JANTZEN CH 7 - R MATRICES

CONTENTS

0. Introduction	1
1. Definition of the quasi <i>R</i> matrix	1
1.1. Motivation for quasi <i>R</i> matrix	1
1.2. The \mathfrak{sl}_2 case	2
1.3. The g case	6
2. Hexagon Equations and the Braid Group	9
2.1. Motivating Coherence for the <i>R</i> matrix	9
2.2. Proving the Hexagon Identity	12
2.3. Hecke Algebras and Quantum Schur Weyl Duality	14
3. The quantized coordinate ring $k_q[G]$	15
3.1. Motivation: The classical coordinate ring $\mathbb{C}[G]$	15
3.2. Definition of $k_q[G]$	16
3.3. Relations in $\mathbb{k}_q[G]$ from the <i>R</i> matrix	17
3.4. Example of $k_q[SL_2]$	17
References	18

0. INTRODUCTION

Let k be a field with characteristic not equal to two, and let $q \in k$ such that $q^n \neq 1$ for all n. Let V and W be two finite dimensional (type 1) $U_q(\mathfrak{g})$ modules. Weight considerations tell us that $V \otimes W$ and $W \otimes V$ are isomorphic. However, the obvious vector space isomorphism $P : V \otimes W \xrightarrow{v \otimes w \mapsto w \otimes v} W \otimes V$ does not commute with the action of U. We aim to define isomorphisms $R_{V,W} : V \otimes W \longrightarrow W \otimes V$ which do commute with the action of U. Then we will show that the $R_{V,W}$ satisfy nice properties: functorality in V and W, the hexagon identity, and solution to quantum Yang-Baxter.

1. Definition of the quasi R matrix

1.1. Motivation for quasi R matrix. Let us suppose that there is a functorial isomorphism $R_{M,M'}: M \otimes M' \longrightarrow M' \otimes M$ for all representations of U (so not just finite dimensional ones). Then we may consider $R = R_{UU,UU}(1 \otimes 1)$. If M is a U-module and $m \in M$ then we get a homomorphism of U-modules

$$\rho_m: {}_UU \to M, \ u \mapsto um.$$

Let *M* and *M'* be two *U* modules and let $m \in M$ and $m' \in M'$. Then to compute $R_{M,M'}(m \otimes m')$ we see by functorality of $R_{(-),(-)}$ that

$$R_{M,M'}(m \otimes m') = R_{M,M'} \circ \rho_m \otimes \rho_{m'}(1 \otimes 1) = \rho_{m'} \otimes \rho_m \circ R_{UU,UU}(1 \otimes 1) = \rho_{m'} \otimes \rho_m(R) = R \cdot m' \otimes m$$

so $R_{M,M'}(m \otimes m') = RP(m \otimes m').$

That $R_{(-),(-)}$ is a functorial *isomorphism* implies that R is invertible in $U \otimes U$ while $R_{(-),(-)}$ being a morphism of U modules means

$$\Delta(u)RP(m \otimes m') = u \cdot R_{M,M'}(m \otimes m') = R_{M,M'}(u \cdot m \otimes m') = RP(\Delta(u)m \otimes m').$$

If $\Delta(u) = \sum u_i \otimes u'_i$, then

$$\Delta(u)R(m'\otimes m) = \Delta(u)RP(m\otimes m') = RP(\Delta(u)m\otimes m') = R\sum u'_i m'\otimes u_i m = R\Delta^{op}(u)(m'\otimes m) + Lemen$$

Hence,

$$\Delta(u) \cdot R = R \cdot \Delta^{op}(u),$$

where $\Delta^{op}(u) = P(\Delta(u))$. Note that $\Delta^{op} \neq \Delta$, or as we learned in previous lectures U is not co-commutative.

The element R was constructed by Drinfeld, but lies in a completion of U. It is an expression of the form

$$R = q^{-\sum h_{\alpha} \otimes h'_{\alpha}} (1 + \dots),$$

Here the h_{α} and the h'_{α} are dual bases for $\mathfrak{h} \subset \mathfrak{g}$ and $q^{h_{\alpha}} = K_{\alpha}$. The ... term is a sum of tensors of dual basis elements $x \otimes y \in U^{-} \otimes U^{+}$.

We follow Jantzen, so only use this element as motivation for a construction of $\theta_{V,W}^{f}$ for *V* and *W* finite dimensional, type **1** representations of *U*.

1.2. The \mathfrak{sl}_2 case. Recall that $U = U_q(\mathfrak{sl}_2)$ is defined by generators and relations, with generators $E, F, K^{\pm 1}$. Furthermore, U is a Hopf algebra with coproduct Δ defined as the algebra homomorphism $U \longrightarrow U \otimes U$ defined on generators by

(1.1)
$$\Delta(E) = E \otimes 1 + K \otimes E,$$

(1.2)
$$\Delta(F) = F \otimes K^{-1} + 1 \otimes F,$$

and

$$\Delta(K) = K \otimes K.$$

In particular, when *V* and *W* are two representations of *U* we can produce a new representation $V \otimes W$, where $u \cdot (v \otimes w) = \Delta(u) \cdot (v \otimes w)$. In fact we can produce two new representations $V \otimes W$ and $W \otimes V$.

There is always a vector space isomorphism $P: V \otimes W \longrightarrow W \otimes V$ which sends a simple tensor $v \otimes w$ to $w \otimes v$. When q = 1, this map is an isomorphism of \mathfrak{sl}_2 modules, but this will not be so for generic q (this is motivation only, you don't actually recover classical \mathfrak{sl}_2 when q = 1). Instead, we hope to find isomorphisms $\theta_{V,W}^f: V \otimes W \longrightarrow V \otimes W$ so that $R_{V,W} := \theta_{V,W}^f \circ P$ is a U-module isomorphism $V \otimes W \xrightarrow{\sim} W \otimes V$. That is we want to "deform" the flip map P by some map θ^f so that the "deformed" flip map $\theta^f \circ P$ does commute with the action of U.

It turns out the answer starts with

(1.4)
$$\theta_n = (-1)^n q^{-\binom{n}{2}} \frac{(q-q^{-1})^n}{[n]!} F^n \otimes E^n.$$

and

(1.5)
$$\theta_{V,W} = \sum_{n \ge 0} \theta_n |_{V \otimes W}.$$

Both *E* and *F* act nilpotently in each finite dimensional representation of *U*, so we can choose a basis so that $E \otimes F$ is strictly upper triangular (b/c nilpotent). In this basis each

 θ_n , $n \ge 1$, is strictly upper triangular. Since $\theta_0 = 1$ we deduce $\theta_{V,W}$ is an invertible (in fact unipotent) linear transformation.

Recall that there is an anti-automorphism of $U, \tau : U \to U$, defined on generators by

 $E \mapsto E, F \mapsto F$, and $K \mapsto K^{-1}$.

Given an anti-automorphism, one can twist Δ to obtain another comultiplication

(1.6)
$${}^{\tau}\Delta = \tau \otimes \tau \circ \Delta \circ \tau^{-1}.$$

Thus, $\tau \Delta$ is defined on generators by

(1.7)
$$^{\tau}\Delta(E) = E \otimes 1 + K^{-1} \otimes E$$

(1.8)
$${}^{\tau}\Delta(F) = F \otimes K + 1 \otimes F$$

(1.9)
$$^{\tau}\Delta(K) = K \otimes K.$$

Lemma 1.1. For all $u \in U$

(1.10)
$$\Delta(u) \circ \theta_{V,W} = \theta_{V,W} \circ {}^{\tau} \Delta(u)$$

Proof. This follows from checking that for all $n \ge 0$

(1.11)
$$(E \otimes 1)\theta_n + (K \otimes E)\theta_{n-1} = \theta_n(E \otimes 1) + \theta_{n-1}(K^{-1} \otimes E)$$

(1.12)
$$(1 \otimes F)\theta_n + (F \otimes K^{-1})\theta_{n-1} = \theta_n(1 \otimes F) + \theta_{n-1}(F \otimes K)$$

(1.13)
$$(K \otimes K)\theta_n = \theta_n(K \otimes K).$$

The computation is left as an exercise.

Remark 1.2. Recall that

(1.14)
$$\Delta^{op}(E) = 1 \otimes E + E \otimes K$$

(1.15)
$$\Delta^{op}(F) = K^{-1} \otimes F + F \otimes 1$$

 $(1.16) \qquad \qquad \Delta^{op}(K) = K \otimes K$

so $\tau \Delta \neq \Delta^{op}$.

We want to tweak $\theta_{V,W}$ so that we can replace ${}^{\tau}\Delta$ with Δ^{op} in (1.10). Finite dimensional type 1 *U* modules are direct sums of their weight spaces (because of our hypothesis on \Bbbk) with weights contained in the set $\Lambda = \{q^a\}_{a \in \mathbb{Z}}$. Let $f : \Lambda \times \Lambda \to \Bbbk^{\times}$. We then define for any *V* and *W* a linear isomorphism $\tilde{f} : V \otimes W \to V \otimes W$ such that

(1.17)
$$\widetilde{f}(v \otimes w) = f(\lambda, \mu)v \otimes w$$

whenever $v \in V_{\lambda}$ and $w \in W_{\mu}$.

Define $\theta_{V,W}^f = \theta_{V,W} \circ \tilde{f}$. Sadly, not any *f* will result in a $\theta_{V,W}^f$ so that

(1.18)
$$\Delta(u) \circ \theta^f_{V,W} = \theta^f_{V,W} \circ (\Delta^{op})(u)$$

for all $u \in U$. To see what f will work, we first observe that thanks to the equation

(1.19)
$$\Delta(u) \circ \theta_{V,W} = \theta_{V,W} \circ {}^{\tau} \Delta(u)$$

the desired equality holds whenever

(1.20)
$${}^{\tau}\Delta(u) \circ \tilde{f} = \tilde{f} \circ (\Delta^{op})(u).$$

To show (1.20) holds for all $u \in U$, it suffices to just check the equality on the generators E, F, and K. The calculation (an exercise, if you get stuck see Jantzen's proof of lemma 3.13 [2]) shows we must have f satisfy

(1.21)
$$f(\lambda, \mu + \alpha_1) = \lambda^{-1} f(\lambda, \mu)$$

and

(1.22)
$$f(\lambda + \alpha_1, \mu) = \mu^{-1} f(\lambda, \mu).$$

Theorem 1.3. Let f satisfy (1.21) and (1.22). Then

(1.23)
$$R_{V,W} = \theta^f_{V,W} \circ P : V \otimes W \longrightarrow W \otimes V$$

is a functorial U-module isomorphism.

Remark 1.4. We saw already that functorality will follow from $R_{V,W}$ being the action of some elements in $U \otimes U$. In order to spell out functorality explicitly, let $\varphi : V \longrightarrow V'$ and $\psi : W \longrightarrow W'$, then

(1.24)
$$(\varphi \otimes \psi) \circ R_{V,W} = R_{V',W'} \circ (\varphi \otimes \psi).$$

Example 1.5. The *U*-module $L(\varpi_1)$ has a basis $\{v, Fv\}$ with action of the generators of *U* given by

(1.25)

The module $L(\varpi_1) \otimes L(\varpi_1)$ has a basis $\{v \otimes v, v \otimes Fv, Fv \otimes v, Fv \otimes Fv\}$. Note that the elements θ_n act on $L(\varpi_1) \otimes L(\varpi_1)$ as zero for $n \ge 2$, so

(1.26)
$$\theta_{L(\varpi_1),L(\varpi_1)} = 1 - (q - q^{-1})F \otimes E|_{L(\varpi_1) \otimes L(\varpi_1)}$$

which in our basis is

(1.27)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + (q^{-1} - q) \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Let $f(\varpi_1, \varpi_1) = q^{-1}$. One can check that this forces $f(-\varpi_1, -\varpi_1) = q^{-1}$ and $f(\varpi_1, -\varpi_1) = 1 = f(-\varpi_1, \varpi)_1$. Computing the matrix of $R_{L(\varpi_1), L(\varpi_1)} = \theta_{L(\varpi_1), L(\varpi_1)} \circ \tilde{f} \circ P$ we find

(1.28)
$$R_{L(\varpi_1),L(\varpi_1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & q^{-1} - q & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} q^{-1} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

so

(1.29)
$$R_{L(\varpi_1),L(\varpi_1)} = \begin{pmatrix} q^{-1} & 0 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 1 & q^{-1} - q & 0\\ 0 & 0 & 0 & q^{-1} \end{pmatrix}$$

Remark 1.6. In order for R to be a U-module isomorphism we only needed f to satisfy the conditions (1.21) and (1.22). However, we will want R to satisfy further coherence condition (hexagon equations) which will end up requiring that f satisfy

(1.30)
$$f(\lambda,\mu\nu) = f(\lambda,\mu)f(\lambda,\nu)$$
 and $f(\lambda\mu,\nu) = f(\lambda,\nu)f(\lambda,\nu).$

If k contains a square root of q, say $v = q^{1/2} \in k$ then there is a choice for f which will satisfy all these conditions (for finite dimensional type **1** modules). We set $f(a\varpi, b\varpi) = v^{-ab}$.

(1.31)
$$R_{L(\varpi_1),L(\varpi_1)} = \begin{pmatrix} v^{-1} & 0 & 0 & 0\\ 0 & 0 & v & 0\\ 0 & v & v^{-1} - v^3 & 0\\ 0 & 0 & 0 & v^{-1} \end{pmatrix}$$

The representation $L(\varpi_1)$ carries a non-degenerate form which determines two *U*-module maps

(1.32)
$$\operatorname{cap}: L(\varpi_1) \otimes L(\varpi_1) \to \Bbbk \quad \operatorname{cup}: \Bbbk \to L(\varpi_1) \otimes L(\varpi_1)$$

where $\operatorname{cap}(v \otimes v) = 0 = \operatorname{cap}(Fv \otimes Fv)$, $\operatorname{cap}(v \otimes Fv) = 1$, and $\operatorname{cap}(Fv \otimes v) = -q$, while $\operatorname{cup}(1) = -q^{-1}v \otimes Fv + Fv \otimes v$. These morphisms have a well known diagrammatic description in terms of the Temperley-Lieb category. Giving rise to the skein relation for the Jones polynomial

which exactly agrees with the R matrix above, under the assignment of the cup and cap diagrams with our cup and cap morphisms. In other words, $R_{L(\varpi_1),L(\varpi_1)} = v^{-1} \operatorname{id} + v \operatorname{cup} \circ \operatorname{cap}$.

1.3. The g case. Let Φ be a root system with choice of simple roots Π and symmetric form (-, -) so that $(\alpha, \alpha) = 2$ for all short roots (long roots pair with themselves to be 4 or 6, the latter only for G_2 components). Then we obtain $U = U_q(\mathfrak{g})$ which is a k-algebra defined by generators and relations.

By placing the operators E_{α} in degree α and F_{α} in degree $-\alpha$, the algebra U is graded by $\mathbb{Z}\Phi$. Furthermore, the subalgebras U^+ and U^- (generated by the E's and F's respectively) are graded subalgebras.

In the previous lecture we learned:

Proposition 1.7. There is a unique bilinear pairing (-,-): $U^{\leq 0} \times U^{\geq 0} \to \mathbb{k}$ such that for all $x, x' \in U^{\geq 0}$, all $y, y' \in U^{\leq 0}$, all $\mu, \nu \in \mathbb{Z}\Phi$, and all $\alpha, \beta \in \Pi$

(1.34)
$$(y, xx') = (\Delta(y), x' \otimes x), \qquad (yy', x) = (y \otimes y', \Delta(x)),$$

(1.35)
$$(K_{\mu}, K_{\nu}) = q^{-(\mu, \nu)}, \qquad (F_{\alpha}, F_{\beta}) = -\delta_{\alpha\beta}(q_{\alpha} - q_{\alpha}^{-1})^{-1},$$

(1.36)
$$(K_{\mu}, E_{\alpha}) = 0, \qquad (F_{\alpha}, K_{\mu}) = 0.$$

Proposition 1.8. Assume that \Bbbk is characteristic zero and q is transcendental over \mathbb{Q} . The restriction of (-, -) to any $U^{-}_{-\mu} \times U^{+}_{\mu}$ with $\mu \in \mathbb{Z}\varphi$, $\mu \geq 0$ is a nondegenerate pairing.

For each $\mu \in \mathbb{Z}_{\geq 0}\Phi_+$ choose a basis $u_1^{\mu}, ..., u_{r(\mu)}^{\mu}$ of U_{μ}^+ . Then there is a dual basis $v_1^{\mu}, ..., v_{r(\mu)}^{\mu}$ of $U_{-\mu}^-$ so that $(v_i^{\mu}, u_i^{\mu}) = \delta_{ij}$. Set

(1.37)
$$\theta_{\mu} = \sum_{i=1}^{r(\mu)} v_i^{\mu} \otimes u_i^{\mu} \in U \otimes U.$$

Example 1.9. The bilinear form is given on $U_q(\mathfrak{sl}_2)$ by

(1.38)
$$(F^n, E^n) = \frac{(-1)^n q^{n(n-1)/2} [n]!}{(q-q^{-1})^n}$$

while $U_{n\alpha} = \mathbb{k} \cdot E^n$ and $U_{-n\alpha} = \mathbb{k} \cdot F^n$. Thus we can take our dual bases to be

(1.39)
$$E^n$$
 and $\frac{(-1)^n q^{-n(n-1)/2} (q-q^{-1})^n}{[n]!} F^n$

so

(1.40)
$$\theta_{n\alpha} = \frac{(-1)^n q^{-n(n-1)/2} (q-q^{-1})^n}{[n]!} F^n \otimes E^n$$

Exercise 1.10. Compute $\theta_{\alpha+\beta}$ for $U = U_q(\mathfrak{sl}_3)$. Hint: Use that $U^+ \cong \Bbbk \langle E_\alpha, E_\beta | q$ -Serre relation \rangle , so $U^+_{\alpha+\beta}$ has basis $\{E_\alpha E_\beta, E_\beta E_\alpha\}$. Similarly, $U^-_{-(\alpha+\beta)}$ has basis $\{F_\alpha F_\beta, F_\beta F_\alpha\}$. Then use the definition of the pairing (-, -) to compute its restriction to $U^-_{-(\alpha+\beta)} \times U^+_{\alpha+\beta}$.

Remark 1.11. The element θ_{μ} does not depend on our choice of basis u_i^{μ} .

Define, as we did for $U_q(\mathfrak{sl}_2)$, $\tau \Delta = \tau \otimes \tau \circ \Delta \circ \tau^{-1}$.

Lemma 1.12.

(1.41) $\Delta(u) \circ \theta_{V,W} = \theta_{V,W} \circ {}^{\tau} \Delta(u)$

for all $u \in U$.

Proof. We need to argue that

(1.42)
$$(E_{\alpha} \otimes 1)\theta_{\mu} + (K_{\alpha} \otimes E_{\alpha})\theta_{\mu-\alpha} = \theta_{\mu}(E_{\alpha} \otimes 1) + \theta_{\mu-\alpha}(K_{\alpha}^{-1} \otimes E_{\alpha}),$$

(1.43)
$$(1 \otimes F_{\alpha})\theta_{\mu} + (F_{\alpha} \otimes K_{\alpha}^{-1})\theta_{\mu-\alpha} = \theta_{\mu}(1 \otimes F_{\alpha}) + \theta_{\mu-\alpha}(F_{\alpha} \otimes K_{\alpha}),$$

(1.44)
$$(K_{\alpha} \otimes K_{\alpha})\theta_{\mu} = \theta_{\mu}(K_{\alpha} \otimes K_{\alpha})$$

To see (1.44) observe that the $\theta'_{\mu}s$ have degree zero in the $\mathbb{Z}\Phi$ grading.

We will prove (1.42) as the proof of (1.43) is similar. First, we note that the usual dual basis technology tells us we can write for $u \in U^+_{\mu}$

$$(1.45) u = \sum (v_i^{\mu}, u) u_i^{\mu}$$

and for $v \in U^-_{-\mu}$

(1.46)
$$v = \sum (v, u_i^{\mu}) v_i^{\mu}$$

Then we recall that $q_{\alpha} = q^{(\alpha,\alpha)/2}$, and set $c_{\alpha} = \frac{1}{q_{\alpha} - q_{\alpha}^{-1}}$. We need to briefly review some useful functions defined when we were studying the form

(-,-). For $x \in U^+_{\mu}$ (still with $\mu \ge 0$) we have

(1.47)
$$\Delta(x) \in \bigoplus_{0 \le \nu \le \mu} U^+_{\mu-\nu} K_{\nu} \otimes U^+_{\nu}$$

so

(1.48)
$$\Delta(x) = x \otimes 1 + \sum_{\alpha \in \Delta} r_{\alpha}(x) K_{\alpha} \otimes E_{\alpha} + \text{(rest)}$$

defines for us $r_{\alpha}(x) \in U^+_{\mu-\alpha}$, and

(1.49)
$$\Delta(x) = K_{\mu} \otimes x + \sum_{\alpha \in \Delta} E_{\alpha} K_{\mu-\alpha} \otimes r'_{\alpha}(x) + (\text{rest})$$

defines $r'_{\alpha}(x) \in U^+_{\mu-\alpha}$.

We can also define, for $y \in U^-_{-\mu}$, elements $r_{\alpha}(y) \in U^-_{-(\mu-\alpha)}$ and $r'_{\alpha}(y) \in U^-_{-(\mu-\alpha)}$ by observing

(1.50)
$$\Delta(y) \in \bigoplus_{0 \le \nu \le \mu} U^-_{-\nu} \otimes U^-_{-(\mu-\nu)} K^{-1}_{\nu}$$

so

(1.51)
$$\Delta(y) = y \otimes K_{\mu}^{-1} + \sum_{\alpha \in \Delta} r_{\alpha}(y) \otimes F_{\alpha} K_{\mu-\alpha}^{-1} + \text{(rest)}$$

and

(1.52)
$$\Delta(y) = 1 \otimes y + \sum_{\alpha \in \Delta} F_{\alpha} \otimes r'_{\alpha}(y) K_{\alpha}^{-1} + (\text{rest}).$$

There are many identities among the $r_{\alpha}(x)$ but we only need the following two to prove (1.42). They are [2] 6.17(1) and 6.15(5): for $x \in U^+_{\mu}$ and $y \in U^-_{\mu}$

(1.53)
$$E_{\alpha}y - yE_{\alpha} = c_{\alpha}\left(K_{\alpha}r_{\alpha}(y) - r_{\alpha}'(y)K_{\alpha}^{-1}\right),$$

(1.54)
$$(y, E_{\alpha}x) = (F_{\alpha}, E_{\alpha})(r_{\alpha}(y), x) = -c_{\alpha}(r_{\alpha}(y), x),$$

and

(1.55)
$$(y, xE_{\alpha}) = (F_{\alpha}, E_{\alpha})(r'_{\alpha}(y), x) = -c_{\alpha}(r'_{\alpha}(y), x).$$

Finally, we compute that

$$\begin{split} (E_{\alpha}\otimes 1)\theta_{\mu} - \theta_{\mu}(E_{\alpha}\otimes 1) &= \sum_{i} (E_{\alpha}v_{i}^{\mu} - v_{i}^{\mu}E_{\alpha}) \otimes u_{i}^{\mu} \\ &= c_{\alpha}\sum_{i} \left(K_{\alpha}r_{\alpha}(v_{i}^{\mu}) - r_{\alpha}'(v_{i}^{\mu})K_{\alpha}^{-1}\right) \otimes u_{i}^{\mu} \\ &= c_{\alpha}\sum_{i} \left(K_{\alpha}\sum_{j} (r_{\alpha}(v_{i}^{\mu}), u_{j}^{\mu-\alpha})v_{j}^{\mu-\alpha} - \sum_{j} (r_{\alpha}'(v_{i}^{\mu}), u_{j}^{\mu-\alpha})v_{j}^{\mu-\alpha}K_{\alpha}^{-1}\right) \otimes u_{i}^{\mu} \\ &= \sum_{i} \left(-K_{\alpha}\sum_{j} (v_{i}^{\mu}, E_{\alpha}u_{j}^{\mu-\alpha})v_{j}^{\mu-\alpha} + \sum_{j} (v_{i}^{\mu}, u_{j}^{\mu-\alpha}E_{\alpha})v_{j}^{\mu-\alpha}K_{\alpha}^{-1}\right) \otimes u_{i}^{\mu} \\ &= \sum_{i} \left(+\sum_{j} (v_{i}^{\mu}, u_{j}^{\mu-\alpha}E_{\alpha})v_{j}^{\mu-\alpha}K_{\alpha}^{-1} - K_{\alpha}\sum_{j} (v_{i}^{\mu}, E_{\alpha}u_{j}^{\mu-\alpha})v_{j}^{\mu-\alpha} \otimes \sum_{i} u_{i}^{\mu}\right) \\ &= \left(\sum_{j} (v_{i}^{\mu}, u_{j}^{\mu-\alpha}E_{\alpha})v_{j}^{\mu-\alpha}K_{\alpha}^{-1} \otimes \sum_{i} u_{i}^{\mu}\right) - \left(K_{\alpha}\sum_{j} (v_{i}^{\mu}, E_{\alpha}u_{j}^{\mu-\alpha})v_{j}^{\mu-\alpha} \otimes \sum_{i} u_{i}^{\mu}\right) \\ &= \left(\sum_{j} v_{j}^{\mu-\alpha}K_{\alpha}^{-1} \otimes \sum_{i} (v_{i}^{\mu}, u_{j}^{\mu-\alpha}E_{\alpha})u_{i}^{\mu}\right) - \left(K_{\alpha}\sum_{j} v_{j}^{\mu-\alpha} \otimes \sum_{i} (v_{i}^{\mu}, E_{\alpha}u_{j}^{\mu-\alpha})u_{i}^{\mu}\right) \\ &= \left(\sum_{j} v_{j}^{\mu-\alpha}K_{\alpha}^{-1} \otimes u_{j}^{\mu-\alpha}E_{\alpha}\right) - \left(K_{\alpha}\sum_{j} v_{j}^{\mu-\alpha} \otimes E_{\alpha}u_{j}^{\mu-\alpha}\right) \\ &= \sum_{j} v_{j}^{\mu-\alpha}K_{\alpha}^{-1} \otimes u_{j}^{\mu-\alpha}E_{\alpha} - K_{\alpha}v_{j}^{\mu-\alpha} \otimes E_{\alpha}u_{j}^{\mu-\alpha} \\ &= \left(\sum_{j} v_{j}^{\mu-\alpha} \otimes u_{j}^{\mu-\alpha}\right) K_{\alpha}^{-1} \otimes E_{\alpha} - K_{\alpha} \otimes E_{\alpha} \left(\sum_{j} v_{j}^{\mu-\alpha} \otimes u_{j}^{\mu-\alpha}\right) \\ &= \theta_{\mu-\alpha}(K_{\alpha}^{-1} \otimes E_{\alpha}) - (K_{\alpha} \otimes E_{\alpha})\theta_{\mu-\alpha}. \end{split}$$

If V and W are finite dimensional (type 1) U-modules, then both are direct sums of their weight spaces and

(1.56)
$$\theta_{\mu}: V_{\lambda} \otimes W_{\lambda'} \longrightarrow V_{\lambda-\mu} \otimes W_{\lambda'+\mu}.$$

Since W and V are finite dimensional, we can define the action of

(1.57)
$$\theta_{V,W} = \sum_{\mu \ge 0} \theta_{\mu}|_{V \otimes W}$$

Again, we can choose ordered bases so that $\sum_{\mu>0} \theta_{\mu}$ acts as a strictly upper triangular operator on $V \otimes W$. Since $\theta_0 = 1 \otimes 1$, θ is a unipotent endomorphism of $V \otimes W$. We will again define $\theta^f = \theta \circ \tilde{f}$ where \tilde{f} is derived from some function $f : \Lambda \times \Lambda \to \mathbb{k}^{\times}$ satisfying some property analogous to the $U_q(\mathfrak{sl}_2)$ case.

Theorem 1.13. Suppose that $f : \Lambda \times \Lambda \to \mathbb{k}^{\times}$ is such that for all $\lambda, \mu \in \Lambda$ and $\nu \in \mathbb{Z}\Phi$

(1.58)
$$f(\lambda + \nu, \mu) = q^{-(\nu,\mu)}(f(\lambda,\mu))$$

and

(1.59)
$$f(\lambda, \mu + \nu) = q^{-(\nu, \lambda)} f(\lambda, \mu).$$

Then the map

$$(1.60) R_{V,W} = \theta^f \circ P : V \otimes W \to W \otimes V$$

is an isomorphism of *U*-modules. Furthermore, $\theta_{V,W}$ is functorial in *V* and *W*.

Proof. Similar to the \mathfrak{sl}_2 case.

Remark 1.14. In order for R to be a U-module isomorphism we need f to satisfy (1.58) and (1.59). But, in order for R to solve the hexagon equation we will need further conditions on f.

Let $d = [\Lambda : \mathbb{Z}\Phi]$. Suppose that k contains a *d*-th root of unity of *q*, denoted *v*, and set $f(\lambda, \nu) = v^{-d \cdot (\lambda, \nu)}$. Then this *f* will give rise to an *R* which is an honest braiding on the category of finite dimensional type **1** *U*-modules.

Example 1.15. If the simple roots for \mathfrak{sl}_3 are α, β then the fundamental weights are $\varpi_1 = \frac{1}{3}(2\alpha + \beta)$ and $\varpi_2 = \frac{1}{3}(\alpha + 2\beta)$. Using (-, -) for the *W*-invariant bilinear form on $\mathbb{Z}\Phi$ so that $(\alpha, \alpha) = 2 = (\beta, \beta)$, we find

(1.61)
$$(\varpi_1, \varpi_1) = \frac{2}{3} = (\varpi_2, \varpi_2)$$

and

(1.62)
$$(\varpi_1, \varpi_2) = \frac{1}{3} = (\varpi_2, \varpi_1).$$

Therefore,

(1.63)
$$f((a,b),(c,d)) = q^{-\frac{1}{3} \cdot (2ac+bc+ab+2bd)}.$$

For $U_q(\mathfrak{sl}_n)$ we will need $q^{\frac{1}{n}} \in \mathbb{k}$.

2. HEXAGON EQUATIONS AND THE BRAID GROUP

2.1. **Motivating Coherence for the** *R* **matrix.** Recall that the braid group on *n* strands has the following generators and relations presentation:

(2.1)
$$Br_n = \langle \sigma_1, ..., \sigma_{n-1} \mid \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \sigma_i \sigma_j = \sigma_j \sigma_i \text{ when } |i-j| > 1 \rangle,$$

where σ_i maps to the (isotopy class of) the "positive crossing of the *i*-th and *i* + 1-st strands. The relation $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ can be visualized locally in Br_n as:

The relation $\sigma_i \sigma_j = \sigma_j \sigma_i$ can be visualized in Br_n as

(2.3)

Given an endomorphism R in $\operatorname{End}_U(V \otimes V)$ we can define U-module endomorphisms $R_{12} = R \otimes \operatorname{id}$ and $R_{23} = \operatorname{id} \otimes R$ of $V \otimes V \otimes V$. If R satisfies

$$(2.4) R_{12} \circ R_{23} \circ R_{12} = R_{23} \circ R_{12} \circ R_{23}.$$

We will see that setting $R = \theta_{V,V}^f \circ P$ will give a solution to (2.4). (One reason to care is that this gives rise to some linear representations of type A braid group. These were quite scarce before quantum groups.)

So far we have shown that the $R_{V,W}$ are *functorial U*-module isomorphisms $V \otimes W \xrightarrow{\sim} W \otimes V$. We have two types of composition of morphisms: the usual function composition $\varphi \circ \psi$ as well as the tensor product of morphisms $\varphi \otimes \psi$. So we might want two types of consistency for the braiding. The first is functorality and the second type of consistency we want is the *hexagon equations*

Remark 2.1. Note that can is the usual vector space isomorphism between triple tensor products which re-associates simple tensors. For example $can(m \otimes (m' \otimes m'')) = (m \otimes m') \otimes m''$. These maps all commute with the action of U, since the comultiplication $\Delta : U \longrightarrow U \otimes U$ is coassociative. In the proofs below we will ignore these maps.

Remark 2.2. Once we show that $R_{V,W}$ is a family of funtorial isomorphisms satisfying the Hexagon equations, we will have shown that $U - \text{mod}^{\text{type1}}$ is a braided tensor category. Intuitively, this just means that any two morphism built out of the canonical morphisms and the $R_{V,W}$'s are equal if they represent the same element of the braid group. For more precise discussion of braided tensor categories see [1]

Proposition 2.3. For all $V \in U - mod^{type1}$, we have the following equality in $End_U(V \otimes V \otimes V)$

$$(2.7) \qquad (\mathrm{id} \otimes R_{V,V}) \circ (R_{V,V} \otimes \mathrm{id}) \circ (\mathrm{id} \otimes R_{V,V}) = (R_{V,V} \otimes \mathrm{id}) \circ (\mathrm{id} \otimes R_{V,V}) \circ (R_{V,V} \otimes \mathrm{id}).$$

Proof. Using the Hexagon equation and functorality we find

$$(\mathrm{id} \otimes R_{V,V}) \circ (R_{V,V} \otimes \mathrm{id}) \circ (\mathrm{id} \otimes R_{V,V}) = (\mathrm{id} \otimes R_{V,V}) \circ R_{V \otimes V,V}$$
$$= R_{V \otimes V,V} \circ (R_{V,V} \otimes \mathrm{id})$$
$$= (R_{V,V} \otimes \mathrm{id}) \circ (\mathrm{id} \otimes R_{V,V}) \circ (R_{V,V} \otimes \mathrm{id}).$$

Remark 2.4. Note that (2.4) is different than the equation $\theta_{23}^f \theta_{13}^f \theta_{12}^f = \theta_{12}^f \theta_{23}^f \theta_{23}^f$, which is what is more properly called the quantum Yang-Baxter equation. As long as *f* satisfies the conditions so that $\theta^f P$ is a *U* module isomorphism, we will have that θ^f solves the quantum

Yang Baxter equation. Then one shows that $\theta^f P$ satisfies braid relation (2.4) using that θ^f satisfies the quantum Yang-Baxter equation.

However, if *f* is so that $\theta^f P$ satisfies the Hexagon equation, then $\theta^f P$ will satisfy the braid relation (2.4). Jantzen handles the more general situation in [2], but for ease of exposition we just assume *f* is so that $\theta^f P$ satisfies the Hexagon equation from the start, then use this to deduce (2.4).

In both cases the *R* matrix gives rise to a braid group action, but only in the latter case does the *R* matrix give rise to a braiding on $U - \text{mod}^{\text{type1}}$.

2.2. Proving the Hexagon Identity. Based on the exercise, if our goal is for R to satisfy the braid relation (2.4), we must derive the hexagon equations for R.

Theorem 2.5. Let M_1 , M_2 , and M_3 be finite dimensional, type **1**, $U_q(\mathfrak{g})$ -modules. Let f satisfy (1.21), (1.22), and (1.30). Then both diagrams in the hexagon equations commute.

Proof. We will show the first diagram commutes, the argument for the second diagram being similar.

The top half of the diagram is

(2.8)
$$(\theta \otimes 1) \circ (f \otimes 1) \circ (P \otimes 1) \circ (1 \otimes \theta) \circ (1 \otimes f) \circ (1 \otimes P).$$

If
$$\theta = \sum a_i \otimes b_i$$
, then we define $\theta_{13} = \sum a_i \otimes 1 \otimes b_i$, and then can write

(2.9) $\theta_{13} = (P \otimes 1) \circ (1 \otimes \theta) \circ (P \otimes 1).$

If we define \tilde{f}_{13} so that for $m \otimes m' \otimes m'' \in M_{\lambda_1} \otimes M'_{\lambda_2} \otimes M''_{\lambda_3}$, $\tilde{f}_{13}(m \otimes m' \otimes m'') = f(\lambda_1, \lambda_3)m \otimes m' \otimes m''$, then we can write

(2.10)
$$\widetilde{f}_{13} = (P \otimes 1) \circ (1 \otimes \widetilde{f}) \circ (P \otimes 1)$$

We define

(2.11)
$$\theta' = \sum_{\mu} (1 \otimes K_{\mu} \otimes 1) \circ (\theta_{\mu})_{13}$$

Using that $\theta_{\mu}: V_{\lambda_1} \otimes W_{\lambda_2} \longrightarrow V_{\lambda_1-\mu} \otimes W_{\lambda_2+\mu}$ and $\tilde{f}(\lambda_1 - \mu, \lambda_2) = q^{(\mu,\lambda_2)}\tilde{f}(\lambda_1, \lambda_2)$, it follows that

(2.12)
$$(1 \otimes K_{\mu} \otimes 1) \circ (\theta_{\mu})_{13} \circ (\widehat{f} \otimes 1) = (\widehat{f} \otimes 1) \circ (\theta_{\mu})_{13}$$

Thus,

(2.13)
$$\theta' \circ (\widetilde{f} \otimes 1) = (\widetilde{f} \otimes 1) \circ \theta_{13}$$

Using (2.9), (2.10), and (2.13) we may rewrite the top half of the diagram (2.8) as

(2.14)
$$(\theta \otimes 1) \circ \theta' \circ (\widetilde{f} \otimes 1) \circ \widetilde{f}_{13} \circ (P \otimes 1) \circ (1 \otimes P).$$

The bottom half of the diagram is

$$(2.15) R_{M\otimes M',M''} = \theta_{M'',M\otimes M'} \circ \widetilde{f} \circ P_{M\otimes M',M''} = (1\otimes \Delta)(\theta) \circ \widetilde{f} \circ (P\otimes 1) \circ (1\otimes P).$$

By
$$f$$
 we mean for $m'' \otimes (m \otimes m') \in M''_{\lambda_3} \otimes (M \otimes M')_{\lambda_1 + \lambda_2}$

(2.16)
$$\widetilde{f}(m'', m \otimes m') = f(\lambda_3, \lambda_1 + \lambda_2)m'' \otimes m \otimes m'.$$

But since $f(\lambda_3, \lambda_1 + \lambda_2) = f(\lambda_3, \lambda_1)f(\lambda_3, \lambda_2)$ we have

(2.17)
$$\widetilde{f}(m'', m \otimes m') = (\widetilde{f} \otimes 1) \circ \widetilde{f}_{13}(m'' \otimes m \otimes m').$$

We claim that

(2.18)
$$(1 \otimes \Delta)(\theta) = (\theta \otimes 1) \circ \theta'.$$

Once, we establish (2.18), it is easy to see that we can rewrite (2.15) as

$$(2.19) \quad (1 \otimes \Delta)(\theta) \circ \widetilde{f} \circ (P \otimes 1) \circ (1 \otimes P) = (\theta \otimes 1) \circ \theta' \circ (\widetilde{f} \otimes 1) \circ \widetilde{f}_{13} \circ (P \otimes 1) \circ (1 \otimes P)$$

proving that the top half and bottom half of the diagram are equal.

We will deduce (2.18) once we show that

(2.20)
$$(1 \otimes \Delta)(\theta_{\mu}) = \sum_{0 \le \nu \le \mu} (\theta_{\mu-\nu} \otimes 1) \circ (1 \otimes K_{\nu} \otimes 1) \circ (\theta_{\nu})_{13}.$$

To this end, recall that for $x \in U^+$,

(2.21)
$$\Delta(x) \in \bigoplus_{0 \le \nu \le \mu} U^+_{\mu-\nu} K_{\nu} \otimes U^+_{\nu}$$

from which it follows that

(2.22)
$$\Delta(x) = \sum_{\nu,i,j} c^{\nu}_{ij} u^{\mu-\nu}_i K_{\nu} \otimes u^{\nu}_j$$

The scalars c_{ij}^{ν} can be computed using the dual basis as

(2.23)
$$c_{ij}^{\nu} = (v_i^{\mu-\nu} \otimes v_j, \Delta(x)) = v(_i^{\mu-\nu} v_j^{\nu}, x),$$

which implies the following formula

(2.24)
$$\Delta(x) = \sum_{0 \le \nu \le \mu} \sum_{i,j} (v_i^{\mu-\nu} v_j^{\nu}, x) u_i^{\mu-\nu} K_{\nu} \otimes u_j^{\nu}.$$

Finally, we recall that by definition

(2.25)
$$\theta_{\mu} = \sum_{i} v_{i}^{\mu} \otimes u_{i}^{\mu},$$

so we can use (2.24) to write

$$(1 \otimes \Delta)(\theta_{\mu}) = \sum_{i} v_{i}^{\mu} \otimes \Delta(u_{i}^{\mu})$$

$$= \sum_{i} v_{i}^{\mu} \otimes \sum_{\nu,p,q} (v_{p}^{\mu-\nu}v_{q}^{\nu}, u_{i}^{\mu})u_{p}^{\mu-\nu}K_{\nu} \otimes u_{q}^{\nu}$$

$$= \sum_{\nu,p,q} \left(\sum_{i} (v_{p}^{\mu-\nu}v_{q}^{\nu}, u_{i}^{\mu})v_{i}^{\mu} \right) \otimes u_{p}^{\mu-\nu}K_{\nu} \otimes u_{q}^{\nu}$$

$$= \sum_{\nu,p,q} v_{p}^{\mu-\nu}v_{q}^{\nu} \otimes u_{p}^{\mu-\nu}K_{\nu} \otimes u_{q}^{\nu}$$

$$= \sum_{0 \leq \nu \leq \mu} (\theta_{\mu-\nu} \otimes 1) \circ (1 \otimes K_{\nu} \otimes 1) \circ (\theta_{\nu})_{13}.$$

2.3. Hecke Algebras and Quantum Schur Weyl Duality. The Hecke algebra \mathbb{H}_d is the quotient of $\mathbb{k}Br_d$ by the ideal generated by

(2.26)
$$\sigma_i^2 = (q^{-1} - q)\sigma_i + 1.$$

We will denote the image of the generator σ_i in the quotient by H_i .

Let V_1 denote the vector representation of the Lie algebra \mathfrak{sl}_n and let $V_q = L(\varpi_1)$ denote the quantized vector representation, or first fundamental representation, for $U_q(\mathfrak{sl}_n)$.

Note that the symmetric group is a quotient of the braid group by a simpler quadratic relation $\sigma_i^2 = 1$. The usual Schur-Weyl duality says that the action of S_d on $V_1^{\otimes d}$ which permutes the tensors, will induce a surjective algebra homomorphism $\mathbb{C}S_d \to \operatorname{End}_{\mathfrak{sl}_n}(V_1^{\otimes d})$.

permutes the tensors, will induce a surjective algebra homomorphism $\mathbb{C}S_d \to \operatorname{End}_{\mathfrak{sl}_n}(V_1^{\otimes d})$. The action of the symmetric group on $V_1^{\otimes d}$ is generated by the endomorphisms $s_i = \operatorname{id}_{i-1} \otimes P \otimes \operatorname{id}_{i+1}$. So it is natural to consider what algebra is generated by the action of $R_i = \operatorname{id}_{i-1} \otimes R \otimes \operatorname{id}_{i+1}$ on the $U_q(\mathfrak{sl}_n)$ -module $V_q^{\otimes d}$. We know that the R_i satisfy the hexagon equation, and therefore the braid relation. Also, the usual interchange law for morphisms between tensor products tells us that the maps $\operatorname{id} \otimes R \otimes \operatorname{id}$ satisfy the second relation in the braid group (distant braids commute). Therefore, whatever algebra the action generates will be a quotient of the braid group.

Example 2.6. Recall that for \mathfrak{sl}_2 we found that after writing $v = q^{1/2}$

(2.27)
$$R_{V_q,V_q} = \begin{pmatrix} v^{-1} & 0 & 0 & 0\\ 0 & 0 & v & 0\\ 0 & v & v^{-1} - v^3 & 0\\ 0 & 0 & 0 & v^{-1} \end{pmatrix}$$

We compute $(R_{V_q,V_q} - v^{-1})(R_{V_q,V_q} + v^3)$

(2.28)
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & -v^{-1} & v & 0 \\ 0 & v & -v^3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v^{-1} + v^3 & 0 & 0 & 0 \\ 0 & v^3 & v & 0 \\ 0 & v & v^{-1} & 0 \\ 0 & 0 & 0 & v^{-1} + v^3 \end{pmatrix}.$$

which is easily seen to be zero. Therefore, $R^2 = v^2 \operatorname{id} + (v^{-1} - v^3)R$. and it follows that setting $H = v^{-1}R$ we get

(2.29)
$$H^2 = v^{-2}R^2 = (v^{-2} - v^2)H + \mathrm{id} = (q^{-1} - q)H + \mathrm{id}.$$

This proves that for $U_q(\mathfrak{sl}_2)$, the action of the R_i 's on $V_q^{\otimes d}$ gives an action of Br_d which factors through the algebra \mathbb{H}_d . Furthermore, one can argue that the induced homomorphism

is surjective.

The calculation of the quadratic relation generalizes to $U_q(\mathfrak{sl}_n)$ and V_q . Again, one finds that in order to define R_{V_q,V_q} the field k must contain an element v so that $v^n = q$. But, the quadratic relation will then be $H^2 = (v^{-n} - v^n)H + 1 = (q^{-1} - q)H + 1$.

Thus, for $V_q^{\otimes d}$ it is still the algebra \mathbb{H}_d acting. This action $\mathbb{H}_d \to \operatorname{End}_{U_q(\mathfrak{sl}_n}(V_q^{\otimes d}))$ always generates the Endomorphism ring. When $n \geq d$, the action is faithful, and when n < d the kernel is understood.

When q is transcendental the result will follow from the calssical Schur Weyl duality and a deformation argument. However, the result is still true when q is a root of unity.

3. The quantized coordinate ring $k_q[G]$

3.1. **Motivation: The classical coordinate ring** $\mathbb{C}[G]$. More detail can be found in chapter seven of [3]. For simplicity we work over the complex numbers in this motivational interlude. Given a finite dimensional semisimple Lie algebra \mathfrak{g} , there is an associated connected and simply connected algebraic group *G*. The group *G* is an affine algebraic variety and we write $\mathbb{C}[G]$ to denote the *coordinate ring* of *G*.

Define the *derivations* of *G* to be

(3.1)
$$\operatorname{Der}(G) = \{ X \in \operatorname{End}_{\mathbb{C}}(\mathbb{C}[G]) \mid X(fg) = X(f)g + fX(g) \}.$$

These are vector fields on G, or first order differential operators. We define the *left invariant derivations* to be

$$(3.2) L(G) = \{ X \in \operatorname{Der}(G) \mid X \circ \ell_g = \ell_g \circ X \text{ for all } g \in G \}.$$

where $\ell_g : \mathbb{C}[G] \longrightarrow \mathbb{C}[G]$ maps $f \mapsto (x \mapsto f(g^{-1}x))$ and define the *ring of left invariant differential operators*, denoted $D_{\ell}(G)$, to be the subalgebra of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[G])$ generated by L(G). The left invariant vector fields on *G* are identified with the tangent space of *G* at the identity i.e. the Lie algebra \mathfrak{g} . Thus, there is an algebra homomorphism

$$(3.3) U(\mathfrak{g}) \longrightarrow D_{\ell}(G).$$

A theorem of Cartier says that since we are working over a field of characteristic zero, this is an algebra isomorphism. Thus, we have a pairing

$$(3.4) U(\mathfrak{g}) \times \mathbb{C}[G] \longrightarrow \mathbb{C}$$

defined as $\langle D, f \rangle = D(f)(1)$, differentiate and evaluate at the identity. It is an exercise to show this pairing is non-degenerate. In particular, there is an embedding

(For the exercise, to prove the kernel of $D \mapsto \langle D, - \rangle$ is injective Jantzen suggests using Krull intersection theorem. Note that *G* is connected.)

Suppose that *A* is a Hopf algebra. Then we can define a convolution product on A^* . For *f*, *g* two linear forms on *A* we define their product *fg* as the composition

Explicitly, for $a \in A$ we have

The coassociative condition on Δ implies this multiplication is associative. The counit axiom for ϵ implies the functional $\epsilon : a \mapsto 1$ is a unit for the product on A^* .

Definition 3.1. Let *V* be a finite dimensional $U(\mathfrak{g})$ module. For $v \in V$ and $f \in V^*$ we define the *matrix coefficient* $c_{f,v} \in U(\mathfrak{g})^*$ by

$$(3.8) c_{f,v}(u) = f(uv)$$

for all $u \in U(\mathfrak{g})$.

Lemma 3.2. Let V and W be finite dimensional $U(\mathfrak{g})$ -modules. Then in $U(\mathfrak{g})^*$ we have

$$(3.9) c_{f,v}c_{g,w} = c_{f\otimes g,v\otimes w}$$

for all $v \in V$, $f \in V^*$, $w \in W$, and $g \in W^*$. and (3.10) $c_{f,v} + c_{g,w} = c_{f \oplus g,(v,w)}$ Proof. Exercise.

The main point is that the image of $\Bbbk[G]$ in $U(\mathfrak{g})^*$ is the subspace spanned by matrix coefficients of \mathfrak{g} modules. To see this, observe that $\Bbbk[G]$ is spanned by matrix coefficients of *G*-modules (this follows from the algebraic Peter-Weyl theorem and uses that since *G* is semisimple *G* is reductive). Then chasing through definitions we see that the claim follows if every finite dimensional \mathfrak{g} module lifts to a *G* module, which is why we needed to assume that *G* was simply connected.

3.2. **Definition of** $\mathbb{k}_q[G]$. If we did not have a group *G* to begin with bu did know $U(\mathfrak{g})$, we could have discovered $\mathbb{C}[G]$ as the subalgebra of $U(\mathfrak{g})$ spanned by matrix coefficients of finite dimensional \mathfrak{g} modules. In the quantum case, there is no group but we do have the algebra $U_q(\mathfrak{g})$.

Definition 3.3. Let $U = U_q(\mathfrak{g})$ and let G be the connected, simply connected, semisimple group with Lie algebra \mathfrak{g} . The *quantized coordinate algebra of* G, denoted $\Bbbk_q[G]$, is the subalgebra of U^* spanned by matrix coefficients of finite dimensional representations of U.

The lemma (3.2) implies that the subspace of U^* spanned by all $c_{f,v}$ (for all finite dimensional (type **1**) *U*-modules *V* and all *f* and *v*) is closed under multiplication. Since the unit of U^* is $\epsilon = c_{1^*,1}$, where $\mathbb{k} \cdot 1$ is the trivial *U*-module, the subspace is a unital subalgebra of U^* .

In the classical case, we know that $\Bbbk[G]$ is a Hopf algebra with comultiplication $\Delta = m^*$, where *m* is the multiplication map $G \times G \to G$. But we defined $\Bbbk_q[G]$ in terms of matrix coefficients so it is not completely clear that this ring is a Hopf algebra.

In the finite dimensional setting, the dual of a Hopf algebra is a Hopf algebra. But in our case the natural embedding $U^* \otimes U^* \longrightarrow (U \otimes U)^*$ is not surjective so we cannot use $\mu : U \otimes U \longrightarrow U$ to define a comultiplication $\mu^* : U^* \longrightarrow (U \otimes U)^*$ to make U^* a Hopf algebra. But if restricting μ^* to $\Bbbk_q[G]$ we have image in $\Bbbk_q[G] \otimes \Bbbk_q[G]$, then $\Bbbk_q[G]$ can be made a Hopf algebra with comultiplication $\Delta = \mu^*$.

Lemma 3.4. Let $\mu : U \otimes U \to U$ be the multiplication map and $\mu^* : \Bbbk_q[G] \to (U \otimes U)^*$. Then, $\mu^*(\Bbbk_q[G]) \subset \Bbbk_q[G] \otimes \Bbbk_q[G]$.

Proof. Since $\mathbb{k}_q[G]$ is spanned by matrix coefficients, it suffices to prove that for $v \in V$ and $f \in V^*$, $m^*(c_{f,v}) \in \mathbb{k}_q[G] \otimes \mathbb{k}_q[G]$. To show this, let $v_1, ..., v_n$ and $f_1, ..., f_n$ be dual bases for V and V^* . Then for $u, u' \in U$ we have

$$\mu^*(c_{f,v})(u \otimes u') = f(uu' \cdot v)$$

= $f(u \sum f_i(u'v)v_i)$
= $\sum f(uv_i)f_i(u'v)$
= $\sum c_{f,v_i}(u)c_{f_i,v}(u')$
= $\sum c_{f,v_i} \otimes c_{f_i,v}(u \otimes u').$

The counit $\epsilon : \mathbb{k}_q[G] \to \mathbb{k}$ is defined by restricting the dual of the unit $\eta : \mathbb{k} \to U^*$; it satisfies $\epsilon(c_{f,v}) = c_{f,v}(1) = f(v)$. The antipode $S : \mathbb{k}_q[G] \to \mathbb{k}_q[G]$ is the restriction of $\lambda \in U^* \mapsto \lambda \circ S \in U^*$; this map satisfies $c_{f,v} \mapsto c_{v^{**},f}$, where v^{**} is the image of v under the vector space isomorphism $V \to V^{**}$.

3.3. Relations in $\mathbb{k}_q[G]$ from the *R* matrix. Let *V* be a finite dimensional *U* module with basis v_i and dual basis v_i^* (keep in mind V^* is a *U*-module). We write

so

$$(3.12) u \cdot v_j = \sum c_{ij}(u)v_i$$

Let *W* be another finite dimensional *U* module with basis w_i , dual basis w_j^* and cmatrix coefficients $d_{ij} = d_{w_i^*, w_j}$.

Given an isomorphism $R: W \otimes V \longrightarrow V \otimes W$ we write

(3.13)
$$R(w_i \otimes v_j) = \sum_{h,l} R_{ij}^{hl} v_h \otimes w_l.$$

Lemma 3.5. *The following relation holds in* $\mathbb{k}_q[G]$

(3.14)
$$\sum_{h,l} R_{hl}^{rs} d_{li} c_{hj} = \sum_{h,l} R_{ij}^{hl} c_{rh} d_{sl}$$

Proof. Since $c_{w_i^* \otimes v_j^*, w_l \otimes v_h} = c_{w_i^*, w_l} c_{v_j^*, v_h}$, we find

(3.15)
$$u \cdot (w_i \otimes v_j) = \sum_{h,l} (d_{li}c_{hj})(u)w_l \otimes v_h$$

The result follows from expanding both sides of

$$(3.16) R(u(w_i \otimes v_j)) = u(R(w_i \otimes v_j))$$

and comparing coefficients.

3.4. Example of $\mathbb{k}_q[SL_2]$. We computed R explicitly in the case of $\mathfrak{g} = \mathfrak{sl}_2$ and $V = W = L(\varpi_1)$. If we relabel our basis by $v_1 = v$ and $v_2 = Fv$, and write $v = q^{\frac{1}{2}}$, we get:

$$(3.17) \qquad \begin{pmatrix} R_{11}^{11} & R_{11}^{12} & R_{12}^{11} & R_{12}^{12} \\ R_{11}^{21} & R_{11}^{22} & R_{12}^{21} & R_{22}^{22} \\ R_{21}^{21} & R_{21}^{22} & R_{22}^{21} & R_{22}^{22} \\ R_{21}^{21} & R_{21}^{22} & R_{22}^{22} & R_{22}^{22} \end{pmatrix} = \begin{pmatrix} v^{-1} & 0 & 0 & 0 \\ 0 & 0 & v & 0 \\ 0 & v & v^{-1} - v^{3} & 0 \\ 0 & 0 & 0 & v^{-1} \end{pmatrix}$$

After writing

(3.18)
$$C = \begin{pmatrix} c_{11}c_{11} & c_{11}c_{12} & c_{12}c_{11} & c_{12}c_{12} \\ c_{11}c_{21} & c_{11}c_{22} & c_{12}c_{21} & c_{12}c_{22} \\ c_{21}c_{11} & c_{21}c_{12} & c_{22}c_{11} & c_{22}c_{12} \\ c_{21}c_{21} & c_{21}c_{22} & c_{22}c_{21} & c_{22}c_{22}, \end{pmatrix}$$

the relations in $\mathbb{k}_q[SL_2]$ given by R can be read off the equation RC = CR. Explicitly, we find the following relations hold (note that $v^2 = q$):

$$(3.19) c_{11}c_{12} = v^2 c_{12}c_{11}, c_{11}c_{21} = v^2 c_{21}c_{11}, c_{12}c_{22} = v^2 c_{22}c_{12}, c_{21}c_{22} = v^2 c_{22}c_{21}$$

$$(3.20) c_{12}c_{21} = c_{21}c_{21}$$

and

(3.21)
$$c_{11}c_{22} - c_{22}c_{11} = (v^2 - v^{-2})c_{12}c_{21}.$$

Since all simple modules are direct summands of tensor products of $L(\varpi_1)$ all the matrix coefficients are expressed in terms of the c_{ij} 's. In other words, the matrix coefficients c_{ij} already generate $\Bbbk_q[SL_2]$ as an algebra.

There is one further relation in $\mathbb{k}_q[SL_2]$ which is the quantum determinant is identically equal to 1

$$(3.22) c_{11}c_{22} - v^2c_{12}c_{21} = 1$$

and it turns out this is then a complete set of relations for $k_q[SL_2]$.

References

- Alexander Bakalov, Bojko; Kirillov Jr. Lectures on Tensor Categories and Modular Functors, volume 21 of University Lecture Series. American Mathematical Society, Providence, RI, 2001. 11
- [2] Jens Carsten Jantzen. Lectures on Quantum Groups, volume 6 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, first edition, 1996. 4, 7, 12
- [3] Jens Carsten Jantzen. *Representations of algebraic groups*, volume 107 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, second edition, 2003. 15