D-MODULES, HOMEWORK 4

Problem 1. Let Fl_n denote the variety of complete flags in \mathbb{C}^n and let K be one of the symmetric subgroups of GL_n : $\mathrm{GL}_k \times \mathrm{GL}_{n-k}$, SO_n or Sp_n (the latter for even n).

- a) Use Linear algebra to show that K acts on Fl_n with finitely many orbits.
- b) In each of the cases, identify the open K orbits and compute the stabilizer.
- c) What about the closed K-orbits?
- d) Complete the classification of irreducible K-equivariant D-modules on Fl₃.

Problem 2. Let n be a positive integer and a be a residue mod n coprime to n. Further, let \mathcal{N} denote the nilpotent cone for \mathfrak{sl}_n . Show that

- (1) there is a unique irreducible SL_n -equivariant D-module \mathcal{M} on \mathcal{N} such that $\operatorname{diag}(z,\ldots,z)$, a typical element in the center of SL_n , acts on \mathcal{M} , by z^a ,
- (2) this *D*-module is associated to the principal nilpotent orbit,
- (3) It coincides with both *- and !-pushforward of an irreducible \mathcal{O} -coherent D-module from the principal orbit.
- (4) The category of equivariant D-modules supported on \mathcal{N} with the specified action of the center is semisimple.

Problem 3. Consider the action of the maximal unipotent subgroup N on G/B.

- a) Let χ be a non-degenerate character of \mathfrak{n} . Show that there is a unique irreducible (N,χ) -equivariant D-module on G/B, that it is associated to the open N-orbit and that the category $\operatorname{Coh}^{N,\chi}(D_{G/B})$ is semisimple.
- b) Classify the irreducible (N, χ) -equivariant D-modules in the case when χ is an arbitrary character.

Problem 4. Let X be a smooth variety and \mathcal{L} is a line bundle on X. Show that the categories $Coh(D_X)$ and $Coh(D_X^{\mathcal{L}})$ are equivalent and on the level of quasicoherent \mathcal{O}_X -modules the equivalence is given by tensoring with \mathcal{L} .

Problem 5. Explain how to view D_X^{opp} as a sheaf of TDO on X and identify it with $D_X^{K_X}$.

Problem 6. Let $\mathcal{L}_1, \ldots, \mathcal{L}_n$ be line bundles on a smooth variety X_0 . Let X denote the corresponding principal $T = (\mathbb{C}^{\times})^n$ -bundle and $\chi = \sum_{i=1}^n z_i \mathbf{1}_i \in \mathfrak{t}^*$. Prove that the cohomology class corresponding to $\pi_{\bullet}(R_X^{\chi})^T$ is $\sum_{i=1}^n z_i c_1(\mathcal{L}_i)$.