Intertwining operators for $\mathfrak{s l}_{2}$.

Daniil Klyuev

1 Plan and first steps

Let \mathfrak{g} be a simple Lie algebra of rank $r, \mathfrak{b}=\mathfrak{b}_{+}$be a Borel subalgebra, \mathfrak{h} be a Cartan subalgebra,

We want to prove that the center $\mathfrak{z}(\hat{\mathfrak{g}})$ of vertex algebra $V_{\kappa_{c}}(\mathfrak{g})$ at the critical level is isomorphic to Fun $\mathrm{Op}_{G^{\vee}}(D)$.

In order to do this we will use the homomorphism of vertex algebras

$$
\omega_{\kappa_{c}}: V_{\kappa_{c}}(\mathfrak{g}) \rightarrow W_{0, \kappa_{c}}=M_{\mathfrak{g}} \otimes V_{0}(\mathfrak{h}),
$$

constructed in Section 4 of [W] where the notation is as follows: $M_{\mathfrak{g}}$ is the Weyl vertex algebra whose underlying vector space of states is the Fock representation of the Weyl algebra $\mathcal{A}^{\mathfrak{g}}$ and $V_{0}(\mathfrak{h})=\pi_{0}$ is the commutative vertex algebra associated to $L \mathfrak{h}$.

The plan is as follows.

1. Show that $\omega_{\kappa_{c}}$ is injective.
2. Show that $\omega_{\kappa_{c}}(\mathfrak{z}(\hat{\mathfrak{g}})) \subset \pi_{0}$. Hence we need to describe the image of $\mathfrak{z}(\hat{\mathfrak{g}})$ in π_{0}.
3. Construct screening operators $\bar{S}_{i}, i=1, \ldots, r$, where r is the rank of \mathfrak{g}, $\hat{\mathfrak{g}}_{\kappa_{c}}$-linear maps from $W_{0, \kappa_{c}}$ to other modules.
4. Show that $\omega_{\kappa_{c}}\left(V_{\kappa_{c}}(\mathfrak{g})\right) \subset \operatorname{ker} \overline{S_{i}}$ for all i. Hence the image of $\mathfrak{z}(\hat{\mathfrak{g}})$ is contained in $\bigcap_{i=1}^{l} \operatorname{ker} \overline{V_{i}}[1]$, where $\overline{V_{i}}[1]$ is the restriction of $\overline{S_{i}}$ to π_{0}.
5. Using the isomorphism between the Wakimoto module $W_{\kappa_{c}}^{+}$and the Verma module $\mathbf{M}_{0, \kappa_{c}}$ constructed in Kenta's lecture we will compute the
graded character of $\mathfrak{z}(\hat{\mathfrak{g}})$. We will show that it is equal to the character of $\bigcap_{i=1}^{l} \operatorname{ker} \overline{V_{i}}[1]$. It follows that

$$
\mathfrak{z}(\hat{\mathfrak{g}})=\bigcap_{i=1}^{l} \operatorname{ker} \overline{V_{i}}[1] .
$$

6. By using Miura opers constructed in Zeyu's talk we will show that there is a natural isomorphism Fun $\operatorname{Op}_{G^{\vee}}(D) \cong \bigcap_{i=1}^{l} \operatorname{ker} \overline{V_{i}}[1]$. This will yield an isomorphism between $\mathfrak{z}(\hat{\mathfrak{g}})$ and Fun $\mathrm{Op}_{G^{\vee}}(D)$. Moreover, all our constructions will be Aut \mathcal{O}-equivariant.

In my talk I will explain the first and the second steps of this plan, this is relatively quick. I will also explain steps $3-4$ for in the case $\mathfrak{g}=\mathfrak{s l}_{2}$.

1.1 Steps 1 and 2

We want to prove that $\omega_{\kappa_{c}}$ is injective. First, we discuss a finite-dimensional analogue of this statement.

In Daishi's notes $[\mathrm{K}]$ there is a homomorphism of Lie algebras

$$
\rho: \mathfrak{g} \rightarrow \operatorname{vect}\left(B_{+}\right)^{H}=\operatorname{vect}\left(N_{+}\right) \oplus\left(\mathbb{C}\left[N_{+}\right] \otimes \mathfrak{h}\right)
$$

The right-hand side is contained in $\mathbb{C}\left[T^{*} N_{+} \times \mathfrak{h}^{*}\right]$, so we can extend ρ to

$$
\phi^{*}: \mathbb{C}\left[\mathfrak{g}^{*}\right] \rightarrow \mathbb{C}\left[T^{*} N_{+} \times \mathfrak{h}^{*}\right] .
$$

Here $\phi: T^{*} N_{+} \times \mathfrak{h}^{*} \rightarrow \mathfrak{g}^{*}$ is a morphism of varieties.
We can also extend ρ naturally to

$$
\rho: U(\mathfrak{g}) \rightarrow D\left(N_{+}\right) \otimes U(\mathfrak{h}) .
$$

The map $\omega_{\kappa_{c}}$ is an affine analog of ρ. Namely, $U(\mathfrak{g})$ corresponds to $V_{\kappa_{c}}(\mathfrak{g})$, $U(\mathfrak{h})$ corresponds to $V_{0}(\mathfrak{h})$ and $D\left(N_{+}\right)$, differential operators, corresponds to $M_{\mathfrak{g}}$, that could be realized as chiral differential operators [CDO1].

The injectivity of ρ is proved in Remark 2.4 of $[\mathrm{K}]$ as follows: we take the associated graded map of ρ and get $\operatorname{gr} \rho=\phi^{*}$. After that we show that ϕ is dominant, equivalently, that ϕ^{*} is injective.

We will use a similar strategy below to prove that $\omega_{\kappa_{c}}$ is injective. In fact, we will prove a stronger statement:

Proposition 1.1. The homomorphism $\omega_{\kappa}: V_{\kappa}(\mathfrak{g}) \rightarrow M_{\mathfrak{g}} \otimes \pi_{0}^{\kappa-\kappa_{c}}$ is injective for any κ.

Proof. We will introduce filtrations on $V_{\kappa}(\mathfrak{g})$ and $M_{\mathfrak{g}} \otimes \pi_{0}^{\kappa-\kappa_{c}}$ such that ω_{κ} preserves filtrations and gr ω_{κ} is injective. The PBW filtration on $U(\hat{\mathfrak{g}})$ induces a filtration on $V_{\kappa}(\mathfrak{g}):|0\rangle$ has degree zero and x_{n} with $n<0$ has degree 1 . The filtration on $W_{0, \kappa}$ is defined similarly with $|0\rangle$ in degree 0 , and operators $a_{\alpha, n}^{*}$ with $n \leq 0$ in degree 0 and $a_{\alpha, n}, b_{n}$ with $n<0$ in degree 1 .
Exercise. 1. T is filtration preserving on each of the vertex algebras.
2. ω_{κ} is filtration preserving. Hint: look at the formulas in Section 4 of [W] or in Section 1.6 of [CDO2].
3. $\operatorname{gr} \omega_{\kappa}$ is a homomorphism of graded commutative algebras with differentials.

We know that $\operatorname{gr} V_{\kappa}(\mathfrak{g})=\mathbb{C}[J \mathfrak{g}]$ and it can be checked similarly that $\operatorname{gr} W_{0, \kappa}=\mathbb{C}\left[J\left(T^{*} N_{+} \times \mathfrak{h}^{*}\right)\right]$. These are the jet schemes of the varieties $\mathfrak{g} \cong \mathfrak{g}^{*}$, $T^{*} N_{+} \times \mathfrak{h}^{*}$ considered above.
Exercise. Prove that gr $\omega_{\kappa}=(J \phi)^{*}$, where ϕ is defined above. Hint: for any affine variety X the algebra $\mathbb{C}[J X]$ is graded, the grading is unique such that $\operatorname{deg} T=-1, \operatorname{deg} \mathbb{C}[X]=0$. Here T is the derivation of $\mathbb{C}[J X]$. For a morphism $\varphi: X \rightarrow Y$ the map

$$
(J \varphi)^{*}: \mathbb{C}[J Y] \rightarrow \mathbb{C}[J X]
$$

is a unique homomorphism such that

1. $(J \varphi)^{*}$ restricts to $\varphi^{*}: \mathbb{C}[Y] \rightarrow \mathbb{C}[X]$.
2. $(J \varphi)^{*}$ interwtwines the derivations.

Check that gr ω_{κ} satisfies the properties (1) and (2).
It remains to prove that $(J \phi)^{*}$ is injective. Exercise 2.4 in $[\mathrm{K}]$ says that ϕ^{*} is injective, so that ϕ is dominant. Using Exercise 1.2.13 in Vanya's notes [KL] we get that $J \phi$ is dominant, hence $(J \phi)^{*}$ is injective.

We move to the second step of the plan:
Lemma 1.2. $\omega_{\kappa_{c}}(\mathfrak{z}(\hat{\mathfrak{g}}))$ is contained in $\pi_{0} \subset W_{0, \kappa_{c}}$.

Proof. We will use the results from Ivan's notes [CDO1, CDO2] that provide an alternative construction of $M_{\mathfrak{g}}$ and $\omega_{\kappa_{c}}$ using chiral differential operators.

Recall that $\mathfrak{z}(\hat{\mathfrak{g}})$ is the $\mathfrak{g}[[t]]$-invariants in $V_{\kappa_{c}}(\mathfrak{g})$. It is enough to prove that

$$
\omega_{\kappa_{c}}\left(V_{\kappa_{c}}(\mathfrak{g})^{b_{+}[[t]]}\right) \subset \pi_{0} .
$$

Note that $V_{\kappa_{c}}(\mathfrak{g})^{b_{+}[[t]]}=V_{\kappa_{c}}(\mathfrak{g})^{J B_{+}}$. The chiral differential operator of realization of $W_{0, \kappa_{c}}$ provides a natural action of $J B_{+}$on $W_{0, \kappa_{c}}$, explained in Section 1.2-1.3 of [CDO2]. With this action the map $\omega_{\kappa_{c}}$ is $J B_{+}$-equivariant, it is an exercise just before section 1.5 of [CDO2].

It follows that

$$
\omega_{\kappa_{c}}(\mathfrak{z}(\hat{\mathfrak{g}})) \subset W_{0, \kappa_{c}}^{J B_{+}} .
$$

Specializing the results of section 1.5 of [CDO2] to $P_{+}=B_{+}, \mathfrak{m}=\mathfrak{h}$, we get

$$
\omega_{\kappa_{c}}(\mathfrak{z}(\hat{\mathfrak{g}})) \subset V_{0}(\mathfrak{h})=\pi_{0} .
$$

2 Screening operators for $\mathfrak{s l}_{2}$

For $\lambda \in \mathbb{C}$ let $M_{\lambda}, M_{\lambda}^{*}$ denote, respectively, the Verma and the dual Verma module over $\mathfrak{s l}_{2}$ with highest weight λ. We have a short exact sequence

$$
0 \rightarrow M_{-2} \rightarrow M_{0} \rightarrow L_{0}=\mathbb{C} \rightarrow 0
$$

where L_{0} is the trivial representation. Applying the duality functor we get a short exact sequence

$$
0 \rightarrow \mathbb{C} \rightarrow M_{0}^{*} \rightarrow M_{-2}^{*} \rightarrow 0
$$

We want an affine analogue of this short exact sequence. We will define a homomorphism of $\mathfrak{s l}_{2}$-modules

$$
S_{k}: W_{0, k} \rightarrow W_{-2, k}
$$

for non-critical level k and prove the following
Proposition 2.1. When $k+2$ is not a nonnegative rational number, we have a short exact sequence

$$
0 \rightarrow V_{k}\left(\mathfrak{s l}_{2}\right) \rightarrow W_{0, k} \xrightarrow{S_{k}} W_{-2, k} \rightarrow 0 .
$$

2.1 Modules over vertex algebras

We will need the notion of a module over a vertex algebra V. This is a vector space M with a map $Y_{M}: V \rightarrow \operatorname{End}_{M}\left[\left[z^{ \pm 1}\right]\right]$ such that

1. $Y_{M}(|0\rangle, z)=\operatorname{Id}_{M}$
2. For any $u, v \in V, m \in M$ the expressions

$$
Y_{M}(u, z) Y_{M}(v, t) m, \quad Y_{M}(v, t) Y_{M}(u, z) m, \quad Y_{M}(Y(u, z-t) v, t) m
$$

are expansions of the same element of $M[[z, t]]\left[z^{-1}, t^{-1},(z-t)^{-1}\right]$, similarly to the associativity condition for vertex algebras, [D]

We have the following example. Let $\mathfrak{h}=\mathbb{C} h$ be one-dimensional commutative Lie algebra, so that $\hat{\mathfrak{h}}_{\kappa}$ is a Heisenberg Lie algebra for nonzero κ and an abelian Lie algebra for $\kappa=0$. Let $V_{\kappa}(\mathfrak{h})$ be the corresponding vertex algebra. Consider $M=M_{\lambda}=\operatorname{Ind}_{\mathfrak{h}[t t]]}^{\hat{\mathfrak{h}}_{\kappa}} \mathbb{C}_{\lambda}$, a Verma module over $\hat{\mathfrak{h}}_{\kappa}$. For $a_{1}, \ldots, a_{k}<0$ we define

$$
Y_{M}\left(h_{a_{1}} h_{a_{2}} \cdots h_{a_{k}}|0\rangle\right)=\frac{1}{\left(-a_{1}-1\right)!\cdots\left(-a_{k}-1\right)!} \partial_{z}^{-a_{1}-1} h(z) \cdots \partial_{z}^{-a_{k}-1} h(z):
$$

similarly to $Y\left(h_{a_{1}} \cdots h_{a_{k}}|0\rangle\right)$. It can be checked that conditions 1 and 2 are satisfied.

We can upgrade this example. Let $W_{0, k}=M_{\mathfrak{s l}_{2}} \otimes V_{k+2}(\mathfrak{h})$. Setting $\lambda=-2$ and tensoring by $M_{\mathfrak{s l}_{2}}$ we get a module $W_{-2, k}=M_{\mathfrak{s l}_{2}} \otimes \pi_{-2}^{k+2}$ over $W_{0, k}$.

Now we describe basic properties of modules over vertex algebras similar to the associativity and its corollaries for vertex algebras.

If M is a module over V and U is a vertex subalgebra of V, then M is a module over U. In particular, if V is a conformal vertex algebra with central charge c, we get an action of Virasoro vertex algebra Vir_{c} on M. If $\omega \in V$ is a conformal vector we define endomorphisms L_{n}^{M} of M via

$$
Y_{M}(\omega, z)=\sum_{n \in \mathbb{Z}} L_{n}^{M} z^{-n-2}
$$

We denote L_{-1}^{M} by T.
Recall the skew-symmetry property for vertex algebras:

$$
Y(A, z) B=e^{z T} Y(B,-z) A
$$

Motivated by this we define a map $Y_{V, M}: M \rightarrow \operatorname{Hom}(V, M)\left[\left[z^{ \pm 1}\right]\right]$ by

$$
\begin{equation*}
Y_{V, M}(B, z) A=e^{z T} Y_{M}(A,-z) B . \tag{1}
\end{equation*}
$$

The following lemma is proved similarly to the associativity property of vertex algebras, [D]:

Lemma 2.2. For any $A, C \in V, B \in M$ there exists an element $f \in$ $M[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ such that the formal power series

$$
\begin{aligned}
Y_{M}(A, z) Y_{V, M}(B, w) C, & Y_{V, M}(B, w) Y(A, z) C, \\
Y_{V, M}\left(Y_{V, M}(B, w-z) A, z\right) C, & Y_{V, M}\left(Y_{M}(A, z-w) B, w\right) C .
\end{aligned}
$$

are expansions of f in

$$
M((z))((w)), \quad M((w))((z)), \quad M((z))((z-w)), \quad M((w))((z-w))
$$

respectively.
Abusing the notation, for $A \in V$ we write

$$
Y(A, z)=\sum A_{(n)} z^{-n-1}, \quad Y_{M}(A, z)=A_{(n)} z^{-n-1}
$$

Similarly, for $B \in M$ we write

$$
Y_{V, M}(B, w)=\sum B_{(n)} w^{-n-1}
$$

Similarly to the formula for the commutators of fields in vertex algebras [D] we have

$$
\left[B_{(m)}, A_{(k)}\right]=\sum_{n \geq 0}\binom{m}{n}\left(B_{(n)} A\right)_{(m+k-n)}
$$

and the same formula with A, B switched:

$$
\begin{equation*}
\left[A_{(m)}, B_{(k)}\right]=\sum_{n \geq 0}\binom{m}{n}\left(A_{(n)} B\right)_{(m+k-n)} \tag{2}
\end{equation*}
$$

It can also be checked that

$$
\begin{equation*}
Y_{V, M}(T B, z)=\partial_{z} Y_{V, M}(B, z) . \tag{3}
\end{equation*}
$$

Remark 2.3. Let M be a vector space, V be a vertex algebra. One can show that to give a structure of a module over V on M is the same as to extend a vertex algebra structure from V to $V \oplus M$ such that

1. M is an ideal (this means for any $v \in V, m \in M$ and integer i we have $v_{(i)} m \in M$ and $m_{(i)} v \in M$.)
2. For any $m, n \in M$ and integer i we have $m_{(i)} n=0$.

This is similar to the situation with modules over a commutative algebra: an A-module structure on a vector space M is the same as an algebra structure on $A \oplus M$ such that A is its subalgebra, $A M \subset M, M^{2}=\{0\}$.

2.2 Definition of S_{k} and intertwining property

Definition 2.4. The screening operator S_{k} is the residue of

$$
Y_{W_{0, k}, W_{-2, k}}\left(a_{-1}|-2\rangle\right) .
$$

We will write an explicit formula for

$$
S_{k}(z)=Y_{W_{0, k}, W_{-2, k}}\left(a_{-1}|-2\rangle\right): W_{0, k} \rightarrow W_{-2, k}
$$

and prove that $S_{k}=\operatorname{Res} S_{k}(z)$ intertwines the action of $\hat{\mathfrak{s}}_{2}$.
Lemma 2.5. We have

$$
\begin{equation*}
S_{k}(z)=a(z) \otimes\left(T_{-2} \exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right)\right) \tag{4}
\end{equation*}
$$

where $T_{-2}: \pi_{0}^{k+2} \rightarrow \pi_{-2}^{k+2}$ sends $|0\rangle$ to $|-2\rangle$ and commutes with the action of $b_{n}, n \neq 0$.

Proof. Since $W_{0, k}=M_{\mathfrak{s l}_{2}} \otimes \pi_{0}^{k+2}$ and $|-2\rangle_{W_{0, k}}=|0\rangle_{M_{\mathfrak{s t}_{2}}} \otimes|-2\rangle_{\pi_{0}^{k+2}}$, we have

$$
\begin{align*}
Y_{W_{0, k}, W_{-2, k}}\left(a_{-1}|-2\rangle\right)=Y_{M_{\mathfrak{s l}_{2}}}\left(a_{-1}|0\rangle, z\right) \otimes & Y_{\pi_{0}^{k+2}, \pi_{-2}^{k+2}}(|-2\rangle, z)= \\
& a(z) \otimes Y_{\pi_{0}^{k+2}, \pi_{-2}^{k+2}}(|-2\rangle, z) . \tag{5}
\end{align*}
$$

Let

$$
V_{-2}(z)=Y_{\pi_{0}^{k+2}, \pi_{-2}^{k+2}}(|-2\rangle, z)
$$

It remains to compute $V_{-2}(z)$ in order to prove the lemma. We will do this in two steps. First, we will express $V_{-2}(z)$ via $V_{-2}(z)|0\rangle$. Then we will compute $V_{-2}(z)|0\rangle$.

Apply (2) to $A=b_{-1}|0\rangle, B=|-2\rangle$ to get

$$
\left[b_{m}, B_{(k)}\right]=\sum_{n \geq 0}\binom{m}{n}\left(b_{n}|-2\rangle\right)_{m+k-n}=-2 B_{(m+k)}
$$

since $b_{n}|-2\rangle$ is zero for $n>0$ and $-2|-2\rangle$ for $n=0$. It follows that

$$
\begin{equation*}
\left[b_{m}, V_{-2}(z)\right]=-2 z^{m} V_{-2}(z) . \tag{6}
\end{equation*}
$$

Since vectors $b_{n_{1}} \cdots b_{n_{l}}|0\rangle$ span π_{0}^{k+2}, the action of $V_{-2}(z)$ is determined by $V_{-2}(z)|0\rangle \in \pi_{-2}^{k+2}[[z]]$. Namely,

$$
\begin{equation*}
V_{-2}(z)=V_{-2}(z)|0\rangle \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right) \tag{7}
\end{equation*}
$$

where $\exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right) \in \operatorname{End}\left(\pi_{0}^{k}\right)\left[\left[z^{-1}\right]\right]$ is a field and $V_{-2}(z)|0\rangle$ is a shorthand for the operator that sends $b_{a_{1}} \cdots b_{a_{k}}|0\rangle \in \pi_{0}^{k+2}$ to

$$
b_{a_{1}} \cdots b_{a_{k}} V_{-2}(z)|0\rangle \in \pi_{-2}^{k+2}[[z]]
$$

for any $a_{1}, \ldots, a_{k}<0$. This operator is uniquely defined by the Taylor series $V_{-2}(z)|0\rangle \in \pi_{-2}^{k+2}[[z]]$ that we will compute below.

Now we use equation (3) for $B=|-2\rangle$ to get

$$
\partial_{z} V_{-2}(z)=Y_{V, M}(T|-2\rangle, z) .
$$

We have the following property of vertex algebras (Corollary 2.3.3 in Frenkel's book or [D]): for any $n, m<0$ and $A, B \in V$

$$
Y\left(A_{(n)} B_{(m)}, z\right)=\frac{1}{(-n-1)!(-m-1)!}: \partial_{z}^{-n-1} Y(A, z) \partial_{z}^{-m-1} Y(B, z):
$$

Using Lemma 2.2 for $A=b_{-1}|0\rangle, B=|-2\rangle$ and expanding

$$
Y_{M}(A, z) Y_{V, M}(B, w) C=Y_{V, M}\left(Y_{M}(A, z-w) B\right) C
$$

in powers of $z-w$ similarly to $[\mathrm{D}]$ we get

$$
Y_{V, M}\left(b_{-1}|-2\rangle, z\right)=: b(z) V_{-2}(z): .
$$

Using Proposition 6.2.2 in Frenkel's book or the third section of [W] we see that the action of $T=L_{-1}=Y\left(\mathbf{S}_{k}, z\right)_{-1}$ on π_{0} is given by

$$
T=\frac{1}{4(k+2)} \sum_{n \in \mathbb{Z}} b_{n} b_{-n-1} .
$$

Hence

$$
\begin{equation*}
-b_{-1}|-2\rangle=(k+2) T|-2\rangle . \tag{8}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
(k+2) \partial_{z} V_{-2}(z)=-: b(z) V_{-2}(z): . \tag{9}
\end{equation*}
$$

Using (1) for $A=|0\rangle$ we see that for any vertex algebra V, module M over V and $B \in M$ we have

$$
\begin{equation*}
Y_{V, M}(B)|0\rangle \in B+z M[[z]] \tag{10}
\end{equation*}
$$

Applying both sides of (9) to $|0\rangle$ we get

$$
(k+2) \partial_{z}\left(V_{-2}(z)|0\rangle\right)=-b_{+}(z) V_{-2}(z)|0\rangle .
$$

This is a differential equation for the power series

$$
V_{-2}(z)|0\rangle=Y_{\pi_{0}^{k+2}, \pi_{-2}^{k+2}}(|-2\rangle, z)|0\rangle
$$

with constant term $|-2\rangle$, the solution is

$$
V_{-2}(z)|0\rangle=\exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right)|-2\rangle .
$$

Comparing this with (7) we get

$$
\begin{equation*}
V_{-2}(z)=T_{-2} \exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right) . \tag{11}
\end{equation*}
$$

Using (5) and (7) we get

$$
S_{k}(z)=a(z) \otimes\left(T_{-2} \exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right)\right),
$$

as claimed.

Proposition 2.6. The map S_{k} is a homomorphism of $\hat{\mathfrak{L}}_{2}$-modules.
Proof. The plan of the proof is as follows:

1. We will compute the action of $e_{n}, f_{n}, h_{n}, n \geq 0$ on $a_{-1}|-2\rangle$.
2. Using (2) for $A=x_{-1}|0\rangle, B=a_{-1}|-2\rangle$, where $x=e, f, h$, we will show that

$$
\left[A_{(n)}, B_{(0)}\right]=0
$$

Since $A_{(n)}=x_{n}, B_{(0)}=S_{k}$, this will prove the proposition.
We move to the first step of the plan. Recall that e_{n} is sent to a_{n}. Using $\mathfrak{s} \hat{\mathfrak{l}}_{2}$ relations we get

$$
\left[e_{n}, a_{-1}\right]=0, \quad\left[h_{n}, a_{-1}\right]=2 a_{n-1}, \quad\left[f_{n}, a_{-1}\right]=-h_{n-1}+k \delta_{n, 1} .
$$

Recall the formulas for other generators (6.2.3 in Frenkel's book, follows from formulas in section 2 of [W]):

$$
\begin{align*}
& h(z) \mapsto-2: a^{*}(z) a(z):+b(z), \tag{12}\\
& f(z) \mapsto: a^{*}(z)^{2} a(z):+k \partial_{z} a^{*}(z)+a^{*}(z) b(z) . \tag{13}
\end{align*}
$$

Using these formulas and the grading on the Wakimoto module by degree of t we get

$$
\begin{gathered}
e_{n}|-2\rangle=a_{n}|-2\rangle=0, \quad n \geq 0 ; \quad h_{n}|-2\rangle=f_{n}|-2\rangle=0, \quad n>0, \\
h_{0}|-2\rangle=-2|-2\rangle .
\end{gathered}
$$

It follows that

$$
e_{n} a_{-1}|-2\rangle=h_{n} a_{-1}|-2\rangle=0, \quad n \geq 0
$$

We also have
$f_{n} a_{-1}|-2\rangle=0, \quad n \geq 1 ; \quad f_{1} a_{-1}|-2\rangle=\left(-h_{0}+k\right)|-2\rangle=(k+2)|-2\rangle$.
To compute the action of f_{0} we have to look more carefully at (13). First we use the $\mathfrak{s} \hat{\mathfrak{l}}_{2}$ relation to get

$$
f_{0} a_{-1}|-2\rangle=a_{-1} f_{0}|-2\rangle-h_{-1}|-2\rangle .
$$

Using (12), (13) and the fact that $a_{m}|-2\rangle=a_{m+1}^{*}|-2\rangle=b_{m+1}|-2\rangle=0$ for $m \geq 0$ we get

$$
\begin{aligned}
& f_{0}|-2\rangle=a_{0}^{*} b_{0}|-2\rangle=-2 a_{0}^{*}|-2\rangle, \\
& h_{-1}|-2\rangle=\left(-2 a_{-1} a_{0}^{*}+b_{-1}\right)|-2\rangle .
\end{aligned}
$$

It follows that

$$
f_{0} a_{-1}|-2\rangle=-b_{-1}|-2\rangle .
$$

Using (8) we get

$$
\begin{equation*}
f_{0} a_{-1}|-2\rangle=(k+2) T|-2\rangle . \tag{15}
\end{equation*}
$$

Now we will check that S_{k} is $\hat{\mathfrak{s}}_{2}$-linear. Set $B=a_{-1}|-2\rangle$ for the computations below. By definition, $S_{k}=B_{(0)}$.

Using equation (2) for $A=a_{-1}|0\rangle$ we have

$$
\left[A_{(m)}, B_{(k)}\right]=\sum_{n \geq 0}\binom{m}{n}\left(A_{(n)} B\right)_{(m+k-n)}=\sum_{n \geq 0}\binom{m}{n}\left(a_{n} a_{-1}|-2\rangle\right)_{(m+k-n)}=0 .
$$

Using (2) for $A=h_{-1}|0\rangle$ we have

$$
\left[A_{(m)}, B_{(k)}\right]=\sum_{n \geq 0}\binom{m}{n}\left(A_{(n)} B\right)_{(m+k-n)}=\sum_{n \geq 0}\binom{m}{n}\left(h_{n} a_{-1}|-2\rangle\right)_{(m+k-n)}=0 .
$$

Using (2) for $A=f_{-1}|0\rangle, B=a_{-1}|-2\rangle$ we have

$$
\begin{aligned}
{\left[A_{(m)}, B_{(l)}\right]=} & \sum_{n \geq 0}\binom{m}{n}\left(A_{(n)} B\right)_{(m+l-n)}=\sum_{n \geq 0}\binom{m}{n}\left(f_{n} a_{-1}|-2\rangle\right)_{(m+l-n)} \\
& =m\left(f_{1} \cdot a_{-1}|-2\rangle\right)_{(m+l-1)}+\left(f_{0} \cdot a_{-1}|-2\rangle\right)_{(m+l)}=(14),(15) \\
& =(k+2) m|-2\rangle_{(m+l-1)}+(k+2)(T|-2\rangle)_{(m+l)}
\end{aligned}
$$

Now we write

$$
\begin{aligned}
(T|-2\rangle)_{(m+l)} & =\left[z^{-1-m-l}\right] Y(T|-2\rangle, z) \\
& =\left[z^{-1-m-l}\right] Y(|-2\rangle, z)^{\prime}=(-m-l)(|-2\rangle)_{(m+l-1)} .
\end{aligned}
$$

It follows that

$$
\left[A_{(m)}, B_{(l)}\right]=-(k+2) l(|-2\rangle)_{(m+l-1)} .
$$

In particular, for $l=0$ we get zero.
We checked that $B_{(0)}$ commutes with the action of e_{m}, f_{m}, h_{m} for all m. Hence $B_{(0)}=\operatorname{Res} S_{k}(z)$ is an intertwining operator.

Now we prove that we indeed have a short exact sequence of $\hat{\mathfrak{s}}_{2}$-modules.
Proposition 2.7. For $k \notin-2+\mathbb{Q}_{\geq 0}$, the sequence

$$
0 \rightarrow V_{k}\left(\mathfrak{s l}_{2}\right) \rightarrow W_{0, k} \rightarrow W_{-2, k} \rightarrow 0
$$

is exact.
Proof. Writing $V_{-2}(z)=\sum V_{-2,-n} z^{n}$ we get

$$
\begin{equation*}
S_{k}=\operatorname{Res} S_{k}(z)=\sum_{n} a_{n} V_{-2,-n} \tag{16}
\end{equation*}
$$

Recall (11):

$$
V_{-2}(z)=T_{-2} \exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right)
$$

It follows that $V_{-2,-n}|0\rangle=0$ when $n<0$. We also have $a_{n}|0\rangle=0$ for $n \geq 0$. Hence $S_{k}|0\rangle=0$. Since S_{k} commutes with the action of $\hat{\mathfrak{s}}_{2}$ and the image $\omega_{\kappa}\left(V_{k}\left(\mathfrak{s l}_{2}\right)\right)$ is the $\mathfrak{s} \hat{\mathfrak{l}}_{2}$-submodule generated by $|0\rangle$, the image of $V_{k}\left(\mathfrak{s l}_{2}\right)$ lies in the kernel of S_{k}.

We know that $W_{0, k}^{+}$is isomorphic to the Verma module $\mathbf{M}_{0, k}$, this is Theorem 2.3 in $[\mathrm{S}]$ and Proposition 6.3.3 in Frenkel's book. Similarly to section 2.1 of $[\mathrm{S}]$ we can compute the formal character of $W_{\lambda, k}$ as follows. Let α be the positive root for $\mathfrak{s l}_{2}, \delta$ be the grading operator by the degree of t. Let $q=e^{-\delta}, u=e^{\alpha}$. Then the operators $a_{n}, a_{n+1}^{*}, b_{n}, n<0$ have weight $u q^{-n}, u q^{-1-n}, q^{-n}$ respectively. It follows that

$$
\operatorname{ch} W_{\lambda, k}=u^{\frac{\lambda}{2}} \prod_{n>0}\left(1-q^{n}\right)^{-1}\left(1-u q^{n}\right)^{-1}\left(1-u^{-1} q^{n-1}\right)^{-1} .
$$

Therefore $\operatorname{ch} W_{\lambda, k}=\operatorname{ch} \mathbf{M}_{\lambda, k}$, where $\mathbf{M}_{\lambda, k}$ is Verma module of level k with h_{0}-weight λ.

Using Proposition 3.1 in [KK], it can be shown that, for $k \notin-2+\mathbb{Q} \geq 0$, the Verma module $\mathbf{M}_{-2, k}$ is irreducible. Since $\operatorname{ch} W_{-2, k}=\operatorname{ch} \mathbf{M}_{-2, k}$, the $\hat{\mathfrak{s}}_{2}$-module $W_{-2, k}$ is also irreducible. Using (16) and the fact that $V_{-2,-n}$ commutes with a, a^{*} we have

$$
S_{k}\left(a_{0}^{*}|0\rangle\right)=\sum a_{n} a_{0}^{*} V_{-2,-n}|0\rangle=\sum_{n \geq 0} a_{n} a_{0}^{*}|-2\rangle=a_{0} a_{0}^{*}|-2\rangle=|-2\rangle,
$$

so S_{k} is nonzero, hence surjective.
It follows that the character of $\operatorname{ker} S_{k}$ equals to $\operatorname{ch} \mathbf{M}_{0, k}-\operatorname{ch} \mathbf{M}_{-2, k}$.

Exercise. ch $\mathbf{M}_{0, k}-\operatorname{ch} \mathbf{M}_{-2, k}=\operatorname{ch} V_{k}\left(\mathfrak{s l}_{2}\right)$, hence $V_{k}\left(\mathfrak{S l}_{2}\right)$ coincides with the kernel of S_{k}.

3 Friedan-Martinec-Shenker bosonization

3.1 The vertex algebra Π_{0}

A note on terminology. One may think that bosonization means bosonfermion correspondence. This is not the case: FMS bosonization is bosonboson correspondence.

We want to construct objects similar to $M_{\mathfrak{s l}_{2}}$ and $W_{k, \lambda}$ that depend on two parameters. This will be convenient for taking the limit $k \rightarrow-2$.

Consider the Heisenberg Lie algebra with generators $p_{n}, q_{m}, \mathbf{1}$ such that 1 is central and relations

$$
\left[p_{n}, p_{m}\right]=n \delta_{n,-m} \mathbf{1}, \quad\left[q_{n}, q_{m}\right]=-n \delta_{n,-m} \mathbf{1}, \quad\left[p_{n}, q_{m}\right]=0
$$

We set

$$
p(z)=\sum p_{n} z^{-n-1}, \quad q(z)=\sum q_{n} z^{-n-1} .
$$

We define Fock representation $\Pi_{\lambda, \mu}$ of this algebra as usual: it is generated by $|\lambda, \mu\rangle$ such that

$$
p_{n}|\lambda, \mu\rangle=\lambda \delta_{n, 0}|\lambda, \mu\rangle, \quad q_{n}|\lambda, \mu\rangle=\mu \delta_{n, 0}|\lambda, \mu\rangle, \quad n \geq 0, \quad \mathbf{1}|\lambda, \mu\rangle=|\lambda, \mu\rangle .
$$

Recall (11):

$$
V_{-2}(z)=T_{-2} \exp \left(\frac{1}{k+2} \sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(\frac{1}{k+2} \sum_{n>0} \frac{b_{n}}{n} z^{-n}\right): \pi_{0}^{k+2} \rightarrow \pi_{-2}^{k+2}
$$

Similarly to V_{-2} we define $V_{\lambda, \mu}: \Pi_{\lambda^{\prime}, \mu^{\prime}} \rightarrow \Pi_{\lambda+\lambda^{\prime}, \mu+\mu^{\prime}}$ given by

$$
V_{\lambda, \mu}(z)=T_{\lambda, \mu} z^{\lambda \lambda^{\prime}-\mu \mu^{\prime}} \exp \left(-\sum_{n<0} \frac{\lambda p_{n}+\mu q_{n}}{n} z^{-n}\right) \exp \left(-\sum_{n>0} \frac{\lambda p_{n}+\mu q_{n}}{n} z^{-n}\right),
$$

where $T_{\lambda, \mu}$ is defined similarly to T_{-2} : it sends highest weight vector to the highest weight vector and commutes with all p_{n}, q_{n} for nonzero n.

We claim that

$$
\Pi_{0}=\oplus_{n \in \mathbb{Z}} \Pi_{n, n}
$$

has a vertex algebra structure such that $\Pi_{0,0}$ is its vertex subalgebra. First, we define $T: \Pi_{0} \rightarrow \Pi_{0}$ using the fact that each $\Pi_{n, n}$ is a module over $\Pi_{0,0}$. Then we define

$$
\begin{aligned}
Y\left(p_{-1}|0\rangle, z\right)=p(z), & Y\left(q_{-1}|0\rangle, z\right)=q(z) \\
Y(|1,1\rangle, z)=V_{1,1}(z), & Y(|-1,-1\rangle, z)=V_{-1,-1}(z)
\end{aligned}
$$

Using a formula similar to (6) we can check that $V_{\lambda, \mu}$ is mutually local with $p(z)$ and $q(z)$. Hence the third condition of the strong reconstruction theorem is satisfied. We also see that the four fields above generate Π_{0}. Equation (3) is exactly the second condition of the reconstruction theorem. The first condition can also be checked. Hence all four conditions of the strong reconstruction theorem are satisfied and Π_{0} gets a structure of a vertex algebra.

Similarly, we can check that for any $\gamma \in \mathbb{C}$

$$
\Pi_{\gamma}=\oplus_{n \in \mathbb{Z}} \Pi_{n+\gamma, n+\gamma}
$$

is a module over Π_{0}.
Let $u(z)$ be the "integral" of $p(z)$, similarly with v and q :

$$
u(z)=-\sum_{n \neq 0} \frac{p_{n}}{n} z^{-n}+p_{0} \log z, \quad v(z)=-\sum_{n \neq 0} \frac{q_{n}}{n} z^{-n}+q_{0} \log z .
$$

Abusing notation we will write $V_{\lambda, \mu}=e^{\lambda u+\mu v}$.
FMS bosonization is the following realization of the vertex algebra $M_{\mathfrak{s l}_{2}}$.
Theorem 3.1. There is a unique embedding of vertex algebras $M \hookrightarrow \Pi_{0}$ such that the fields $a(z), a^{*}(z)$ are mapped to

$$
\tilde{a}(z)=e^{u+v}, \quad \tilde{a}^{*}(z)=\left(\partial_{z} e^{-u}\right) e^{-v}=-: p(z) e^{-u-v}: .
$$

Furthermore, the image of M in Π_{0} is the kernel of Res e^{u}.
Proof. We have $\left[a(z), a^{*}(t)\right]=\delta(z-t)$. Since

$$
\left[p(z), e^{u(t)+v(t)}\right]=\delta(z-t) e^{u+v}
$$

it can be checked that

$$
\left[\tilde{a}(z), \tilde{a}^{*}(t)\right]=\delta(z-t)
$$

This map is an embedding because M is a simple vertex algebra. In this talk we will not need the description of the image of M.

The Virasoro field for M is $T(z)=: \partial_{z} a^{*}(z) a(z)$:, this can be checked using formulas from Section 3 in [W]. This field maps to

$$
\frac{1}{2}\left(: p(z)^{2}:-\partial_{z} p(z)-: q(z)^{2}:+\partial_{z} q(z)\right) .
$$

The main advantage of FMS bosonization for us is that we can define $a(z)^{\gamma}$ for any complex number γ as

$$
\tilde{a}(z)^{\gamma}=e^{\gamma(u+v)}: \Pi_{0} \rightarrow \Pi_{\gamma} .
$$

3.2 Screening operators of the second kind

Let $k \neq-2$. Consider $\Pi_{0} \otimes \pi_{0}^{k+2}$. This is a vertex algebra that contains $M \otimes \pi_{0}^{k+2}=W_{0, k}$ and hence $V_{k}\left(\mathfrak{s l}_{2}\right)$ as a vertex subalgebra. For $\lambda, \gamma \in \mathbb{C}$ the tensor product $\Pi_{\gamma} \otimes \pi_{\lambda}^{k+2}$ is a module over $V_{k}\left(\mathfrak{s l}_{2}\right)$, hence over $\hat{\mathfrak{I}}_{2}$. We denote this module by $\widetilde{W}_{\gamma, \lambda, k}$. We also introduce the operator

$$
V_{2 k+2}(z)=T_{2(k+2)} \exp \left(-\sum_{n<0} \frac{b_{n}}{n} z^{-n}\right) \exp \left(-\sum_{n>0} \frac{b_{n}}{n} z^{-n}\right): \pi_{0}^{k+2} \rightarrow \pi_{2 k+2}^{k+2}
$$

Set

$$
\tilde{S}_{k}(z)=\tilde{a}(z)^{-(k+2)} \otimes V_{2 k+2}(z) .
$$

Reasoning similarly to the proof of Proposition 2.6 we have the following proposition.

Proposition 3.2. The residue $\tilde{S}_{k}=\operatorname{Res} \tilde{S}_{k}(z): W_{0,0, k} \rightarrow W_{-(k+2), 2(k+2), k}$ intertwines the $\mathfrak{\mathfrak { s }} \hat{2}_{2}$-actions.

The map \tilde{S}_{k} or its restriction to $W_{0, k} \subset \tilde{W}_{0,0, k}$ is called the screening operator of the second kind for $\mathfrak{\mathfrak { s }} \hat{\mathfrak{l}}_{2}$.

The main result of this subsection is the following:
Proposition 3.3. For generic k the $\hat{\mathfrak{l}}_{2}$-submodule $V_{k}\left(\mathfrak{s l}_{2}\right) \subset W_{0, k}$ is equal to the kernel of

$$
\tilde{S}_{k}: W_{0, k} \rightarrow \tilde{W}_{-(k+2), 2(k+2), k}
$$

Proof. We sketch the proof, see Proposition 7.2.5 in Frenkel's book for details. It is enough to prove that $\operatorname{Ker} \tilde{S}_{k}=\operatorname{Ker} S_{k}$. We can extend

$$
S_{k}: W_{0, k} \rightarrow W_{-2, k}
$$

to

$$
S_{k}^{\prime}: \tilde{W}_{0,0, k} \rightarrow \tilde{W}_{1,-2, k}
$$

by changing $a(z)$ to $\tilde{a}(z)$. We will prove a stronger statement: $\operatorname{Ker} \tilde{S}=$ $\operatorname{Ker} S_{k}^{\prime}$. Let $\phi(z)=-\sum_{n \neq 0} \frac{b_{n}}{n} z^{-n}$. Then similarly to the notation for $V_{\lambda, \mu}$ we will write

$$
V_{-2}(z)=e^{-(k+2)^{-1} \phi}, \quad V_{2(k+2)}(z)=e^{\phi} .
$$

With this notation we have

$$
\begin{equation*}
S_{k}^{\prime}(z)=e^{u+v-(k+2)^{-1} \phi}, \quad \tilde{S}_{k}(z)=e^{-(k+2) u-(k+2) v+\phi} . \tag{17}
\end{equation*}
$$

Now the fact that $\operatorname{Ker} \operatorname{Res} S_{k}^{\prime}(z)=\operatorname{Ker} \operatorname{Res} \tilde{S}_{k}(z)$ follows from equation (15.4.10) in [FBZ], as explained in Proposition 7.2 .5 of Frenkel's book.

References

[D] Ilya Dumanski, Vertex Algebras II, https://gauss.math.yale.edu/ il282/Ilya2.pdf
[FBZ] E. V. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, vol. 88, Second ed., Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004. MR 2005d:17035
[KK] V.G Kac, D.A Kazhdan, Structure of representations with highest weight of infinite-dimensional Lie algebras, Advances in Mathematics, Volume 34, Issue 1, 1979.
[KL] Ivan Karpov, Ivan Losev, Invariants of jets and the center for $\mathfrak{s l}_{2}$, https://gauss.math.yale.edu/ il282/Vanya.pdf
[K] Daishi Kiyohara, Free Field Realization, https://gauss.math.yale.edu/ il282/Daishi.pdf
[CDO1] Ivan Losev, Chiral differential operators 1, https://gauss.math.yale.edu/ il282/CDO1.pdf
[CDO2] Ivan Losev, Chiral differential operators 2, https://gauss.math.yale.edu/ il282/CDO2.pdf
[S] Kenta Suzuki, Parabolic Wakimoto modules and applications, https://gauss.math.yale.edu/ il282/Kenta.pdf
[W] Zeyu Wang, Wakimoto modules, https://gauss.math.yale.edu/il282/Zeyu.pdf

