CDO1].

The injectivity of 𝜌 is proved in Remark 2.4 of [K] as follows: we take the
associated graded map of 𝜌 and get gr 𝜌 = 𝜑*. After that we show that 𝜑 is
dominant, equivalently, that 𝜑* is injective.

We will use a similar strategy below to prove that 𝜔𝜅𝑐 is injective. In fact,
we will prove a stronger statement:
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Proposition 1.1. The homomorphism 𝜔𝜅 : 𝑉𝜅(g) → 𝑀g ⊗ 𝜋𝜅−𝜅𝑐
0 is injective

for any 𝜅.

Proof. We will introduce filtrations on 𝑉𝜅(g) and𝑀g⊗𝜋𝜅−𝜅𝑐
0 such that 𝜔𝜅 pre-

serves filtrations and gr𝜔𝜅 is injective. The PBW filtration on 𝑈(ĝ) induces
a filtration on 𝑉𝜅(g): |0⟩ has degree zero and 𝑥𝑛 with 𝑛 < 0 has degree 1.
The filtration on 𝑊0,𝜅 is defined similarly with |0⟩ in degree 0, and operators
𝑎*𝛼,𝑛 with 𝑛 ≤ 0 in degree 0 and 𝑎𝛼,𝑛, 𝑏𝑛 with 𝑛 < 0 in degree 1.

Exercise. 1. 𝑇 is filtration preserving on each of the vertex algebras.

2. 𝜔𝜅 is filtration preserving. Hint: look at the formulas in Section 4 of [W]
or in Section 1.6 of [CDO2].

3. gr𝜔𝜅 is a homomorphism of graded commutative algebras with differen-
tials.

We know that gr𝑉𝜅(g) = C[𝐽g] and it can be checked similarly that
gr𝑊0,𝜅 = C[𝐽(𝑇 *𝑁+×h*)]. These are the jet schemes of the varieties g ∼= g*,
𝑇 *𝑁+ × h* considered above.

Exercise. Prove that gr𝜔𝜅 = (𝐽𝜑)*, where 𝜑 is defined above. Hint: for
any affine variety 𝑋 the algebra C[𝐽𝑋] is graded, the grading is unique such
that deg 𝑇 = −1, degC[𝑋] = 0. Here 𝑇 is the derivation of C[𝐽𝑋]. For a
morphism 𝜙 : 𝑋 → 𝑌 the map

(𝐽𝜙)* : C[𝐽𝑌 ] → C[𝐽𝑋]

is a unique homomorphism such that

1. (𝐽𝜙)* restricts to 𝜙* : C[𝑌 ] → C[𝑋] .

2. (𝐽𝜙)* interwtwines the derivations.

Check that gr𝜔𝜅 satisfies the properties (1) and (2).

It remains to prove that (𝐽𝜑)* is injective. Exercise 2.4 in [K] says that
𝜑* is injective, so that 𝜑 is dominant. Using Exercise 1.2.13 in Vanya’s
notes [KL] we get that 𝐽𝜑 is dominant, hence (𝐽𝜑)* is injective.

We move to the second step of the plan:

Lemma 1.2. 𝜔𝜅𝑐(z(ĝ)) is contained in 𝜋0 ⊂ 𝑊0,𝜅𝑐.
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Proof. We will use the results from Ivan’s notes [CDO1, CDO2] that provide
an alternative construction of 𝑀g and 𝜔𝜅𝑐 using chiral differential operators.

Recall that z(ĝ) is the g[[𝑡]]-invariants in 𝑉𝜅𝑐(g). It is enough to prove
that

𝜔𝜅𝑐(𝑉𝜅𝑐(g)
𝑏+[[𝑡]]) ⊂ 𝜋0.

Note that 𝑉𝜅𝑐(g)
𝑏+[[𝑡]] = 𝑉𝜅𝑐(g)

𝐽𝐵+ . The chiral differential operator of realiza-
tion of 𝑊0,𝜅𝑐 provides a natural action of 𝐽𝐵+ on 𝑊0,𝜅𝑐 , explained in Section
1.2-1.3 of [CDO2]. With this action the map 𝜔𝜅𝑐 is 𝐽𝐵+-equivariant, it is an
exercise just before section 1.5 of [CDO2].

It follows that
𝜔𝜅𝑐(z(ĝ)) ⊂ 𝑊

𝐽𝐵+

0,𝜅𝑐
.

Specializing the results of section 1.5 of [CDO2] to 𝑃+ = 𝐵+, m = h, we get

𝜔𝜅𝑐(z(ĝ)) ⊂ 𝑉0(h) = 𝜋0.

2 Screening operators for sl2

For 𝜆 ∈ C let 𝑀𝜆,𝑀
*
𝜆 denote, respectively, the Verma and the dual Verma

module over sl2 with highest weight 𝜆. We have a short exact sequence

0 → 𝑀−2 → 𝑀0 → 𝐿0 = C → 0,

where 𝐿0 is the trivial representation. Applying the duality functor we get a
short exact sequence

0 → C → 𝑀*
0 → 𝑀*

−2 → 0.

We want an affine analogue of this short exact sequence. We will define a
homomorphism of ŝl2-modules

𝑆𝑘 : 𝑊0,𝑘 → 𝑊−2,𝑘

for non-critical level 𝑘 and prove the following

Proposition 2.1. When 𝑘+2 is not a nonnegative rational number, we have
a short exact sequence

0 → 𝑉𝑘(sl2) → 𝑊0,𝑘
𝑆𝑘−→ 𝑊−2,𝑘 → 0.
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2.1 Modules over vertex algebras

We will need the notion of a module over a vertex algebra 𝑉 . This is a vector
space 𝑀 with a map 𝑌𝑀 : 𝑉 → End𝑀 [[𝑧±1]] such that

1. 𝑌𝑀(|0⟩, 𝑧) = Id𝑀

2. For any 𝑢, 𝑣 ∈ 𝑉 , 𝑚 ∈ 𝑀 the expressions

𝑌𝑀(𝑢, 𝑧)𝑌𝑀(𝑣, 𝑡)𝑚, 𝑌𝑀(𝑣, 𝑡)𝑌𝑀(𝑢, 𝑧)𝑚, 𝑌𝑀(𝑌 (𝑢, 𝑧 − 𝑡)𝑣, 𝑡)𝑚

are expansions of the same element of 𝑀 [[𝑧, 𝑡]][𝑧−1, 𝑡−1, (𝑧 − 𝑡)−1], simi-
larly to the associativity condition for vertex algebras, [D]

We have the following example. Let h = Cℎ be one-dimensional commu-
tative Lie algebra, so that ĥ𝜅 is a Heisenberg Lie algebra for nonzero 𝜅 and an
abelian Lie algebra for 𝜅 = 0. Let 𝑉𝜅(h) be the corresponding vertex algebra.

Consider 𝑀 = 𝑀𝜆 = Indĥ𝜅
h[[𝑡]] C𝜆, a Verma module over ĥ𝜅. For 𝑎1, . . . , 𝑎𝑘 < 0

we define

𝑌𝑀(ℎ𝑎1ℎ𝑎2 · · ·ℎ𝑎𝑘 |0⟩) =
1

(−𝑎1 − 1)! · · · (−𝑎𝑘 − 1)!
𝜕−𝑎1−1
𝑧 ℎ(𝑧) · · · 𝜕−𝑎𝑘−1

𝑧 ℎ(𝑧) :,

similarly to 𝑌 (ℎ𝑎1 · · ·ℎ𝑎𝑘 |0⟩). It can be checked that conditions 1 and 2 are
satisfied.

We can upgrade this example. Let𝑊0,𝑘 = 𝑀sl2⊗𝑉𝑘+2(h). Setting 𝜆 = −2
and tensoring by 𝑀sl2 we get a module 𝑊−2,𝑘 = 𝑀sl2 ⊗ 𝜋𝑘+2

−2 over 𝑊0,𝑘.
Now we describe basic properties of modules over vertex algebras similar

to the associativity and its corollaries for vertex algebras.
If 𝑀 is a module over 𝑉 and 𝑈 is a vertex subalgebra of 𝑉 , then 𝑀 is a

module over 𝑈 . In particular, if 𝑉 is a conformal vertex algebra with central
charge 𝑐, we get an action of Virasoro vertex algebra Vir𝑐 on 𝑀 . If 𝜔 ∈ 𝑉 is
a conformal vector we define endomorphisms 𝐿𝑀

𝑛 of 𝑀 via

𝑌𝑀(𝜔, 𝑧) =
∑︁
𝑛∈Z

𝐿𝑀
𝑛 𝑧−𝑛−2.

We denote 𝐿𝑀
−1 by 𝑇 .

Recall the skew-symmetry property for vertex algebras:

𝑌 (𝐴, 𝑧)𝐵 = 𝑒𝑧𝑇𝑌 (𝐵,−𝑧)𝐴.
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Motivated by this we define a map 𝑌𝑉,𝑀 : 𝑀 → Hom(𝑉,𝑀)[[𝑧±1]] by

𝑌𝑉,𝑀(𝐵, 𝑧)𝐴 = 𝑒𝑧𝑇𝑌𝑀(𝐴,−𝑧)𝐵. (1)

The following lemma is proved similarly to the associativity property of
vertex algebras, [D]:

Lemma 2.2. For any 𝐴,𝐶 ∈ 𝑉 , 𝐵 ∈ 𝑀 there exists an element 𝑓 ∈
𝑀 [[𝑧, 𝑤]][𝑧−1, 𝑤−1, (𝑧 − 𝑤)−1] such that the formal power series

𝑌𝑀(𝐴, 𝑧)𝑌𝑉,𝑀(𝐵,𝑤)𝐶, 𝑌𝑉,𝑀(𝐵,𝑤)𝑌 (𝐴, 𝑧)𝐶,

𝑌𝑉,𝑀(𝑌𝑉,𝑀(𝐵,𝑤 − 𝑧)𝐴, 𝑧)𝐶, 𝑌𝑉,𝑀(𝑌𝑀(𝐴, 𝑧 − 𝑤)𝐵,𝑤)𝐶.

are expansions of 𝑓 in

𝑀((𝑧))((𝑤)), 𝑀((𝑤))((𝑧)), 𝑀((𝑧))((𝑧 − 𝑤)), 𝑀((𝑤))((𝑧 − 𝑤))

respectively.

Abusing the notation, for 𝐴 ∈ 𝑉 we write

𝑌 (𝐴, 𝑧) =
∑︁

𝐴(𝑛)𝑧
−𝑛−1, 𝑌𝑀(𝐴, 𝑧) = 𝐴(𝑛)𝑧

−𝑛−1.

Similarly, for 𝐵 ∈ 𝑀 we write

𝑌𝑉,𝑀(𝐵,𝑤) =
∑︁

𝐵(𝑛)𝑤
−𝑛−1.

Similarly to the formula for the commutators of fields in vertex algebras [D]
we have

[𝐵(𝑚), 𝐴(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐵(𝑛)𝐴)(𝑚+𝑘−𝑛)

and the same formula with 𝐴,𝐵 switched:

[𝐴(𝑚), 𝐵(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐴(𝑛)𝐵)(𝑚+𝑘−𝑛) (2)

It can also be checked that

𝑌𝑉,𝑀(𝑇𝐵, 𝑧) = 𝜕𝑧𝑌𝑉,𝑀(𝐵, 𝑧). (3)
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Remark 2.3. Let 𝑀 be a vector space, 𝑉 be a vertex algebra. One can show
that to give a structure of a module over 𝑉 on 𝑀 is the same as to extend
a vertex algebra structure from 𝑉 to 𝑉 ⊕𝑀 such that

1. 𝑀 is an ideal (this means for any 𝑣 ∈ 𝑉 , 𝑚 ∈ 𝑀 and integer 𝑖 we have
𝑣(𝑖)𝑚 ∈ 𝑀 and 𝑚(𝑖)𝑣 ∈ 𝑀 .)

2. For any 𝑚,𝑛 ∈ 𝑀 and integer 𝑖 we have 𝑚(𝑖)𝑛 = 0.

This is similar to the situation with modules over a commutative algebra: an
𝐴-module structure on a vector space 𝑀 is the same as an algebra structure
on 𝐴⊕𝑀 such that 𝐴 is its subalgebra, 𝐴𝑀 ⊂ 𝑀 , 𝑀2 = {0}.

2.2 Definition of 𝑆𝑘 and intertwining property

Definition 2.4. The screening operator 𝑆𝑘 is the residue of

𝑌𝑊0,𝑘,𝑊−2,𝑘
(𝑎−1| − 2⟩).

We will write an explicit formula for

𝑆𝑘(𝑧) = 𝑌𝑊0,𝑘,𝑊−2,𝑘
(𝑎−1| − 2⟩) : 𝑊0,𝑘 → 𝑊−2,𝑘

and prove that 𝑆𝑘 = Res𝑆𝑘(𝑧) intertwines the action of ŝl2.

Lemma 2.5. We have

𝑆𝑘(𝑧) = 𝑎(𝑧)⊗
(︂
𝑇−2 exp

(︀ 1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛

)︀
exp

(︀ 1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛

)︀)︂
, (4)

where 𝑇−2 : 𝜋
𝑘+2
0 → 𝜋𝑘+2

−2 sends |0⟩ to | − 2⟩ and commutes with the action of
𝑏𝑛, 𝑛 ̸= 0.

Proof. Since 𝑊0,𝑘 = 𝑀sl2 ⊗𝜋𝑘+2
0 and |− 2⟩𝑊0,𝑘

= |0⟩𝑀sl2
⊗|− 2⟩𝜋𝑘+2

0
, we have

𝑌𝑊0,𝑘,𝑊−2,𝑘
(𝑎−1| − 2⟩) = 𝑌𝑀sl2

(𝑎−1|0⟩, 𝑧)⊗ 𝑌𝜋𝑘+2
0 ,𝜋𝑘+2

−2
(| − 2⟩, 𝑧) =

𝑎(𝑧)⊗ 𝑌𝜋𝑘+2
0 ,𝜋𝑘+2

−2
(| − 2⟩, 𝑧). (5)

Let
𝑉−2(𝑧) = 𝑌𝜋𝑘+2

0 ,𝜋𝑘+2
−2

(| − 2⟩, 𝑧).
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It remains to compute 𝑉−2(𝑧) in order to prove the lemma. We will do this in
two steps. First, we will express 𝑉−2(𝑧) via 𝑉−2(𝑧)|0⟩. Then we will compute
𝑉−2(𝑧)|0⟩.

Apply (2) to 𝐴 = 𝑏−1|0⟩, 𝐵 = | − 2⟩ to get

[𝑏𝑚, 𝐵(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝑏𝑛| − 2⟩)𝑚+𝑘−𝑛 = −2𝐵(𝑚+𝑘),

since 𝑏𝑛| − 2⟩ is zero for 𝑛 > 0 and −2| − 2⟩ for 𝑛 = 0. It follows that

[𝑏𝑚, 𝑉−2(𝑧)] = −2𝑧𝑚𝑉−2(𝑧). (6)

Since vectors 𝑏𝑛1 · · · 𝑏𝑛𝑙
|0⟩ span 𝜋𝑘+2

0 , the action of 𝑉−2(𝑧) is determined
by 𝑉−2(𝑧)|0⟩ ∈ 𝜋𝑘+2

−2 [[𝑧]]. Namely,

𝑉−2(𝑧) = 𝑉−2(𝑧)|0⟩ exp(
1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛), (7)

where exp( 1
𝑘+2

∑︀
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛) ∈ End(𝜋𝑘

0)[[𝑧
−1]] is a field and 𝑉−2(𝑧)|0⟩ is a

shorthand for the operator that sends 𝑏𝑎1 · · · 𝑏𝑎𝑘 |0⟩ ∈ 𝜋𝑘+2
0 to

𝑏𝑎1 · · · 𝑏𝑎𝑘𝑉−2(𝑧)|0⟩ ∈ 𝜋𝑘+2
−2 [[𝑧]]

for any 𝑎1, . . . , 𝑎𝑘 < 0. This operator is uniquely defined by the Taylor series
𝑉−2(𝑧)|0⟩ ∈ 𝜋𝑘+2

−2 [[𝑧]] that we will compute below.
Now we use equation (3) for 𝐵 = | − 2⟩ to get

𝜕𝑧𝑉−2(𝑧) = 𝑌𝑉,𝑀(𝑇 | − 2⟩, 𝑧).

We have the following property of vertex algebras (Corollary 2.3.3 in Frenkel’s
book or [D]): for any 𝑛,𝑚 < 0 and 𝐴,𝐵 ∈ 𝑉

𝑌 (𝐴(𝑛)𝐵(𝑚), 𝑧) =
1

(−𝑛− 1)!(−𝑚− 1)!
: 𝜕−𝑛−1

𝑧 𝑌 (𝐴, 𝑧)𝜕−𝑚−1
𝑧 𝑌 (𝐵, 𝑧) : .

Using Lemma 2.2 for 𝐴 = 𝑏−1|0⟩, 𝐵 = | − 2⟩ and expanding

𝑌𝑀(𝐴, 𝑧)𝑌𝑉,𝑀(𝐵,𝑤)𝐶 = 𝑌𝑉,𝑀(𝑌𝑀(𝐴, 𝑧 − 𝑤)𝐵)𝐶

in powers of 𝑧 − 𝑤 similarly to [D] we get

𝑌𝑉,𝑀(𝑏−1| − 2⟩, 𝑧) =: 𝑏(𝑧)𝑉−2(𝑧) : .
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Using Proposition 6.2.2 in Frenkel’s book or the third section of [W] we
see that the action of 𝑇 = 𝐿−1 = 𝑌 (S𝑘, 𝑧)−1 on 𝜋0 is given by

𝑇 =
1

4(𝑘 + 2)

∑︁
𝑛∈Z

𝑏𝑛𝑏−𝑛−1.

Hence
−𝑏−1| − 2⟩ = (𝑘 + 2)𝑇 | − 2⟩. (8)

It follows that
(𝑘 + 2)𝜕𝑧𝑉−2(𝑧) = − : 𝑏(𝑧)𝑉−2(𝑧) : . (9)

Using (1) for 𝐴 = |0⟩ we see that for any vertex algebra 𝑉 , module 𝑀
over 𝑉 and 𝐵 ∈ 𝑀 we have

𝑌𝑉,𝑀(𝐵)|0⟩ ∈ 𝐵 + 𝑧𝑀 [[𝑧]] (10)

Applying both sides of (9) to |0⟩ we get

(𝑘 + 2)𝜕𝑧(𝑉−2(𝑧)|0⟩) = −𝑏+(𝑧)𝑉−2(𝑧)|0⟩.

This is a differential equation for the power series

𝑉−2(𝑧)|0⟩ = 𝑌𝜋𝑘+2
0 ,𝜋𝑘+2

−2
(| − 2⟩, 𝑧)|0⟩

with constant term | − 2⟩, the solution is

𝑉−2(𝑧)|0⟩ = exp(
1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛)| − 2⟩.

Comparing this with (7) we get

𝑉−2(𝑧) = 𝑇−2 exp
(︀ 1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛

)︀
exp

(︀ 1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛

)︀
. (11)

Using (5) and (7) we get

𝑆𝑘(𝑧) = 𝑎(𝑧)⊗
(︂
𝑇−2 exp

(︀ 1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛

)︀
exp

(︀ 1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛

)︀)︂
,

as claimed.
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Proposition 2.6. The map 𝑆𝑘 is a homomorphism of ŝl2-modules.

Proof. The plan of the proof is as follows:

1. We will compute the action of 𝑒𝑛, 𝑓𝑛, ℎ𝑛, 𝑛 ≥ 0 on 𝑎−1| − 2⟩.

2. Using (2) for 𝐴 = 𝑥−1|0⟩, 𝐵 = 𝑎−1|− 2⟩, where 𝑥 = 𝑒, 𝑓, ℎ, we will show
that

[𝐴(𝑛), 𝐵(0)] = 0.

Since 𝐴(𝑛) = 𝑥𝑛, 𝐵(0) = 𝑆𝑘, this will prove the proposition.

We move to the first step of the plan. Recall that 𝑒𝑛 is sent to 𝑎𝑛. Using ŝl2
relations we get

[𝑒𝑛, 𝑎−1] = 0, [ℎ𝑛, 𝑎−1] = 2𝑎𝑛−1, [𝑓𝑛, 𝑎−1] = −ℎ𝑛−1 + 𝑘𝛿𝑛,1.

Recall the formulas for other generators (6.2.3 in Frenkel’s book, follows
from formulas in section 2 of [W]):

ℎ(𝑧) ↦→ −2 : 𝑎*(𝑧)𝑎(𝑧) : +𝑏(𝑧), (12)

𝑓(𝑧) ↦→: 𝑎*(𝑧)2𝑎(𝑧) : +𝑘𝜕𝑧𝑎
*(𝑧) + 𝑎*(𝑧)𝑏(𝑧). (13)

Using these formulas and the grading on the Wakimoto module by degree
of 𝑡 we get

𝑒𝑛| − 2⟩ = 𝑎𝑛| − 2⟩ = 0, 𝑛 ≥ 0; ℎ𝑛| − 2⟩ = 𝑓𝑛| − 2⟩ = 0, 𝑛 > 0,

ℎ0| − 2⟩ = −2| − 2⟩.

It follows that

𝑒𝑛𝑎−1| − 2⟩ = ℎ𝑛𝑎−1| − 2⟩ = 0, 𝑛 ≥ 0.

We also have

𝑓𝑛𝑎−1|−2⟩ = 0, 𝑛 ≥ 1; 𝑓1𝑎−1|−2⟩ = (−ℎ0+𝑘)|−2⟩ = (𝑘+2)|−2⟩.
(14)

To compute the action of 𝑓0 we have to look more carefully at (13). First
we use the ŝl2 relation to get

𝑓0𝑎−1| − 2⟩ = 𝑎−1𝑓0| − 2⟩ − ℎ−1| − 2⟩.
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Using (12), (13) and the fact that 𝑎𝑚| − 2⟩ = 𝑎*𝑚+1| − 2⟩ = 𝑏𝑚+1| − 2⟩ = 0
for 𝑚 ≥ 0 we get

𝑓0| − 2⟩ = 𝑎*0𝑏0| − 2⟩ = −2𝑎*0| − 2⟩,
ℎ−1| − 2⟩ = (−2𝑎−1𝑎

*
0 + 𝑏−1)| − 2⟩.

It follows that
𝑓0𝑎−1| − 2⟩ = −𝑏−1| − 2⟩.

Using (8) we get

𝑓0𝑎−1| − 2⟩ = (𝑘 + 2)𝑇 | − 2⟩. (15)

Now we will check that 𝑆𝑘 is ŝl2-linear. Set 𝐵 = 𝑎−1| − 2⟩ for the com-
putations below. By definition, 𝑆𝑘 = 𝐵(0).

Using equation (2) for 𝐴 = 𝑎−1|0⟩ we have

[𝐴(𝑚), 𝐵(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐴(𝑛)𝐵)(𝑚+𝑘−𝑛) =

∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝑎𝑛𝑎−1| − 2⟩)(𝑚+𝑘−𝑛) = 0.

Using (2) for 𝐴 = ℎ−1|0⟩ we have

[𝐴(𝑚), 𝐵(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐴(𝑛)𝐵)(𝑚+𝑘−𝑛) =

∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(ℎ𝑛𝑎−1| − 2⟩)(𝑚+𝑘−𝑛) = 0.

Using (2) for 𝐴 = 𝑓−1|0⟩, 𝐵 = 𝑎−1| − 2⟩ we have

[𝐴(𝑚), 𝐵(𝑙)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐴(𝑛)𝐵)(𝑚+𝑙−𝑛) =

∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝑓𝑛𝑎−1| − 2⟩)(𝑚+𝑙−𝑛)

= 𝑚(𝑓1 · 𝑎−1| − 2⟩)(𝑚+𝑙−1) + (𝑓0 · 𝑎−1| − 2⟩)(𝑚+𝑙) = (14), (15)

= (𝑘 + 2)𝑚| − 2⟩(𝑚+𝑙−1) + (𝑘 + 2)(𝑇 | − 2⟩)(𝑚+𝑙)

Now we write

(𝑇 | − 2⟩)(𝑚+𝑙) =[𝑧−1−𝑚−𝑙]𝑌 (𝑇 | − 2⟩, 𝑧)
=[𝑧−1−𝑚−𝑙]𝑌 (| − 2⟩, 𝑧)′ = (−𝑚− 𝑙)(| − 2⟩)(𝑚+𝑙−1).

It follows that
[𝐴(𝑚), 𝐵(𝑙)] = −(𝑘 + 2)𝑙(| − 2⟩)(𝑚+𝑙−1).

In particular, for 𝑙 = 0 we get zero.
We checked that 𝐵(0) commutes with the action of 𝑒𝑚, 𝑓𝑚, ℎ𝑚 for all 𝑚.

Hence 𝐵(0) = Res𝑆𝑘(𝑧) is an intertwining operator.
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Now we prove that we indeed have a short exact sequence of ŝl2-modules.

Proposition 2.7. For 𝑘 /∈ −2 +Q≥0, the sequence

0 → 𝑉𝑘(sl2) → 𝑊0,𝑘 → 𝑊−2,𝑘 → 0

is exact.

Proof. Writing 𝑉−2(𝑧) =
∑︀

𝑉−2,−𝑛𝑧
𝑛 we get

𝑆𝑘 = Res𝑆𝑘(𝑧) =
∑︁
𝑛

𝑎𝑛𝑉−2,−𝑛. (16)

Recall (11):

𝑉−2(𝑧) = 𝑇−2 exp(
1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛) exp(

1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛).

It follows that 𝑉−2,−𝑛|0⟩ = 0 when 𝑛 < 0. We also have 𝑎𝑛|0⟩ = 0 for 𝑛 ≥ 0.

Hence 𝑆𝑘|0⟩ = 0. Since 𝑆𝑘 commutes with the action of ŝl2 and the image
𝜔𝜅(𝑉𝑘(sl2)) is the ŝl2-submodule generated by |0⟩, the image of 𝑉𝑘(sl2) lies in
the kernel of 𝑆𝑘.

We know that 𝑊+
0,𝑘 is isomorphic to the Verma module M0,𝑘, this is

Theorem 2.3 in [S] and Proposition 6.3.3 in Frenkel’s book. Similarly to
section 2.1 of [S] we can compute the formal character of 𝑊𝜆,𝑘 as follows.
Let 𝛼 be the positive root for sl2, 𝛿 be the grading operator by the degree of
𝑡. Let 𝑞 = 𝑒−𝛿, 𝑢 = 𝑒𝛼. Then the operators 𝑎𝑛, 𝑎

*
𝑛+1, 𝑏𝑛, 𝑛 < 0 have weight

𝑢𝑞−𝑛, 𝑢𝑞−1−𝑛, 𝑞−𝑛 respectively. It follows that

ch𝑊𝜆,𝑘 = 𝑢
𝜆
2

∏︁
𝑛>0

(1− 𝑞𝑛)−1(1− 𝑢𝑞𝑛)−1(1− 𝑢−1𝑞𝑛−1)−1.

Therefore ch𝑊𝜆,𝑘 = chM𝜆,𝑘, where M𝜆,𝑘 is Verma module of level 𝑘 with
ℎ0-weight 𝜆.

Using Proposition 3.1 in [KK], it can be shown that, for 𝑘 /∈ −2 + Q≥0,
the Verma module M−2,𝑘 is irreducible. Since ch𝑊−2,𝑘 = chM−2,𝑘, the

ŝl2-module 𝑊−2,𝑘 is also irreducible. Using (16) and the fact that 𝑉−2,−𝑛

commutes with 𝑎, 𝑎* we have

𝑆𝑘(𝑎
*
0|0⟩) =

∑︁
𝑎𝑛𝑎

*
0𝑉−2,−𝑛|0⟩ =

∑︁
𝑛≥0

𝑎𝑛𝑎
*
0| − 2⟩ = 𝑎0𝑎

*
0| − 2⟩ = | − 2⟩,

so 𝑆𝑘 is nonzero, hence surjective.
It follows that the character of ker𝑆𝑘 equals to chM0,𝑘 − chM−2,𝑘.
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Exercise. chM0,𝑘 − chM−2,𝑘 = ch𝑉𝑘(sl2), hence 𝑉𝑘(sl2) coincides with the
kernel of 𝑆𝑘.

3 Friedan-Martinec-Shenker bosonization

3.1 The vertex algebra Π0

A note on terminology. One may think that bosonization means boson-
fermion correspondence. This is not the case: FMS bosonization is boson-
boson correspondence.

We want to construct objects similar to 𝑀sl2 and 𝑊𝑘,𝜆 that depend on
two parameters. This will be convenient for taking the limit 𝑘 → −2.

Consider the Heisenberg Lie algebra with generators 𝑝𝑛, 𝑞𝑚,1 such that
1 is central and relations

[𝑝𝑛, 𝑝𝑚] = 𝑛𝛿𝑛,−𝑚1, [𝑞𝑛, 𝑞𝑚] = −𝑛𝛿𝑛,−𝑚1, [𝑝𝑛, 𝑞𝑚] = 0.

We set
𝑝(𝑧) =

∑︁
𝑝𝑛𝑧

−𝑛−1, 𝑞(𝑧) =
∑︁

𝑞𝑛𝑧
−𝑛−1.

We define Fock representation Π𝜆,𝜇 of this algebra as usual: it is generated
by |𝜆, 𝜇⟩ such that

𝑝𝑛|𝜆, 𝜇⟩ = 𝜆𝛿𝑛,0|𝜆, 𝜇⟩, 𝑞𝑛|𝜆, 𝜇⟩ = 𝜇𝛿𝑛,0|𝜆, 𝜇⟩, 𝑛 ≥ 0, 1|𝜆, 𝜇⟩ = |𝜆, 𝜇⟩.

Recall (11):

𝑉−2(𝑧) = 𝑇−2 exp(
1

𝑘 + 2

∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛) exp(

1

𝑘 + 2

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛) : 𝜋𝑘+2

0 → 𝜋𝑘+2
−2

Similarly to 𝑉−2 we define 𝑉𝜆,𝜇 : Π𝜆′,𝜇′ → Π𝜆+𝜆′,𝜇+𝜇′ given by

𝑉𝜆,𝜇(𝑧) = 𝑇𝜆,𝜇𝑧
𝜆𝜆′−𝜇𝜇′

exp

(︂
−

∑︁
𝑛<0

𝜆𝑝𝑛 + 𝜇𝑞𝑛
𝑛

𝑧−𝑛) exp(−
∑︁
𝑛>0

𝜆𝑝𝑛 + 𝜇𝑞𝑛
𝑛

𝑧−𝑛

)︂
,

where 𝑇𝜆,𝜇 is defined similarly to 𝑇−2: it sends highest weight vector to the
highest weight vector and commutes with all 𝑝𝑛, 𝑞𝑛 for nonzero 𝑛.
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We claim that
Π0 = ⊕𝑛∈ZΠ𝑛,𝑛

has a vertex algebra structure such that Π0,0 is its vertex subalgebra. First,
we define 𝑇 : Π0 → Π0 using the fact that each Π𝑛,𝑛 is a module over Π0,0.
Then we define

𝑌 (𝑝−1|0⟩, 𝑧) = 𝑝(𝑧), 𝑌 (𝑞−1|0⟩, 𝑧) = 𝑞(𝑧)

𝑌 (|1, 1⟩, 𝑧) = 𝑉1,1(𝑧), 𝑌 (| − 1,−1⟩, 𝑧) = 𝑉−1,−1(𝑧)

Using a formula similar to (6) we can check that 𝑉𝜆,𝜇 is mutually local with
𝑝(𝑧) and 𝑞(𝑧). Hence the third condition of the strong reconstruction theorem
is satisfied. We also see that the four fields above generate Π0. Equation (3)
is exactly the second condition of the reconstruction theorem. The first
condition can also be checked. Hence all four conditions of the strong recon-
struction theorem are satisfied and Π0 gets a structure of a vertex algebra.

Similarly, we can check that for any 𝛾 ∈ C

Π𝛾 = ⊕𝑛∈ZΠ𝑛+𝛾,𝑛+𝛾

is a module over Π0.
Let 𝑢(𝑧) be the ”integral” of 𝑝(𝑧), similarly with 𝑣 and 𝑞:

𝑢(𝑧) = −
∑︁
𝑛̸=0

𝑝𝑛
𝑛
𝑧−𝑛 + 𝑝0 log 𝑧, 𝑣(𝑧) = −

∑︁
𝑛̸=0

𝑞𝑛
𝑛
𝑧−𝑛 + 𝑞0 log 𝑧.

Abusing notation we will write 𝑉𝜆,𝜇 = 𝑒𝜆𝑢+𝜇𝑣.
FMS bosonization is the following realization of the vertex algebra 𝑀sl2 .

Theorem 3.1. There is a unique embedding of vertex algebras 𝑀 →˓ Π0

such that the fields 𝑎(𝑧), 𝑎*(𝑧) are mapped to

𝑎̃(𝑧) = 𝑒𝑢+𝑣, 𝑎̃*(𝑧) = (𝜕𝑧𝑒
−𝑢)𝑒−𝑣 = − : 𝑝(𝑧)𝑒−𝑢−𝑣 : .

Furthermore, the image of 𝑀 in Π0 is the kernel of Res 𝑒𝑢.

Proof. We have [𝑎(𝑧), 𝑎*(𝑡)] = 𝛿(𝑧 − 𝑡). Since

[𝑝(𝑧), 𝑒𝑢(𝑡)+𝑣(𝑡)] = 𝛿(𝑧 − 𝑡)𝑒𝑢+𝑣,

it can be checked that

[𝑎̃(𝑧), 𝑎̃*(𝑡)] = 𝛿(𝑧 − 𝑡).

This map is an embedding because 𝑀 is a simple vertex algebra. In this
talk we will not need the description of the image of 𝑀 .
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The Virasoro field for 𝑀 is 𝑇 (𝑧) =: 𝜕𝑧𝑎
*(𝑧)𝑎(𝑧) :, this can be checked

using formulas from Section 3 in [W]. This field maps to

1
2

(︀
: 𝑝(𝑧)2 : −𝜕𝑧𝑝(𝑧)− : 𝑞(𝑧)2 : +𝜕𝑧𝑞(𝑧)

)︀
.

The main advantage of FMS bosonization for us is that we can define
𝑎(𝑧)𝛾 for any complex number 𝛾 as

𝑎̃(𝑧)𝛾 = 𝑒𝛾(𝑢+𝑣) : Π0 → Π𝛾.

3.2 Screening operators of the second kind

Let 𝑘 ̸= −2. Consider Π0 ⊗ 𝜋𝑘+2
0 . This is a vertex algebra that contains

𝑀 ⊗ 𝜋𝑘+2
0 = 𝑊0,𝑘 and hence 𝑉𝑘(sl2) as a vertex subalgebra. For 𝜆, 𝛾 ∈ C the

tensor product Π𝛾⊗𝜋𝑘+2
𝜆 is a module over 𝑉𝑘(sl2), hence over ŝl2. We denote

this module by ̃︁𝑊𝛾,𝜆,𝑘. We also introduce the operator

𝑉2𝑘+2(𝑧) = 𝑇2(𝑘+2) exp(−
∑︁
𝑛<0

𝑏𝑛
𝑛
𝑧−𝑛) exp(−

∑︁
𝑛>0

𝑏𝑛
𝑛
𝑧−𝑛) : 𝜋𝑘+2

0 → 𝜋𝑘+2
2𝑘+2.

Set
𝑆𝑘(𝑧) = 𝑎̃(𝑧)−(𝑘+2) ⊗ 𝑉2𝑘+2(𝑧).

Reasoning similarly to the proof of Proposition 2.6 we have the following
proposition.

Proposition 3.2. The residue 𝑆𝑘 = Res𝑆𝑘(𝑧) : 𝑊0,0,𝑘 → 𝑊−(𝑘+2),2(𝑘+2),𝑘

intertwines the ŝl2-actions.

The map 𝑆𝑘 or its restriction to 𝑊0,𝑘 ⊂ 𝑊̃0,0,𝑘 is called the screening

operator of the second kind for ŝl2.
The main result of this subsection is the following:

Proposition 3.3. For generic 𝑘 the ŝl2-submodule 𝑉𝑘(sl2) ⊂ 𝑊0,𝑘 is equal
to the kernel of

𝑆𝑘 : 𝑊0,𝑘 → 𝑊̃−(𝑘+2),2(𝑘+2),𝑘.

Proof. We sketch the proof, see Proposition 7.2.5 in Frenkel’s book for details.
It is enough to prove that Ker𝑆𝑘 = Ker𝑆𝑘. We can extend

𝑆𝑘 : 𝑊0,𝑘 → 𝑊−2,𝑘
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to
𝑆 ′
𝑘 : 𝑊̃0,0,𝑘 → 𝑊̃1,−2,𝑘

by changing 𝑎(𝑧) to 𝑎̃(𝑧). We will prove a stronger statement: Ker𝑆 =
Ker𝑆 ′

𝑘. Let 𝜑(𝑧) = −
∑︀

𝑛 ̸=0
𝑏𝑛
𝑛
𝑧−𝑛. Then similarly to the notation for 𝑉𝜆,𝜇

we will write
𝑉−2(𝑧) = 𝑒−(𝑘+2)−1𝜑, 𝑉2(𝑘+2)(𝑧) = 𝑒𝜑.

With this notation we have

𝑆 ′
𝑘(𝑧) = 𝑒𝑢+𝑣−(𝑘+2)−1𝜑, 𝑆𝑘(𝑧) = 𝑒−(𝑘+2)𝑢−(𝑘+2)𝑣+𝜑. (17)

Now the fact that KerRes𝑆 ′
𝑘(𝑧) = KerRes𝑆𝑘(𝑧) follows from equa-

tion (15.4.10) in [FBZ], as explained in Proposition 7.2.5 of Frenkel’s book.
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