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0. INTRODUCTION

Let k be a field with characteristic not equal to two, and let q ∈ k such that qn 6= 1 for all
n. Let V and W be two finite dimensional (type 1) Uq(g) modules. Weight considerations tell
us that V ⊗W and W ⊗ V are isomorphic. However, the obvious vector space isomorphism
P : V ⊗ W v⊗w 7→w⊗v−−−−−−−→ W ⊗ V does not commute with the action of U . We aim to define
isomorphisms RV,W : V ⊗W −→ W ⊗ V which do commute with the action of U . Then
we will show that the RV,W satisfy nice properties: functorality in V and W , the hexagon
identity, and solution to quantum Yang-Baxter.

1. DEFINITION OF THE QUASI R MATRIX

1.1. Motivation for quasi R matrix. Let us suppose that there is a functorial isomorphism
RM,M ′ : M⊗M ′ −→M ′⊗M for all representations of U (so not just finite dimensional ones).
Then we may consider R = R

UU,UU (1 ⊗ 1). If M is a U -module and m ∈ M then we get a
homomorphism of U -modules

ρm : UU →M, u 7→ um.

Let M and M ′ be two U modules and let m ∈M and m′ ∈M ′. Then to compute RM,M ′(m⊗
m′) we see by functorality of R(−),(−) that

RM,M ′(m⊗m′) = RM,M ′◦ρm⊗ρm′(1⊗1) = ρm′⊗ρm◦RUU,UU (1⊗1) = ρm′⊗ρm(R) = R·m′⊗m

so RM,M ′(m⊗m′) = RP (m⊗m′).
1
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ThatR(−),(−) is a functorial isomorphism implies thatR is invertible in U ⊗U whileR(−),(−)

being a morphism of U modules means

∆(u)RP (m⊗m′) = u ·RM,M ′(m⊗m′) = RM,M ′(u ·m⊗m′) = RP (∆(u)m⊗m′).
If ∆(u) =

∑
ui ⊗ u′i, then

∆(u)R(m′⊗m) = ∆(u)RP (m⊗m′) = RP (∆(u)m⊗m′) = R
∑

u′im
′⊗uim = R∆op(u)(m′⊗m).

Hence,
∆(u) ·R = R ·∆op(u),

where ∆op(u) = P (∆(u)). Note that ∆op 6= ∆, or as we learned in previous lectures U is not
co-commutative.

The element R was constructed by Drinfeld, but lies in a completion of U . It is an expres-
sion of the form

R = q−
∑
hα⊗h′α(1 + ...),

Here the hα and the h′α are dual bases for h ⊂ g and qhα = Kα. The ... term is a sum of tensors
of dual basis elements x⊗ y ∈ U− ⊗ U+.

We follow Jantzen, so only use this element as motivation for a construction of θfV,W for V
and W finite dimensional, type 1 representations of U .

1.2. The sl2 case. Recall that U = Uq(sl2) is defined by generators and relations, with gener-
ators E,F,K±1. Furthermore, U is a Hopf algebra with coproduct ∆ defined as the algebra
homomorphism U −→ U ⊗ U defined on generators by

(1.1) ∆(E) = E ⊗ 1 +K ⊗ E,

(1.2) ∆(F ) = F ⊗K−1 + 1⊗ F,
and

(1.3) ∆(K) = K ⊗K.
In particular, when V and W are two representations of U we can produce a new representa-
tion V ⊗W , where u·(v⊗w) = ∆(u)·(v⊗w). In fact we can produce two new representations
V ⊗W and W ⊗ V .

There is always a vector space isomorphism P : V ⊗W −→W ⊗ V which sends a simple
tensor v ⊗ w to w ⊗ v. When q = 1, this map is an isomorphism of sl2 modules, but this
will not be so for generic q (this is motivation only, you don’t actually recover classical sl2
when q = 1). Instead, we hope to find isomorphisms θfV,W : V ⊗ W −→ V ⊗ W so that

RV,W := θfV,W ◦P is a U -module isomorphism V ⊗W ∼−→W⊗V . That is we want to ”deform”
the flip map P by some map θf so that the ”deformed” flip map θf ◦ P does commute with
the action of U .

It turns out the answer starts with

(1.4) θn = (−1)nq−(n2)
(q − q−1)n

[n]!
Fn ⊗ En.

and

(1.5) θV,W =
∑
n≥0

θn|V⊗W .

Both E and F act nilpotently in each finite dimensional representation of U , so we can
choose a basis so that E ⊗ F is strictly upper triangular (b/c nilpotent). In this basis each
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θn, n ≥ 1, is strictly upper triangular. Since θ0 = 1 we deduce θV,W is an invertible (in fact
unipotent) linear transformation.

Recall that there is an anti-automorphism of U , τ : U → U , defined on generators by

E 7→ E,F 7→ F, and K 7→ K−1.

Given an anti-automorphism, one can twist ∆ to obtain another comultiplication

(1.6) τ∆ = τ ⊗ τ ◦∆ ◦ τ−1.

Thus, τ∆ is defined on generators by

(1.7) τ∆(E) = E ⊗ 1 +K−1 ⊗ E

(1.8) τ∆(F ) = F ⊗K + 1⊗ F

(1.9) τ∆(K) = K ⊗K.

Lemma 1.1. For all u ∈ U
(1.10) ∆(u) ◦ θV,W = θV,W ◦ τ∆(u)

Proof. This follows from checking that for all n ≥ 0

(1.11) (E ⊗ 1)θn + (K ⊗ E)θn−1 = θn(E ⊗ 1) + θn−1(K−1 ⊗ E)

(1.12) (1⊗ F )θn + (F ⊗K−1)θn−1 = θn(1⊗ F ) + θn−1(F ⊗K)

(1.13) (K ⊗K)θn = θn(K ⊗K).

The computation is left as an exercise. �

Remark 1.2. Recall that

(1.14) ∆op(E) = 1⊗ E + E ⊗K

(1.15) ∆op(F ) = K−1 ⊗ F + F ⊗ 1

(1.16) ∆op(K) = K ⊗K
so τ∆ 6= ∆op.

We want to tweak θV,W so that we can replace τ∆ with ∆op in (1.10). Finite dimensional
type 1 U modules are direct sums of their weight spaces (because of our hypothesis on k)
with weights contained in the set Λ = {qa}a∈Z. Let f : Λ × Λ → k

×. We then define for any
V and W a linear isomorphism f̃ : V ⊗W → V ⊗W such that

(1.17) f̃(v ⊗ w) = f(λ, µ)v ⊗ w
whenever v ∈ Vλ and w ∈Wµ.

Define θfV,W = θV,W ◦ f̃ . Sadly, not any f will result in a θfV,W so that

(1.18) ∆(u) ◦ θfV,W = θfV,W ◦ (∆op)(u)

for all u ∈ U . To see what f will work, we first observe that thanks to the equation

(1.19) ∆(u) ◦ θV,W = θV,W ◦ τ∆(u)

the desired equality holds whenever

(1.20) τ∆(u) ◦ f̃ = f̃ ◦ (∆op)(u).
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To show (1.20) holds for all u ∈ U , it suffices to just check the equality on the generators
E,F , and K. The calculation (an exercise, if you get stuck see Jantzen’s proof of lemma 3.13
[2]) shows we must have f satisfy

(1.21) f(λ, µ+ α1) = λ−1f(λ, µ)

and

(1.22) f(λ+ α1, µ) = µ−1f(λ, µ).

Theorem 1.3. Let f satisfy (1.21) and (1.22). Then

(1.23) RV,W = θfV,W ◦ P : V ⊗W −→W ⊗ V

is a functorial U -module isomorphism.

Remark 1.4. We saw already that functorality will follow from RV,W being the action of some
elements in U⊗U . In order to spell out functorality explicitly, let ϕ : V −→ V ′ and ψ : W −→
W ′, then

(1.24) (ϕ⊗ ψ) ◦RV,W = RV ′,W ′ ◦ (ϕ⊗ ψ).

Example 1.5. The U -module L($1) has a basis {v, Fv} with action of the generators of U
given by

(1.25)

The module L($1) ⊗ L($1) has a basis {v ⊗ v, v ⊗ Fv, Fv ⊗ v, Fv ⊗ Fv}. Note that the
elements θn act on L($1)⊗ L($1) as zero for n ≥ 2, so

(1.26) θL($1),L($1) = 1− (q − q−1)F ⊗ E|L($1)⊗L($1).

which in our basis is

(1.27)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ (q−1 − q)


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
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Let f($1, $1) = q−1. One can check that this forces f(−$1,−$1) = q−1 and f($1,−$1) =

1 = f(−$1, $)1. Computing the matrix of RL($1),L($1) = θL($1),L($1) ◦ f̃ ◦ P we find

(1.28) RL($1),L($1) =


1 0 0 0
0 1 0 0
0 q−1 − q 1 0
0 0 0 1



q−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 q−1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


so

(1.29) RL($1),L($1) =


q−1 0 0 0
0 0 1 0
0 1 q−1 − q 0
0 0 0 q−1


Remark 1.6. In order for R to be a U -module isomorphism we only needed f to satisfy the
conditions (1.21) and (1.22). However, we will want R to satisfy further coherence condition
(hexagon equations) which will end up requiring that f satisfy

(1.30) f(λ, µν) = f(λ, µ)f(λ, ν) and f(λµ, ν) = f(λ, ν)f(λ, ν).

If k contains a square root of q, say v = q1/2 ∈ k then there is a choice for f which will
satisfy all these conditions (for finite dimensional type 1 modules). We set f(a$, b$) = v−ab.

(1.31) RL($1),L($1) =


v−1 0 0 0
0 0 v 0
0 v v−1 − v3 0
0 0 0 v−1


The representation L($1) carries a non-degenerate form which determines two U -module

maps

(1.32) cap : L($1)⊗ L($1)→ k cup : k→ L($1)⊗ L($1)

where cap(v⊗v) = 0 = cap(Fv⊗Fv), cap(v⊗Fv) = 1, and cap(Fv⊗v) = −q, while cup(1) =
−q−1v⊗Fv+Fv⊗v. These morphisms have a well known diagrammatic description in terms
of the Temperley-Lieb category. Giving rise to the skein relation for the Jones polynomial

(1.33)

which exactly agrees with the R matrix above, under the assignment of the cup and cap
diagrams with our cup and cap morphisms. In other words, RL($1),L($1) = v−1 id +vcup ◦
cap.
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1.3. The g case. Let Φ be a root system with choice of simple roots Π and symmetric form
(−,−) so that (α, α) = 2 for all short roots (long roots pair with themselves to be 4 or 6, the
latter only for G2 components). Then we obtain U = Uq(g) which is a k-algebra defined by
generators and relations.

By placing the operators Eα in degree α and Fα in degree −α, the algebra U is graded by
ZΦ. Furthermore, the subalgebras U+ and U− (generated by the E′s and F ′s respectively)
are graded subalgebras.

In the previous lecture we learned:

Proposition 1.7. There is a unique bilinear pairing (−,−) : U≤0 × U≥0 → k such that for all
x, x′ ∈ U≥0, all y, y′ ∈ U≤0, all µ, ν ∈ ZΦ, and all α, β ∈ Π

(1.34) (y, xx′) = (∆(y), x′ ⊗ x), (yy′, x) = (y ⊗ y′,∆(x)),

(1.35) (Kµ,Kν) = q−(µ,ν), (Fα, Fβ) = −δαβ(qα − q−1
α )−1,

(1.36) (Kµ, Eα) = 0, (Fα,Kµ) = 0.

Proposition 1.8. Assume that k is characteristic zero and q is transcendental over Q. The restriction
of (−,−) to any U−−µ × U+

µ with µ ∈ Zϕ, µ ≥ 0 is a nondegenerate pairing.

For each µ ∈ Z≥0Φ+ choose a basis uµ1 , ..., u
µ
r(µ) of U+

µ . Then there is a dual basis vµ1 , ..., v
µ
r(µ)

of U−−µ so that (vµj , u
µ
i ) = δij . Set

(1.37) θµ =

r(µ)∑
i=1

vµi ⊗ u
µ
i ∈ U ⊗ U.

Example 1.9. The bilinear form is given on Uq(sl2) by

(1.38) (Fn, En) =
(−1)nqn(n−1)/2[n]!

(q − q−1)n

while Unα = k · En and U−nα = k · Fn. Thus we can take our dual bases to be

(1.39) En and
(−1)nq−n(n−1)/2(q − q−1)n

[n]!
Fn

so

(1.40) θnα =
(−1)nq−n(n−1)/2(q − q−1)n

[n]!
Fn ⊗ En

Exercise 1.10. Compute θα+β forU = Uq(sl3). Hint: Use thatU+ ∼= k〈Eα, Eβ | q-Serre relation〉,
so U+

α+β has basis {EαEβ, EβEα}. Similarly, U−−(α+β) has basis {FαFβ, FβFα}. Then use the
definition of the pairing (−,−) to compute its restriction to U−−(α+β) × U

+
α+β .

Remark 1.11. The element θµ does not depend on our choice of basis uµi .

Define, as we did for Uq(sl2), τ∆ = τ ⊗ τ ◦∆ ◦ τ−1.

Lemma 1.12.

(1.41) ∆(u) ◦ θV,W = θV,W ◦ τ∆(u)

for all u ∈ U .
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Proof. We need to argue that

(1.42) (Eα ⊗ 1)θµ + (Kα ⊗ Eα)θµ−α = θµ(Eα ⊗ 1) + θµ−α(K−1
α ⊗ Eα),

(1.43) (1⊗ Fα)θµ + (Fα ⊗K−1
α )θµ−α = θµ(1⊗ Fα) + θµ−α(Fα ⊗Kα),

(1.44) (Kα ⊗Kα)θµ = θµ(Kα ⊗Kα)

To see (1.44) observe that the θ′µs have degree zero in the ZΦ grading.
We will prove (1.42) as the proof of (1.43) is similar. First, we note that the usual dual basis

technology tells us we can write for u ∈ U+
µ

(1.45) u =
∑

(vµi , u)uµi

and for v ∈ U−−µ

(1.46) v =
∑

(v, uµi )vµi .

Then we recall that qα = q(α,α)/2, and set cα =
1

qα − q−1
α

.

We need to briefly review some useful functions defined when we were studying the form
(−,−). For x ∈ U+

µ (still with µ ≥ 0) we have

(1.47) ∆(x) ∈
⊕

0≤ν≤µ
U+
µ−νKν ⊗ U+

ν

so

(1.48) ∆(x) = x⊗ 1 +
∑
α∈∆

rα(x)Kα ⊗ Eα + (rest)

defines for us rα(x) ∈ U+
µ−α, and

(1.49) ∆(x) = Kµ ⊗ x+
∑
α∈∆

EαKµ−α ⊗ r′α(x) + (rest)

defines r′α(x) ∈ U+
µ−α.

We can also define, for y ∈ U−−µ, elements rα(y) ∈ U−−(µ−α) and r′α(y) ∈ U−−(µ−α) by observ-
ing

(1.50) ∆(y) ∈
⊕

0≤ν≤µ
U−−ν ⊗ U−−(µ−ν)K

−1
ν

so

(1.51) ∆(y) = y ⊗K−1
µ +

∑
α∈∆

rα(y)⊗ FαK−1
µ−α + (rest)

and

(1.52) ∆(y) = 1⊗ y +
∑
α∈∆

Fα ⊗ r′α(y)K−1
α + (rest).

There are many identities among the rα(x) but we only need the following two to prove
(1.42). They are [2] 6.17(1) and 6.15(5): for x ∈ U+

µ and y ∈ U−µ
(1.53) Eαy − yEα = cα

(
Kαrα(y)− r′α(y)K−1

α

)
,

(1.54) (y,Eαx) = (Fα, Eα)(rα(y), x) = −cα(rα(y), x),
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and

(1.55) (y, xEα) = (Fα, Eα)(r′α(y), x) = −cα(r′α(y), x).

Finally, we compute that

(Eα ⊗ 1)θµ − θµ(Eα ⊗ 1) =
∑
i

(Eαv
µ
i − v

µ
i Eα)⊗ uµi

= cα
∑
i

(
Kαrα(vµi )− r′α(vµi )K−1

α

)
⊗ uµi

= cα
∑
i

Kα

∑
j

(rα(vµi ), uµ−αj )vµ−αj −
∑
j

(r′α(vµi ), uµ−αj )vµ−αj K−1
α

⊗ uµi
=
∑
i

−Kα

∑
j

(vµi , Eαu
µ−α
j )vµ−αj +

∑
j

(vµi , u
µ−α
j Eα)vµ−αj K−1

α

⊗ uµi
=
∑
i

+
∑
j

(vµi , u
µ−α
j Eα)vµ−αj K−1

α −Kα

∑
j

(vµi , Eαu
µ−α
j )vµ−αj

⊗ uµi
=

∑
j

(vµi , u
µ−α
j Eα)vµ−αj K−1

α ⊗
∑
i

uµi

−
Kα

∑
j

(vµi , Eαu
µ−α
j )vµ−αj ⊗

∑
i

uµi


=

∑
j

vµ−αj K−1
α ⊗

∑
i

(vµi , u
µ−α
j Eα)uµi

−
Kα

∑
j

vµ−αj ⊗
∑
i

(vµi , Eαu
µ−α
j )uµi


=

∑
j

vµ−αj K−1
α ⊗ u

µ−α
j Eα

−
Kα

∑
j

vµ−αj ⊗ Eαuµ−αj


=
∑
j

vµ−αj K−1
α ⊗ u

µ−α
j Eα −Kαv

µ−α
j ⊗ Eαuµ−αj

=

∑
j

vµ−αj ⊗ uµ−αj

K−1
α ⊗ Eα −Kα ⊗ Eα

∑
j

vµ−αj ⊗ uµ−αj


= θµ−α(K−1

α ⊗ Eα)− (Kα ⊗ Eα)θµ−α.

�

If V and W are finite dimensional (type 1) U -modules, then both are direct sums of their
weight spaces and

(1.56) θµ : Vλ ⊗Wλ′ −→ Vλ−µ ⊗Wλ′+µ.

Since W and V are finite dimensional, we can define the action of

(1.57) θV,W =
∑
µ≥0

θµ|V⊗W

Again, we can choose ordered bases so that
∑

µ>0 θµ acts as a strictly upper triangular oper-
ator on V ⊗W . Since θ0 = 1⊗ 1, θ is a unipotent endomorphism of V ⊗W .
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We will again define θf = θ ◦ f̃ where f̃ is derived from some function f : Λ × Λ → k
×

satisfying some property analogous to the Uq(sl2) case.

Theorem 1.13. Suppose that f : Λ× Λ→ k
× is such that for all λ, µ ∈ Λ and ν ∈ ZΦ

(1.58) f(λ+ ν, µ) = q−(ν,µ)(f(λ, µ)

and

(1.59) f(λ, µ+ ν) = q−(ν,λ)f(λ, µ).

Then the map

(1.60) RV,W = θf ◦ P : V ⊗W →W ⊗ V

is an isomorphism of U -modules. Furthermore, θV,W is functorial in V and W .

Proof. Similar to the sl2 case. �

Remark 1.14. In order for R to be a U -module isomorphism we need f to satisfy (1.58) and
(1.59). But, in order for R to solve the hexagon equation we will need further conditions on
f .

Let d = [Λ : ZΦ]. Suppose that k contains a d-th root of unity of q, denoted v, and set
f(λ, ν) = v−d·(λ,ν). Then this f will give rise to an R which is an honest braiding on the
category of finite dimensional type 1 U -modules.

Example 1.15. If the simple roots for sl3 are α, β then the fundamental weights are $1 =
1

3
(2α+β) and $2 =

1

3
(α+ 2β). Using (−,−) for the W -invariant bilinear form on ZΦ so that

(α, α) = 2 = (β, β), we find

(1.61) ($1, $1) =
2

3
= ($2, $2)

and

(1.62) ($1, $2) =
1

3
= ($2, $1).

Therefore,

(1.63) f((a, b), (c, d)) = q−
1
3
·(2ac+bc+ab+2bd).

For Uq(sln) we will need q
1
n ∈ k.

2. HEXAGON EQUATIONS AND THE BRAID GROUP

2.1. Motivating Coherence for the R matrix. Recall that the braid group on n strands has
the following generators and relations presentation:

(2.1) Brn = 〈σ1, ..., σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i− j| > 1〉,
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where σi maps to the (isotopy class of) the ”positive crossing of the i-th and i+ 1-st strands.
The relation σiσi+1σi = σi+1σiσi+1 can be visualized locally in Brn as:

(2.2)

The relation σiσj = σjσi can be visualized in Brn as

(2.3)

Given an endomorphism R in EndU (V ⊗ V ) we can define U -module endomorphisms
R12 = R⊗ id and R23 = id⊗R of V ⊗ V ⊗ V . If R satisfies

(2.4) R12 ◦R23 ◦R12 = R23 ◦R12 ◦R23.

We will see that setting R = θfV,V ◦ P will give a solution to (2.4). (One reason to care is
that this gives rise to some linear representations of type A braid group. These were quite
scarce before quantum groups.)

So far we have shown that the RV,W are functorial U -module isomorphisms V ⊗ W
∼−→

W ⊗ V . We have two types of composition of morphisms: the usual function composition
ϕ ◦ ψ as well as the tensor product of morphisms ϕ ⊗ ψ. So we might want two types of
consistency for the braiding. The first is functorality and the second type of consistency we
want is the hexagon equations
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(2.5)

M1 ⊗ (M3 ⊗M2) (M1 ⊗M3)⊗M2

M1 ⊗ (M2 ⊗M3) (M3 ⊗M1)⊗M2

(M1 ⊗M2)⊗M3 M3 ⊗ (M1 ⊗M2)

R

can

R

R

cancan

(2.6)

(M2 ⊗M1)⊗M3 M2 ⊗ (M1 ⊗M3)

(M1 ⊗M2)⊗M3 M2 ⊗ (M3 ⊗M1)

M1 ⊗ (M2 ⊗M3) (M2 ⊗M3)⊗M1

R

can

R

R

cancan

Remark 2.1. Note that can is the usual vector space isomorphism between triple tensor prod-
ucts which re-associates simple tensors. For example can(m⊗ (m′ ⊗m′′)) = (m⊗m′)⊗m′′.
These maps all commute with the action of U , since the comultiplication ∆ : U −→ U ⊗ U is
coassociative. In the proofs below we will ignore these maps.

Remark 2.2. Once we show that RV,W is a family of funtorial isomorphisms satisfying the
Hexagon equations, we will have shown that U − modtype1 is a braided tensor category.
Intuitively, this just means that any two morphism built out of the canonical morphisms and
the RV,W ’s are equal if they represent the same element of the braid group. For more precise
discussion of braided tensor categories see [1]

Proposition 2.3. For all V ∈ U −modtype1, we have the following equality in EndU (V ⊗ V ⊗ V )

(2.7) (id⊗RV,V ) ◦ (RV,V ⊗ id) ◦ (id⊗RV,V ) = (RV,V ⊗ id) ◦ (id⊗RV,V ) ◦ (RV,V ⊗ id).

Proof. Using the Hexagon equation and functorality we find

(id⊗RV,V ) ◦ (RV,V ⊗ id) ◦ (id⊗RV,V ) = (id⊗RV,V ) ◦RV⊗V,V
= RV⊗V,V ◦ (RV,V ⊗ id)

= (RV,V ⊗ id) ◦ (id⊗RV,V ) ◦ (RV,V ⊗ id).

�

Remark 2.4. Note that (2.4) is different than the equation θf23θ
f
13θ

f
12 = θf12θ

f
23θ

f
23, which is

what is more properly called the quantum Yang-Baxter equation. As long as f satisfies the
conditions so that θfP is a U module isomorphism, we will have that θf solves the quantum
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Yang Baxter equation. Then one shows that θfP satisfies braid relation (2.4) using that θf

satisfies the quantum Yang-Baxter equation.
However, if f is so that θfP satisfies the Hexagon equation, then θfP will satisfy the braid

relation (2.4). Jantzen handles the more general situation in [2], but for ease of exposition we
just assume f is so that θfP satisfies the Hexagon equation from the start, then use this to
deduce (2.4).

In both cases the R matrix gives rise to a braid group action, but only in the latter case
does the R matrix give rise to a braiding on U −modtype1.

2.2. Proving the Hexagon Identity. Based on the exercise, if our goal is for R to satisfy the
braid relation (2.4), we must derive the hexagon equations for R.

Theorem 2.5. Let M1, M2, and M3 be finite dimensional, type 1, Uq(g)-modules. Let f satisfy
(1.21), (1.22), and (1.30). Then both diagrams in the hexagon equations commute.

Proof. We will show the first diagram commutes, the argument for the second diagram being
similar.

The top half of the diagram is

(2.8) (θ ⊗ 1) ◦ (f̃ ⊗ 1) ◦ (P ⊗ 1) ◦ (1⊗ θ) ◦ (1⊗ f̃) ◦ (1⊗ P ).

If θ =
∑
ai ⊗ bi, then we define θ13 =

∑
ai ⊗ 1⊗ bi, and then can write

(2.9) θ13 = (P ⊗ 1) ◦ (1⊗ θ) ◦ (P ⊗ 1).

If we define f̃13 so that for m ⊗ m′ ⊗ m′′ ∈ Mλ1 ⊗ M ′λ2 ⊗ M ′′λ3 , f̃13(m ⊗ m′ ⊗ m′′) =

f(λ1, λ3)m⊗m′ ⊗m′′, then we can write

(2.10) f̃13 = (P ⊗ 1) ◦ (1⊗ f̃) ◦ (P ⊗ 1).

We define

(2.11) θ′ =
∑
µ

(1⊗Kµ ⊗ 1) ◦ (θµ)13.

Using that θµ : Vλ1 ⊗Wλ2 −→ Vλ1−µ ⊗Wλ2+µ and f̃(λ1 − µ, λ2) = q(µ,λ2)f̃(λ1, λ2), it follows
that

(2.12) (1⊗Kµ ⊗ 1) ◦ (θµ)13 ◦ (f̃ ⊗ 1) = (f̃ ⊗ 1) ◦ (θµ)13.

Thus,

(2.13) θ′ ◦ (f̃ ⊗ 1) = (f̃ ⊗ 1) ◦ θ13.

Using (2.9), (2.10), and (2.13) we may rewrite the top half of the diagram (2.8) as

(2.14) (θ ⊗ 1) ◦ θ′ ◦ (f̃ ⊗ 1) ◦ f̃13 ◦ (P ⊗ 1) ◦ (1⊗ P ).

The bottom half of the diagram is

(2.15) RM⊗M ′,M ′′ = θM ′′,M⊗M ′ ◦ f̃ ◦ PM⊗M ′,M ′′ = (1⊗∆)(θ) ◦ f̃ ◦ (P ⊗ 1) ◦ (1⊗ P ).

By f̃ we mean for m′′ ⊗ (m⊗m′) ∈M ′′λ3 ⊗ (M ⊗M ′)λ1+λ2

(2.16) f̃(m′′,m⊗m′) = f(λ3, λ1 + λ2)m′′ ⊗m⊗m′.
But since f(λ3, λ1 + λ2) = f(λ3, λ1)f(λ3, λ2) we have

(2.17) f̃(m′′,m⊗m′) = (f̃ ⊗ 1) ◦ f̃13(m′′ ⊗m⊗m′).
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We claim that

(2.18) (1⊗∆)(θ) = (θ ⊗ 1) ◦ θ′.

Once, we establish (2.18), it is easy to see that we can rewrite (2.15) as

(2.19) (1⊗∆)(θ) ◦ f̃ ◦ (P ⊗ 1) ◦ (1⊗ P ) = (θ ⊗ 1) ◦ θ′ ◦ (f̃ ⊗ 1) ◦ f̃13 ◦ (P ⊗ 1) ◦ (1⊗ P )

proving that the top half and bottom half of the diagram are equal.
We will deduce (2.18) once we show that

(2.20) (1⊗∆)(θµ) =
∑

0≤ν≤µ
(θµ−ν ⊗ 1) ◦ (1⊗Kν ⊗ 1) ◦ (θν)13.

To this end, recall that for x ∈ U+,

(2.21) ∆(x) ∈
⊕

0≤ν≤µ
U+
µ−νKν ⊗ U+

ν

from which it follows that

(2.22) ∆(x) =
∑
ν,i,j

cνiju
µ−ν
i Kν ⊗ uνj .

The scalars cνij can be computed using the dual basis as

(2.23) cνij = (vµ−νi ⊗ vj ,∆(x)) = v(µ−νi vνj , x),

which implies the following formula

(2.24) ∆(x) =
∑

0≤ν≤µ

∑
i,j

(vµ−νi vνj , x)uµ−νi Kν ⊗ uνj .

Finally, we recall that by definition

(2.25) θµ =
∑
i

vµi ⊗ u
µ
i ,

so we can use (2.24) to write

(1⊗∆)(θµ) =
∑
i

vµi ⊗∆(uµi )

=
∑
i

vµi ⊗
∑
ν,p,q

(vµ−νp vνq , u
µ
i )uµ−νp Kν ⊗ uνq

=
∑
ν,p,q

(∑
i

(vµ−νp vνq , u
µ
i )vµi

)
⊗ uµ−νp Kν ⊗ uνq

=
∑
ν,p,q

vµ−νp vνq ⊗ uµ−νp Kν ⊗ uνq

=
∑

0≤ν≤µ
(θµ−ν ⊗ 1) ◦ (1⊗Kν ⊗ 1) ◦ (θν)13.

�
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2.3. Hecke Algebras and Quantum Schur Weyl Duality. The Hecke algebra Hd is the quo-
tient of kBrd by the ideal generated by

(2.26) σ2
i = (q−1 − q)σi + 1.

We will denote the image of the generator σi in the quotient by Hi.
Let V1 denote the vector representation of the Lie algebra sln and let Vq = L($1) denote

the quantized vector representation, or first fundamental representation, for Uq(sln).
Note that the symmetric group is a quotient of the braid group by a simpler quadratic

relation σ2
i = 1. The usual Schur-Weyl duality says that the action of Sd on V ⊗d1 which

permutes the tensors, will induce a surjective algebra homomorphism CSd → Endsln(V ⊗d1 ).
The action of the symmetric group on V ⊗d1 is generated by the endomorphisms si =

idi−1⊗P ⊗ idi+1. So it is natural to consider what algebra is generated by the action of
Ri = idi−1⊗R ⊗ idi+1 on the Uq(sln)-module V ⊗dq . We know that the Ri satisfy the hexagon
equation, and therefore the braid relation. Also, the usual interchange law for morphisms
between tensor products tells us that the maps id⊗R ⊗ id satisfy the second relation in the
braid group (distant braids commute). Therefore, whatever algebra the action generates will
be a quotient of the braid group.

Example 2.6. Recall that for sl2 we found that after writing v = q1/2

(2.27) RVq ,Vq =


v−1 0 0 0
0 0 v 0
0 v v−1 − v3 0
0 0 0 v−1


We compute (RVq ,Vq − v−1)(RVq ,Vq + v3)

(2.28)


0 0 0 0
0 −v−1 v 0
0 v −v3 0
0 0 0 0



v−1 + v3 0 0 0

0 v3 v 0
0 v v−1 0
0 0 0 v−1 + v3

 .

which is easily seen to be zero. Therefore,R2 = v2 id +(v−1−v3)R. and it follows that setting
H = v−1R we get

(2.29) H2 = v−2R2 = (v−2 − v2)H + id = (q−1 − q)H + id .

This proves that for Uq(sl2), the action of the Ri’s on V ⊗dq gives an action of Brd which
factors through the algebra Hd. Furthermore, one can argue that the induced homomorphism

(2.30) Hd −→ EndUq(sl2)(V
⊗d
q )

is surjective.

The calculation of the quadratic relation generalizes to Uq(sln) and Vq. Again, one finds
that in order to define RVq ,Vq the field k must contain an element v so that vn = q. But, the
quadratic relation will then be H2 = (v−n − vn)H + 1 = (q−1 − q)H + 1.

Thus, for V ⊗dq it is still the algebra Hd acting. This action Hd → EndUq(sln(V ⊗dq ) always
generates the Endomorphism ring. When n ≥ d, the action is faithful, and when n < d the
kernel is understood.

When q is transcendental the result will follow from the calssical Schur Weyl duality and
a deformation argument. However, the result is still true when q is a root of unity.
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3. THE QUANTIZED COORDINATE RING kq[G]

3.1. Motivation: The classical coordinate ring C[G]. More detail can be found in chapter
seven of [3]. For simplicity we work over the complex numbers in this motivational inter-
lude. Given a finite dimensional semisimple Lie algebra g, there is an associated connected
and simply connected algebraic group G. The group G is an affine algebraic variety and we
write C[G] to denote the coordinate ring of G.

Define the derivations of G to be

(3.1) Der(G) = {X ∈ EndC(C[G]) | X(fg) = X(f)g + fX(g)}.
These are vector fields on G, or first order differential operators. We define the left invariant
derivations to be

(3.2) L(G) = {X ∈ Der(G) | X ◦ `g = `g ◦X for all g ∈ G}.
where `g : C[G] −→ C[G] maps f 7→ (x 7→ f(g−1x)) and define the ring of left invariant
differential operators, denoted D`(G), to be the subalgebra of EndC(C[G]) generated by L(G).
The left invariant vector fields on G are identified with the tangent space of G at the identity
i.e. the Lie algebra g. Thus, there is an algebra homomorphism

(3.3) U(g) −→ D`(G).

A theorem of Cartier says that since we are working over a field of characteristic zero, this is
an algebra isomorphism. Thus, we have a pairing

(3.4) U(g)× C[G] −→ C
defined as 〈D, f〉 = D(f)(1), differentiate and evaluate at the identity. It is an exercise to show
this pairing is non-degenerate. In particular, there is an embedding

(3.5) C[G] −→ U(g)∗, f 7→ 〈−, f〉
(For the exercise, to prove the kernel of D 7→ 〈D,−〉 is injective Jantzen suggests using Krull
intersection theorem. Note that G is connected.)

Suppose that A is a Hopf algebra. Then we can define a convolution product on A∗. For
f, g two linear forms on A we define their product fg as the composition

(3.6) A
∆−→ A⊗A f⊗g−−→ k⊗ k α⊗β 7→αβ−−−−−−→ k.

Explicitly, for a ∈ A we have

(3.7) if ∆(a) =
∑

bi ⊗ ci, then fg(a) =
∑

f(bi)g(ci).

The coassociative condition on ∆ implies this multiplication is associative. The counit axiom
for ε implies the functional ε : a 7→ 1 is a unit for the product on A∗.

Definition 3.1. Let V be a finite dimensional U(g) module. For v ∈ V and f ∈ V ∗ we define
the matrix coefficient cf,v ∈ U(g)∗ by

(3.8) cf,v(u) = f(uv)

for all u ∈ U(g).

Lemma 3.2. Let V and W be finite dimensional U(g)-modules. Then in U(g)∗ we have

(3.9) cf,vcg,w = cf⊗g,v⊗w

for all v ∈ V , f ∈ V ∗, w ∈W , and g ∈W ∗. and

(3.10) cf,v + cg,w = cf⊕g,(v,w)
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Proof. Exercise. �

The main point is that the image of k[G] in U(g)∗ is the subspace spanned by matrix
coefficients of g modules. To see this, observe that k[G] is spanned by matrix coefficients
of G-modules (this follows from the algebraic Peter-Weyl theorem and uses that since G is
semisimple G is reductive). Then chasing through definitions we see that the claim follows
if every finite dimensional g module lifts to a G module, which is why we needed to assume
that G was simply connected.

3.2. Definition of kq[G]. If we did not have a group G to begin with bu did know U(g), we
could have discovered C[G] as the subalgebra of U(g) spanned by matrix coefficients of finite
dimensional g modules. In the quantum case, there is no group but we do have the algebra
Uq(g).

Definition 3.3. Let U = Uq(g) and let G be the connected, simply connected, semisimple
group with Lie algebra g. The quantized coordinate algebra of G, denoted kq[G], is the subalge-
bra of U∗ spanned by matrix coefficients of finite dimensional representations of U .

The lemma (3.2) implies that the subspace of U∗ spanned by all cf,v (for all finite dimen-
sional (type 1) U -modules V and all f and v) is closed under multiplication. Since the unit of
U∗ is ε = c1∗,1, where k · 1 is the trivial U -module, the subspace is a unital subalgebra of U∗.

In the classical case, we know that k[G] is a Hopf algebra with comultiplication ∆ = m∗,
where m is the multiplication map G × G → G. But we defined kq[G] in terms of matrix
coefficients so it is not completely clear that this ring is a Hopf algebra.

In the finite dimensional setting, the dual of a Hopf algebra is a Hopf algebra. But in
our case the natural embedding U∗ ⊗ U∗ −→ (U ⊗ U)∗ is not surjective so we cannot use
µ : U ⊗ U −→ U to define a comultiplication µ∗ : U∗ −→ (U ⊗ U)∗ to make U∗ a Hopf
algebra. But if restricting µ∗ to kq[G] we have image in kq[G] ⊗ kq[G], then kq[G] can be
made a Hopf algebra with comultiplication ∆ = µ∗.

Lemma 3.4. Let µ : U ⊗ U → U be the multiplication map and µ∗ : kq[G] → (U ⊗ U)∗. Then,
µ∗(kq[G]) ⊂ kq[G]⊗ kq[G].

Proof. Since kq[G] is spanned by matrix coefficients, it suffices to prove that for v ∈ V and
f ∈ V ∗, m∗(cf,v) ∈ kq[G]⊗ kq[G]. To show this, let v1, ..., vn and f1, ..., fn be dual bases for V
and V ∗. Then for u, u′ ∈ U we have

µ∗(cf,v)(u⊗ u′) = f(uu′ · v)

= f(u
∑

fi(u
′v)vi)

=
∑

f(uvi)fi(u
′v)

=
∑

cf,vi(u)cfi,v(u
′)

=
∑

cf,vi ⊗ cfi,v(u⊗ u
′).

�

The counit ε : kq[G] → k is defined by restricting the dual of the unit η : k → U∗;
it satisfies ε(cf,v) = cf,v(1) = f(v). The antipode S : kq[G] → kq[G] is the restriction of
λ ∈ U∗ 7→ λ ◦ S ∈ U∗; this map satisfies cf,v 7→ cv∗∗,f , where v∗∗ is the image of v under the
vector space isomorphism V → V ∗∗.
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3.3. Relations in kq[G] from the R matrix. Let V be a finite dimensional U module with
basis vi and dual basis v∗i (keep in mind V ∗ is a U -module). We write

(3.11) cij = cv∗i ,vj

so

(3.12) u · vj =
∑

cij(u)vi

Let W be another finite dimensional U module with basis wi, dual basis w∗j and cmatrix
coefficients dij = dw∗i ,wj .

Given an isomorphism R : W ⊗ V −→ V ⊗W we write

(3.13) R(wi ⊗ vj) =
∑
h,l

Rhlij vh ⊗ wl.

Lemma 3.5. The following relation holds in kq[G]

(3.14)
∑
h,l

Rrshldlichj =
∑
h,l

Rhlij crhdsl

Proof. Since cw∗i⊗v∗j ,wl⊗vh = cw∗i ,wlcv∗j ,vh , we find

(3.15) u · (wi ⊗ vj) =
∑
h,l

(dlichj)(u)wl ⊗ vh.

The result follows from expanding both sides of

(3.16) R(u(wi ⊗ vj)) = u(R(wi ⊗ vj)).
and comparing coefficients.

�

3.4. Example of kq[SL2]. We computed R explicitly in the case of g = sl2 and V = W =

L($1). If we relabel our basis by v1 = v and v2 = Fv, and write v = q
1
2 , we get:

(3.17)


R11

11 R12
11 R11

12 R12
12

R21
11 R22

11 R21
12 R22

12

R11
21 R12

21 R11
22 R12

22

R21
21 R22

21 R21
22 R22

22

 =


v−1 0 0 0
0 0 v 0
0 v v−1 − v3 0
0 0 0 v−1


After writing

(3.18) C =


c11c11 c11c12 c12c11 c12c12

c11c21 c11c22 c12c21 c12c22

c21c11 c21c12 c22c11 c22c12

c21c21 c21c22 c22c21 c22c22,


the relations in kq[SL2] given by R can be read off the equation RC = CR. Explicitly, we
find the following relations hold (note that v2 = q):

(3.19) c11c12 = v2c12c11, c11c21 = v2c21c11, c12c22 = v2c22c12, c21c22 = v2c22c21

(3.20) c12c21 = c21c21

and

(3.21) c11c22 − c22c11 = (v2 − v−2)c12c21.
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Since all simple modules are direct summands of tensor products of L($1) all the matrix
coefficients are expressed in terms of the cij ’s. In other words, the matrix coefficients cij
already generate kq[SL2] as an algebra.

There is one further relation in kq[SL2] which is the quantum determinant is identically
equal to 1

(3.22) c11c22 − v2c12c21 = 1.

and it turns out this is then a complete set of relations for kq[SL2].
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