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1. Introduction

This is the notes for the author’s presentation in the student seminar. We follow
the paper [BMR1] to talk about a derived equivalence between the representations
of a semisimple Lie algebra in positive characteristic and the category of twisted
D-modules supported generalized Springer fibers.

We work over a field k, and consider a semisimple Lie algebra g. Let U = U(g)
be the enveloping algebra. If k has characteristic zero, one has the Beilinson-
Bernstein Localization Theorem, which gives an equivalence of abelian categories.
When k has positive characteristic, the sheaf of differential operators still makes
sense. (There are different versions and we are using the version called crystalline
differential operators.) In fact, fixing a character λ of the Cartan subalgebra h,
one can consider the sheaf of twisted differential operators Dλ

B on the flag variety
B. One can still consider the localization functor L and the global sections
functor Γ. They are functors between module categories over U(g) with the
fixed central character λ, denoted by ModU(g)λ, and the category of sheaves of
coherent modules over Dλ

B, denoted by Coh Dλ
B.

ModU(g)λ

L ++
Coh Dλ

B

Γ

jj
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The functor Γ is right adjoint to L . In the positive characteristic case, we do
not get an equivalence between abelian categories. However, if one pass to the
derived categories, one still get an equivalence between triangulated categories.

The sheaf of differential operators of B behave better in the case k has charac-
teristic p > 0, in the sense that it is an Azumaya algebra on T ∗B(1), the Frobenius
twist of the cotangent bundle T ∗B. When restricting to a formal neighborhood of
the Springer fiber, this Azumaya algebra splits, which means its module category
is equivalent to the category of coherent sheaves.

Comparing different characters, one gets an affine braid group action. The
generators of the affine braid group act by (composition of) translation functors.
We will describe this action on the level of ModU(g), on the level of D-modules,
and also on the level of coherent sheaves. In order to fully understand the effect of
translation functors on the coherent sheaf level, we need a version of the derived
Beilinson-Bernstein localization theorem for singular central characters of the Lie
algebra. This is described in [BMR2]. Again the Azumaya algebra of twisted
differential operators splits on the formal neighborhood of the parabolic Springer
fibers. We will use this singular version of localization theorem to describe the
affine braid group action.

2. Modules over twisted differential operators in prime
characteristic

For any character of U(t), say λ, one can consider the central reduction Dλ
X :=

D̃X ⊗Ot∗ λ. Note that this definition differs from [SR] by a −ρ.

Let B be the flag variety G/B and B̃ the trivialization of Pic(B). It can be

described as G/U where U is the unipotent radical of B. Then B̃ → B is a
torsor under the Cartan subgroup H. Consider the sheaf of vector fields TB̃ on

B̃. Take the sections in π∗TB̃ on B invariant under the translation action of H,

i.e., (π∗TB̃)H =: T̃B. It is a sheaf of Lie algebras which is a central extension
of T (B) by h, the lie algebra of H. The enveloping sheaf of algebras of the Lie

algebroid T̃B is denoted by D̃B. The enveloping algebra of h, which is O(h∗), lies

in the center of D̃B. This part of center will be referred to as the Harish-Chandra
center.

Example 2.1. When g = sl2, B̃ = G/U ∼= A2−{0}, and the extension 0→ h→
T̃B → TB → 0 becomes the Eular sequence

0→ O → O(1)2 → TP1 → 0.

Let T̃ ∗B be the total space of the locally free coherent sheaf T̃ ∗B. Recall this
is the Grothendieck simultaneous resolution g̃∗. The adjoint action of H on h
induces an action on T̃ ∗B, with moment map pr2 : T̃ ∗B → h∗. The G-action has

moment map pr1 : T̃ ∗B → g∗. The sheaf of algebras D̃B on B has a Frobenius

center, i.e., (OT ∗B)p. This means D̃B can be considered as a quasi-coherent sheaf

on T ∗B(1) =: g̃∗(1). T̃ ∗B(1) =: g̃∗(1).



LOCALIZATION IN POSITIVE CHARACTERISTIC 3

T̃ ∗B(1) ×h∗(1) h
∗

vv
&&
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Proposition 2.2. (1) In D̃B, we have OT̃ ∗B(1) ∩ O(h∗) = O(h∗(1)).

(2) The sheaf D̃B is an Azumaya algebra on T̃ ∗B(1) ×h∗(1) h
∗.

We consider D-modules set-theoretically supported on a subscheme. (We will

omit later on the word set-theoretically.) We say a D (resp. D̃) module M is
coherent if it is a coherent sheaf over the center. Let λ be an integral h character
(a point in h∗ that comes from Hom(H,Gm)). Let M be a coherent D̃ module.
The action of the Frobensius center endows M with the structure of a coherent
sheaf on T̃ ∗B(1).

For any integral character λ ∈ h∗, let Cohλ D̃ be the full subcategory of coherent
D̃B-modules consisting of module killed by a power of the maximal ideal λ in
U(h). Note that these modules are supported on the cotangent bundle T ∗λB(1) =

g̃∗(1) ×h∗(1) λ ⊆ g̃∗(1) ×h∗(1) h
∗. Note that T ∗λB(1) is canonically identified with

T ∗B(1).
The global sections of the Frobenius center Γ(B,OT̃ ∗B(1)) is the coordinate ring

of g∗(1). For any closed point χ in g∗(1), we denote the fiber of χ in T̃ ∗B(1) by
Bχ. Think of χ as a character of D̃B, the central reduction Dχ := D̃ ⊗O

T̃∗B(1)
χ

is a sheaf of algebras on Bχ. The category of coherent Dχ-modules, denoted by

Coh Dχ is naturally a subcategory of Coh D̃ .

Let Cohχ D̃ be the full subcategory of coherent D̃B-modules consisting of mod-
ule killed by a power of the maximal ideal χ in OT̃ ∗B(1) . Note that these modules
are supported on Bχ.

For χ ∈ N (1) ⊆ g∗(1), the twisted Springer fiber (µ(1))−1(χ) = B
(1)
χ ∩T ∗λB(1) ⊆

T̃ ∗B(1) is denoted by Bλ,χ. For any integral character λ ∈ h∗, let Cohλ,χ D̃ be the

full subcategory of coherent D̃B-modules consisting of module killed by a power
of the maximal ideal (λ, χ). Note that these modules are supported on Bλ,χ.

For any integral λ ∈ h∗, and any χ ∈ N (1) ⊆ g∗(1), the central reduction of Dλ

with respect to χ, denoted by Dλ
χ , is a sheaf of algebras on B0,χ. The category

Coh Dλ
χ is naturally a subcategory of Coh D̃B.
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3. Derived localization theorem

A central character of U can be considered as a pair (λ, χ) where λ ∈ h∗/W

and χ ∈ g∗(1). We can consider various subcategories of ModU(g). Let Modλ U
be the subcategory of ModU consisting of modules killed by certain power of the
maximal ideal λ in the Harish-Chandra center (i.e., the Harish-Chandra center
acts via the generalized character λ). Let ModUλ be the subcategory of ModU
consisting of U -modules killed by the maximal ideal λ of the Harish-Chandra
center. Similarly we have Modχ,λ U and ModUλχ , etc.

Proposition 3.1. Assume p is sufficiently large, then we have

• H i(B, D̃) = 0 for i > 0 and H0(B, D̃) ∼= Ũ ;
• H i(B,Dλ) = 0 for i > 0 and H0(B,Dλ) ∼= Uλ.

This is similar to [SR].

Let mod-λŨ be the category of not-necessarily-finitely-generated Ũ -modules
with generalized character λ. Now we consider the derived global section functor
RΓD̃ ,λ : Db(Cohλ D̃)→ D−(mod-λŨ).

Lemma 3.2. The image of RΓD̃ ,λ lands in the subcategory Db(Modλ U).

Proof. In fact, observe that taking a finite affine covering of B, the functor RΓD̃ ,λ
sends any module M to the Cĕch complex. The derived global section functors
respect the forgetful functors. In other words, the following diagram commutes

Db(Cohλ D̃)
Forget//

RΓD̃,λ

��

Db(qCoh B)

RΓ
��

D−(Modλ U)
Forget

// D−(Vect)

.

The image of the functor RΓD̃ ,λ lands actually in Db(mod-λŨ .

Now it remains to show for any complexM•, the complex RΓD̃ ,λM has finitely

generated cohomology. In fact, the map Ũ → D̃ is filtered. The associated graded
map is Og∗×h∗//W h∗ → OG×Bn⊥ . We have the spectral sequence R∗µ∗(grM•) ⇒
gr(R∗ΓD̃ ,λM

•). This shows gr(R∗ΓM•) is a bounded complex of coherent sheaves

on g∗ ×h∗//W h∗. As each gr(RiΓMj) is a finitely generated module over gr Ũ ,

we know that RiΓMj is finitely generated over Ũ . So R∗ΓD̃ ,λM
• is a complex

over Ũ , hence can be represented by a bounded complex of finitely generated
Ũ -modules. �

The main theorem of this section is the following.

Theorem 3.3 ([BMR1]). Assume p is sufficiently large and λ ∈ h∗ is integral
regular. Then, the global section functor

RΓD̃ ,λ : Db(Cohλ(D̃))→ Db(Modλ U)
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is an equivalence of triangulated categories.

As an immediate consequence, we get the following Corollary.

Corollary 3.4. Similarly, we have

RΓDλ : Db(Coh(Dλ)) ∼= Db(ModUλ);

RΓDλ,χ : Db(Cohχ D̃λ) ∼= Db(Modχ U
λ);

RΓD̃λχ
: Db(Cohλ,χ D̃) ∼= Db(Modλ,χ U).

The proof of Theorem 3.3 is the same as in the case of characteristic zero in
[SR]. We include a sketch of the proof is in the Appendix.

4. Baby Verma and point modules

For the moment being, let us work in the general set-up where we have a smooth
varietyX, with its sheaf of differential operators DX which is an Azumaya algebras
on T ∗X(1). Let b ∈ X be a closed point and let ζ = (b, χ) be a closed point in

T ∗X(1) which lies in the fiber over b. Let

DX,ζ := DX ⊗O
T∗X(1)

Oζ

be the central reduction of D with respect to the point ζ ∈ T ∗X(1) thought of as
a character of ZX , the center of DX . Here Oζ is the structure sheaf (residue field)
of ζ.

Let a ∈ X be such that Fr(a) = b. Let ξ be the closed point ξ := (a, χ) ∈
T ∗,(1)X := T ∗X(1) ×X(1) X.

ζ ∈ T ∗X(1)

��

T ∗,(1)X 3 ξ

��

oo

b ∈ X(1) X 3 a
Fr

oo

Let δ(a) be the Dirac-delta distributions at the point a, which sends a local
function f to f(a). Any vector field ∂ ∈ DX acts on δ(a) by ∂δ(a)(f) := −∂f(a).
Let δoa be the submodule in the module of distributions generated by δ(a). Note
that δoa is a right D-module. Let δa be the associated left D-module, i.e., δa :=
δoa ⊗O ω

∗
X with ωX being the canonical sheaf of X. The central reduction of this

module with respect to ζ = (b, χ), denoted by δξ := δa ⊗ZX Oζ is called the point
module. Since

ZX ⊗O
T∗,(1)X

Oξ
∼= ZX ⊗ZX⊗O

X(1)
OX Oξ

∼= Oζ ,

we have

δξ := δa ⊗ZX Oζ
∼= δa ⊗O

T∗,(1)X
Oζ .

Lemma 4.1. We have

DX,ζ
∼= E ndOζ (δ

ξ).
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Proof. This is by local calculation. Let x1, . . . , xn be the local coordinates around
a. Then DX,ζ has basis xI∂J where I, J ∈ {0, 1, . . . , p− 1}n. And δξ has basis ∂I

with I ∈ {0, 1, . . . , p− 1}n. �

Now we consider the twisted differential operators. Let X̃ → X be a torsor
under a torus T . Let t := LieT . For integral λ ∈ t∗, we have the sheaf of twisted
differential operators Dλ which is an Azumaya algebra on T ∗X(1). Let ζ = (b, χ)

be a closed point in T ∗X(1), and let a ∈ X be such that Fr(a) = b. We have the
central reduction Dλ

X,ζ := Dλ
X⊗ZOζ of the algebra, acting on the central reduction

δξ := δa ⊗Z Oζ of the module.

Lemma 4.2. Similar to the non-twisted case, Dλ
X,ζ
∼= E ndOζ (δ

ξ).

Now we take a closer look at the module structure of δξ locally. Suppose we
have a Lie algebra a acting on X (a morphism of sheaves of lie algebras a→ TX)

with X̃ being equivariant under a (meaning the morphism a→ TX can be lifted to

a→ T̃X). We express the action of a on δξ in terms of the generator v = 1⊗1 ∈ δξ.
Then we have two extremal situations.

Case 1: a ∈ X is a fixed point of a, i.e., when a maps trivially to TaX. In this
case the map a → T̃X comes from a map a → t. Let λa ∈ a∗ be the character
induced via the map a → t from the character λ ∈ t∗. Let ωa be the character
by which a acts on the canonical sheaf ωX . Then the action of a on v is by the
character λa − ωa.

Case 2: a ∈ X is a point where a acts simply transitively. By this we mean the
map a → TX , yeilds an isomorphism a ∼= TaX when taking the fiber at a ∈ X.
The point χ ∈ T ∗aX can be thought of as a character of the Lie algebra TaX. We
use the notation χa ∈ a∗ to mean the character of a induced via the isomorphism
a ∼= TaX. Then the map Uχa(a)→ δξ sending f to f(v) is an isomorphism.

Now take X = B, and X̃ = B̃. We consider the differential operators twisted
by an integral λ ∈ h∗. Let b be the Borel subalgebra corresponding to the point
b ∈ B. Decompose b = n ⊕ h. Let n− be the opposite n. We have n−∗ ∼= T ∗b B.

Consider the pair (b, χ) where χ ∈ g∗(1) such that χ|b(1) = 0. As χ restricts to
χ|n− ∈ n−∗ ∼= T ∗b B, the pair (b, χ) can be thought of as a closed point (b, χ) in
TbB.

We look at the point module δξ correspond to ξ = (b, χ, λ). Consider the b
action on B. It fixes b, hence b acts on v by λ + 2ρ. Then look at the n−-
action which is simply transitive at b. Its action on v induces an isomorphism
Uχ(n−) ∼= δξ as modules over n−. To summarize, as a module over Uλ, the point

module δξ is isomorphic to Uχ(g)⊗U(b) kλ+2ρ. It is called the baby Verma module.

Also since the support of δξ is one point, its global section is δξ itself with the
natural Uλ action, which is again the baby Verma module.

Example 4.3. Let g = sl2 = 〈e, h, f〉. Then π : B̃ → B is the natural projection

A2 − {0} → P1. Now we consider g → T̃ ∼= 2O(1). Clearly e maps trivially and
h maps to the subsheaf O → 2O(1) generated by a global Gm-invariant vector
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field on A2 − {0}. Up to scalar, there is only one such global non-vanishing
Gm-invariant vector field, i.e., x∂x + y∂y. Locally f acts as a vector field on P1.

Let s be a local section of O(n), then h = x∂x + y∂y acts on s by scaler n. In
particular, h acts on the anti-canonical sheaf O(2) by 2.

Now we examine the structure of a point module as module over U(g)λ. Assume
without loss of generality, we take 0 ∈ P1. On local chart, we get

k[w, ξ]
w 7→zp

ξ 7→ξ
// k[z, ξ]

k[w]

OO

w 7→zp // k[z]

OO

where ξ = ∂w. Let ∂ be ∂z, then ∂p = ξ. We consider the point module
defined by 0 ∈ P1 and χ ∈ T ∗0 P1(1). This point module is generated by one
element v = δ(0)dzχ. Clearly zδ(0) = 0, and ∂p(v) = ξv = χv, and hv =
h(δ(0))dzχ + δ(0)h(dz)χ = λv + 2v. Therefore, U(b) acts by the h-character
λ+ 2. As module over U(n−) ∼= k[f ], this module is isomorphic to k[∂]/(∂p − χ)
where f = ∂.

Appendix A. Differential operators twisted by an arbitrary
character

Suppose we have a line bundle L on a smooth variety X, we can consider
differential operators twisted by this line bundle. We would like to fit it into a
family. Or in other words we would like to define differential operators twisted
by a scalar (in the field) multiple of this line bundle. (If we can do this for one

line bundle, we can do it simultaneously for several line bundles.) Let X̃ be the
total space of the line bundle L with the zero section removed. This is a torsor
under the torus T = Gm. Let π : X̃ → X be the natural projection. The twisted
product X̃ ×T A1 is the line bundle L . Consider the sheaf of vector fields TX̃ on

X̃. Take the sections in π∗TX̃ on X invariant under the translation action of T ,

i.e., (π∗TX̃)T =: T̃X . It is a Lie algebroid which is a central extension of T (X)
by t, the lie algebra of T . (A Lie algebroid is a sheaf L of Lie algebras, with a
morphism a : L → T (X) of sheaves of lie algebras, which satisfies the Leibniz
rule [x, fy] = a(x)(f)y − f [x, y] for local function f and local sections x and y

of L .) The enveloping sheaf of algebras of the Lie algebroid T̃X is denoted by

D̃X . The enveloping algebra of t, which is O(t∗), lies in the center of D̃ . For any

character of U(t), say λ, one can consider the central reduction Dλ
X := D̃X ⊗Ot∗ λ.

Note that this definition differs from [SR] by a −ρ.
So far everything has been characteristic free. Now suppose the underlying

field k has positive characteristic. For any variety Y of finite type, the relative
Frobenius of Y is denoted by Fr : Y → Y (1). Just like the sheaf of ordinary
differential operators has a large Frobenius center, so does the sheaf of twisted
differential operators. We denote the total space of the locally free sheaf T̃X which
is Spec Sym T̃ ∗ by T̃ ∗X. On X̃, there is a central embedding OT ∗X̃(1) ↪→ DX̃ .
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Applying (π∗−)T one get a central embedding OT̃ ∗X(1) ↪→ D̃X . Locally, this map

sends a section ξ of T̃X to ξp − ξ[p] ∈ D̃X , where ξ[p] is the vector field acting on
a function f via ξ ◦ · · · ◦ ξ p-times. We call OT̃ ∗X(1) the Frobenius center of D̃ .

Now we get two parts of the center of D̃ , i.e., U(t) and OT̃ ∗X(1) . How do they
intersect? The intersection is Ot∗(1) , embedded in Ot∗ by the Artin-Schreier map

(ξ 7→ ξp − ξ[p]) and embedded in OT̃ ∗X(1) in the natural way. The upshot is: D̃X

is a coherent sheaf of algebras over T̃ ∗X(1) ×t(1) t.

Exercise A.1. About the Artin-Schreier map: We think of t as global translation-
invariant vector fields on T , then for x ∈ t, x[p] is the vector field by which x◦· · ·◦x
(p-times) acts on functions. In particular, x[p] and xp act on functions in the same
way.

Recall that for a variety X, an Azumaya algebra on X is just a coherent sheaf
of algebras on X which locally under the locally finite flat topology (flat topology
for short) or equivalently the étale topology is isomorphic to a matrix algebra.
This is equivalence to being a locally free coherent sheaf of algebras, whose every
geometric fiber is a matrix algebra.

The Azumaya algebras on X, up to Morita equivalence, are classified by the
Brauer group Br(X) ⊆ H2(Xét,Gm). When R is a strict Henselian ring (only
étale covers are disjoint unions of itself), e.g., complete local ring with separably
closed residue field, the étale cohomology vanishes.

Proposition A.2. (1) As in the case of DX , the sheaf D̃X is an Azumaya

algebra on T̃ ∗X(1) ×t(1) t, which splits on the flat cover coming from the

base change Fr : X → X(1).
(2) The sheaf of twisted differential operators Dλ

X is an Azumaya algebra on

T̃ ∗X(1) ×t(1) AS(λ) (which will be called the twisted cotangent bundle and

denotd by T ∗AS(λ)X
(1)), which splits on the étale cover coming from the

base change Fr : X → X(1). (This flat cover is called the twisted cotangent

bundle and is denoted by T
∗,(1)
AS(λ)X.)

The spaces involved are summarized in the following diagram.

T̃ ∗AS(λ)X ×X(1) X

��

// T̃ ∗X(1) ×t∗(1) t
∗ ×X(1) X

��

// T̃ ∗X(1) ×X(1) X

��

// X

Fr
��

T̃ ∗AS(λ)X
(1)

��

// T̃ ∗X(1) ×t∗(1) t
∗

��

// T̃ ∗X(1)

��

// X(1)

{λ} // t∗
AS

// t∗(1)
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Example A.3. When λ is an integral character, i.e., coming from a character of
T , then AS(λ) = 0. In this case the sheaf Dλ

X becomes the usual differential oper-
ators values in a line bundle, and AS(λ) = 0 which means the twisted cotangent
bundle is the cotangent bundle.

Remark A.4. Let χ be a point in Spec Γ(X(1),OT̃ ∗X(1)), considered as a central

character of global sections of D̃X or Dλ
X . One can also do central reduction of

using the Frobenius center, and get a sheaf of algebras on the fiber of χ in T̃ ∗X.

Appendix B. The derived localization theorem

B.1. Quantum comoment map. Recall B̃ = G/N has an action by G×H. The
quantum comoment map µ : U(g)⊗U(h)→ DB̃ induces a map µ̄ : U(g)⊗U(h)→
π∗(DB̃)H ∼= D̃B.

Lemma B.1. (1) The map µ̄ : U(g) ⊗ U(h) → D̃B factors through Ũ :=
U ⊗O(h∗//W ) O(h∗).

(2) We have an isomorphism U(h)→ Γ(B,D)G. The embedding iHC : UG →
Γ(B,D)G is the Harish-Chandra map with image U(h)W•.

U(h)W

∼=
��

� � // U(h) // Γ(B,D)

U(g)G // U(g)

::

Proof of Lemma B.1. Part (2) clearly follows from part (1). We only need to
prove the two statements of part (2).

The first statement is a generalization of Proposition 1.13 in [SR]. The map
µg : U(g)⊗kOB → DB is surjective. For any point b ∈ B, the fiber of the map µg
at b, U(g) → (DB)b, has kernel generated by n. In other words, the fiber of DB

at the point b ∈ B is U(g)/n. Therefore, we have Γ(B,DB)G ∼= (U/n)B. Then
we conclude (U/n)B = (U/n)H ∼= U(h).

So far we have seen that iHC : UG ↪→ U � U/n lands in (U/n)B ∼= U(h) ⊆ U/n.
To show it coincides with the Harish-Chandra homomorphism, we first describe
the Harish-Chandra homomorphism as the composition UG ↪→ U = (nU+Un−)⊕
U(h) � U(t). Then we conclude the second claim using the diagram

U // // U/n

UG
, �

::

� � //� r

$$

nU + U(b)� _

��

?�

OO

// // (nU + U(b))/nU
?�

OO

U(t)
U5

gg

∼=oo

U (nU + Un−)⊕ U(h)

77 77

.

�
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B.2. Localization functors. Now we define the localization functors. For an
U -module M , define L (M) := D̃ ⊗L

U M ∈ Db(Coh D̃). For λ ∈ h∗, we start with

M ∈ Db(Modλ U), applying L to it. The complex L (M) decomposes according
to the central characters of D . All the central characters appearing in L (M) are
in Wλ. We denote this decomposition by L (M) = ⊕µ∈W•λL λ→µ(M). We define

L λ̂ := L λ→λ : Db(Modλ U)→ Db(Cohλ D̃).

This localization functor is left adjoint to RΓD̃ ,λ.

Similarly we have the localizations for the other categories

L λ : Db(ModUλ)→ Db(Coh Dλ)

sending M to Dλ⊗L
Uλ
M . Note that this functor has bounded homological degree,

hence is well-defined. This is because we have the following diagram:

D−(ModUλ)
i //

L λ

��

D−(ModU)

L λ̂

��
D−(Coh Dλ)

ι // D−(Cohλ D).

The functors i and ι are clearly exact functors and hence send bounded complexes

to bounded ones. As we have seen, L λ̂ has bounded homological degree, therefore,
so does L λ.

Corollary B.2. For λ regular, the functor RΓD̃ ,λ ◦ L λ̂ is isomorphic to id on

Db(Modλ U)

The following lemma is proved the same way as in [SR].

Lemma B.3. For regular λ, and forM• ∈ Db(Cohλ D) such that RΓD̃ ,λ(M) = 0,

then M = 0.

This concludes the derived localization theorem.
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