HECKE ALGEBRAS AND KAZHDAN-LUSZTIG BASIS

1. K_0 AND CHARACTERS

As before, \mathfrak{g} is a semisimple Lie algebra and $\mathcal{O}_{W\cdot 0}$ is the principal block of category \mathcal{O} . For $M \in \mathcal{O}$, we can consider its *character*: $\operatorname{ch} M = \sum_{\chi \in \Lambda} \dim M_{\chi} e^{\chi}$.

Example 1.1. Since $\Delta(\lambda) \cong U(\mathfrak{n}^-) \otimes \mathbb{C}_{\lambda}$ as a $U(\mathfrak{b}_-)$ -module, we have $\operatorname{ch} \Delta(\lambda) = e^{\lambda} \prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{-1}$.

Exercise 1.2. More generally, for a parabolic Verma module, we have

$$\operatorname{ch} \Delta_J(\lambda) = \frac{\sum_{w \in W_J} (-1)^{\ell(w)} e^{w(\lambda + \rho)}}{\sum_{w \in W_J} (-1)^{\ell(w)} e^{w\rho}} \prod_{\alpha \in \Delta_+ \setminus \Delta_J} (1 - e^{-\alpha})^{-1}.$$

The question is to compute the characters of more interesting modules: $L(\lambda), P(\lambda), T(\lambda)$. The translation functors reduce these questions to the principal block $\mathcal{O}_{W\cdot 0}$. This is easy for $L(\lambda)$'s, the case of $P(\lambda)$'s can be deduced from there using the BGG reciprocity. And, in fact, the case of $T(\lambda)$'s can also be done (using Ringel duality).

Consider the Grothendieck group $K_0(\mathcal{O}_{W\cdot 0})$. It is a free \mathbb{Z} -module with basis formed by $[L(w\cdot 0)]$.

Exercise 1.3. Prove that each of the following collections form a basis in $K_0(\mathcal{O}_{W\cdot 0})$:

- (1) $[\Delta(\lambda)]$ for $\lambda \in W \cdot 0$,
- (2) $[P(\lambda)]$ for $\lambda \in W \cdot 0$,
- (3) $[T(\lambda)]$ for $\lambda \in W \cdot 0$.

Hint: use triangularity.

Our initial basis will be that of Vermas, because their characters are easy to compute. And since the characters are additive on K_0 , to compute the character of $M \in \mathcal{O}_{W\cdot 0}$ it is enough to express [M] as a linear combination of the classes $[\Delta(\lambda)]$.

Note that we can identify $K_0(\mathcal{O}_{W\cdot 0})$ with $\mathbb{Z}W$. In fact, there are two similar – but different – ways to do that: via $w \mapsto [\Delta(w \cdot 0)]$ (convenient for working with $[P(\lambda)]$ because $P(0) = \Delta(0)$) or via $w \mapsto [\Delta(w \cdot (-2\rho))]$ (good for $[L(\lambda)]$'s and $[T(\lambda)]$'s because $L(-2\rho) = \Delta(-2\rho) = T(-2\rho)$). We note that under any of these identifications, Θ_i acts on K_0 by $w \mapsto w(1+s_i)$.

However, it turns out that the interesting bases cannot be described entirely on the level of $\mathbb{Z}W$. But they can be described via the *Hecke algebra*, a deformation

of $\mathbb{Z}W$ and have to do with the so called Kazhdan-Lusztig basis, which is the main object for this lecture.

2. Kazhdan-Lusztig Theory

2.1. Hecke algebras of Coxeter groups. Let W be a Coxeter group with set S of simple reflections (e.g., a Weyl group of a semisimple Lie algebra). On W, we have the Bruhat order. Also, we can consider the length function $\ell: W \to \mathbb{Z}_{\geq 0}$. Recall that for $s \in S, w \in W$, we get $\ell(sw) = \ell(w) - 1$ if w has a reduced expression that starts with s and $\ell(sw) = \ell(w) + 1$ else.

Set $\mathcal{L} := \mathbb{Z}[v, v^{-1}]$. Our goal is to define a deformation of the group ring $\mathbb{Z}W$ over \mathcal{L} .

Definition 2.1. The Hecke algebra $\mathcal{H} = \mathcal{H}(W,S) = \bigoplus_{x \in W} \mathcal{L}H_x$ is the free \mathcal{L} -module with basis $H_w, w \in W$, and an associative product that is uniquely determined by

$$H_x H_y = H_{xy} \text{ if } \ell(xy) = \ell(x) + \ell(y),$$

 $H_x H_s = H_{xs} + (v^{-1} - v)H_x \text{ if } \ell(xs) = \ell(x) - 1.$

The basis H_x is usually called the *standard basis*.

It is a nontrivial fact that such a product exists. Note that $\mathcal{H}/(v-1) = \mathbb{Z}W$ so we indeed get a deformation.

Exercise 2.2. Prove the following facts about \mathcal{H} :

- (1) H_1 is a unit.
- (2) The elements $H_s, s \in S$, are generators.
- (3) The relations for these generators are as follows: $(H_s v^{-1})(H_s + v) = 0$ for all $s \in S$ and $H_sH_tH_s \dots = H_tH_sH_t \dots$ for all $s \neq t \in S$, where in both sides we have m_{st} factors, m_{st} is the order of st in W.
- (4) $H_s H_x = H_{sx} + (v^{-1} v) H_x$ if $\ell(sx) = \ell(x) 1$.
- (5) The assignments $H_x \mapsto v^{-\ell(w)}$, $H_x \mapsto (-v)^{\ell(w)}$ define \mathcal{L} -linear representations of \mathcal{H} in \mathcal{L} , called the trivial and sign representations, denote them by triv_v and sgn_v .

2.2. Bar involution and Kazhdan-Lusztig basis.

Lemma 2.3 (Bar involution). There exists a unique ring involution $a \mapsto \bar{a} \colon \mathcal{H} \to \mathcal{H}$, $H \mapsto \overline{H}$ such that $\bar{v} = v^{-1}$ and $\overline{H_x} = (H_{x^{-1}})^{-1}$.

Proof. Exercise.
$$\Box$$

Definition 2.4. We call $a \in \mathcal{H}$ self-dual if $\overline{a} = a$.

Theorem 2.5 (Kazdan-Lusztig basis). For all $x \in W$ there exists a unique self-dual element $\underline{H}_x \in \mathcal{H}$ such that $\underline{H}_x \in H_x + \sum_y v\mathbb{Z}[v]H_y$. Moreover, we have $\underline{H}_x \in H_x + \sum_{y \prec x} v\mathbb{Z}[v]H_y$.

Proof. We prove the existence and the uniqueness is an exercise.

Note that $H_1 = 1$. Set $C_s = H_s + v$. We see that $\overline{C}_s = H_s^{-1} + v^{-1} = H_s + v = C_s$. So $\underline{H}_s = C_s$. We have $H_x C_s = H_{sx} + v^{\ell(xs) - \ell(x)} H_x$ (note that $\ell(xs) - \ell(x) \in \{\pm 1\}$).

We prove the existence of \underline{H}_x by induction on $\ell(x)$, the case of $\ell(x)=1$ is already done. Take $s\in S$ such that $\ell(xs)=\ell(x)-1$. We have already constructed \underline{H}_{xs} . Note that $\underline{H}_{xs}\in H_{xs}+\sum_{y\prec sx}v\mathbb{Z}[v]H_y$ by our choice of s so $\underline{H}_{xs}C_s\in H_s+\sum_{y\prec x}\mathbb{Z}[v]H_y$. So we can write $\underline{H}_{xs}C_s=H_x+\sum_{y\prec x}h_yH_y$ for some $h_y\in\mathbb{Z}[v]$. The element $\underline{H}_{xs}C_s$ is self-dual as a product of self-dual elements but we still can have $h_y(0)\neq 0$, so we cannot take $\underline{H}_{xs}C_s$ for \underline{H}_x . Instead, we set $\underline{H}_x:=\underline{H}_{xs}C_s-\sum_y h_y(0)\underline{H}_y$.

Example 2.6. Consider the case $W = S_3 = \langle s_1, s_2 \rangle$, where $s_1 = (12)$, $s_2 = (23)$. We have $\underline{H}_1 = 1$, $\underline{H}_{s_1} = C_{s_1}$, $\underline{H}_{s_2} = C_{s_2}$. We see that

$$\underline{H}_{s_1 s_2} = C_{s_1} C_{s_2} = T_{s_1 s_2} + v(T_{s_1} + T_{s_2}) + v^2 T_{s_1 s_2}.$$

and, similarly, $\underline{H}_{s_2s_1} = C_{s_2}C_{s_1}$. It remains to compute $\underline{H}_{s_1s_2s_1}$. We have $C_{s_1}C_{s_2}C_{s_1} = H_{s_1s_2s_1} + vH_{s_1s_2} + vH_{s_2s_1} + v^2H_{s_1} + v^2H_{s_2} + H_{s_1} + v^3 + v$. We should now substract C_s and get

$$\underline{H}_{s_1 s_2 s_1} = H_{s_1 s_2 s_1} + v(H_{s_1 s_2} + H_{s_2 s_1}) + v^2(H_{s_1} + H_{s_2}) + v^3.$$

Let us list some properties of the elements H_x .

Example 2.7. Let W be finite so that it makes sense to speak about the longest element w_0 . We have $\underline{H}_{w_0} = \sum_{u \in W} v^{\ell(w_0) - \ell(u)} H_u =: R$.

Proof. Note that $RC_s = (v + v^{-1})R$, hence, $RH_s = v^{-1}R$ and $R\mathcal{H} \simeq \operatorname{triv}_v$. We also have $\overline{R}C_s = (v + v^{-1})\overline{R}$. It easily follows that $\overline{R} \in \mathcal{L}R$. Note now that $R \in \underline{H}_{w_0} + \sum_{v \prec w_0} \mathcal{L}\underline{H}_v$ so $R = \overline{R}$.

Exercise 2.8. Let $J \subset I$. Then $\mathfrak{H}(W_J) \hookrightarrow \mathfrak{H}(W)$ via $H_x \mapsto H_x$ for $x \in W_J$. Show that this embedding sends \underline{H}_x to \underline{H}_x .

Definition 2.9. For $x, y \in W$ we define the Kazhdan-Lusztig polynomial $h_{y,x} \in \mathbb{Z}[v]$ by $\underline{H}_x = \sum_y h_{y,x}(v)H_y$.

Exercise 2.10. For any $x, y \in W$, we have $h_{y,x} = h_{y^{-1},x^{-1}}$.

Proof. Use the anti-authomorphism $v \mapsto v, H_x \mapsto H_{x^{-1}}$.

Here is another version of the Kazhdan-Lusztig basis.

Theorem 2.11 (c.f. Theorem 2.5). For all $x \in W$ there exists a unique self-dual $\underline{\tilde{H}}_x \in \mathcal{H}$ such that $\underline{\tilde{H}}_x = H_x + \sum_y v^{-1}\mathbb{Z}[v^{-1}]H_y$. We have $\underline{\tilde{H}}_x = H_x + \sum_y h_{y,x}(-v^{-1})H_y$.

This is because of the ring involution of $\mathcal H$ that fixes all H_x and sends v to $-v^{-1}$.

2.3. Application: multiplicities in category O. Let us return to the setting of the first section of this lecture.

The following statement is usually called a Kazhdan-Lusztia (type) theorem. The part about simples (which is equivalent to the part about projectives thanks to the BGG reciprocity and some combinatorics) was originally conjectured by Kazhdan-Lusztig and then proved by Beilinson-Bernstein and Brylinski-Kashiwara.

Theorem 2.12. We have the following equalities in $K_0(\mathcal{O}_{W\cdot 0})$:

- (1) $[P(x \cdot 0)] = \sum_{y \in W} h_{y,x}(1) [\Delta(y \cdot 0)], \text{ equivalently, if we send } \Delta(x \cdot 0) \text{ to } H_x|_{v=1}, \text{ then } [P(x \cdot 0)] \text{ becomes } \underline{H}_x|_{v=1}.$ (2) $[L(x \cdot (-2\rho))] = \sum_{y \in W} h_{y,x}(-1) [\Delta(y \cdot (-2\rho))],$ (3) $[T(x \cdot (-2\rho))] = \sum_{y \in W} h_{y,x}(1) [\Delta(y \cdot (-2\rho))].$
- - 3. Variations: spherical and anti-spherical modules

It turns out that the Kazhdan-Lusztig basis in \mathcal{H} gives rise to similar bases in certain modules.

We fix a subset $S_J \subset S$ and the corresponding Coxeter group $W_J \subset W$ and denote by $W^J \subset W$ the set of all $w \in W$ such that w has minimal length in $W_J w$. So we have a bijection $W_J \times W^J \xrightarrow{\sim} W$, $(x,y) \mapsto xy$. Set $\mathcal{H}_J := \mathcal{H}(W_J)$ and consider the induced right modules

$$\mathfrak{M}(=\mathfrak{M}^J):=\mathrm{triv}_J\otimes_{\mathfrak{H}_J}\mathfrak{H},\ \mathfrak{N}(=\mathfrak{N}^J)=\mathrm{sgn}_J\otimes_{\mathfrak{H}_J}\mathfrak{H}.$$

These are the *spherical* and *anti-spherical* modules, respectively. We have the standard bases $M_x = 1 \otimes H_x \in \mathcal{M}$ and $N_x = 1 \otimes H_x \in \mathcal{N}$, where $x \in W^J$. The bar involution on \mathcal{H} induces compatible involutions on \mathcal{M} and \mathcal{N} by $1 \otimes a = 1 \otimes \bar{a}, a \in$ \mathcal{H} .

Exercise 3.1. These are well-defined.

Theorem 3.2. For all $x \in W^J$, there exists a unique self-dual $\underline{M}_x \in \mathcal{M}$ such that $\underline{M}_x \in M_x + \sum_{y} v\mathbb{Z}[v]M_y$. The same for \mathbb{N} .

Exercise 3.3. Check that the proof of Theorem 2.5 carries over to this case.

Definition 3.4. For $x, y \in W^J$ we define $m_{y,x} \in \mathbb{Z}[v]$ by $\underline{M}_x = \sum_y m_{y,x} M_y$. Define $n_{y,x}$ similarly. Then $m_{y,x}, n_{y,x}$ are called parabolic Kazhdan-Lusztig polynomials.

Let us now describe the relation between the parabolic and the ordinary Kazhdan-Lusztig polynomials.

Proposition 3.5. Suppose W_J is finite. Then

- (1) If $w_{0,J} \in W_J$ denotes the longest element then we have $m_{y,x} = h_{w_{0,J}y,w_{0,J}x}$.
- (2) $n_{y,x} = \sum_{z \in W_I} (-v)^{l(z)} h_{zy,x}$.

Proof. We have the embedding $\iota \colon \mathcal{M} \hookrightarrow \mathcal{H}$ of right \mathcal{H} -modules via $1 \otimes a \mapsto \underline{H}_{w_{0,J}} a = (\sum_{w \in W_J} v^{\ell(w_{0,J}) - \ell(w)} H_w) a$, denote it by ι . So $\iota(\underline{M}_x)$ is self dual and it lies in $H_{w_{0,J}x} + v \operatorname{Span}_{\mathbb{Z}[v]}(H_y, y \in W)$. By the uniqueness part of Theorem 2.5, $\iota(\underline{M}_x) = \underline{H}_{w_f x}$. This easily implies (1).

The proof of (2) is similar and is based on the canonical surjection $\sigma \colon \mathcal{H} \to \mathcal{N}, H \mapsto 1 \otimes H$ that can be shown to map \underline{H}_x to \underline{N}_x for $x \in W^J$.

We finish with the following theorem (c.f. Theorem 2.11).

Theorem 3.6. For all $x \in W^J$ there exists a unique self-dual $\underline{\tilde{N}}_x \in \mathbb{N}$ such that $\underline{\tilde{N}}_x \in N_x + \sum_{y \prec x} v^{-1} \mathbb{Z}[v^{-1}] N_y$. The similar claim holds for \mathfrak{M} .

3.1. Representation theoretic relevance. We return to the representation theoretic setting, in particular, our W is the Weyl group of \mathfrak{g} . Consider the corresponding parabolic category $\mathcal{O}_{W\cdot 0,J}$.

Let us consider its Grothendieck group of the parabolic category. Note that $x \cdot 0 \in \Lambda_J^+ \Leftrightarrow x \in W^J$ and $y \cdot (-2\rho) \in \Lambda_J^+ \Leftrightarrow y \in w_{0,J}W^J$.

Exercise 3.7. In $K_0(\mathcal{O}_{W \cdot 0})$, we have $[\Delta_J(w \cdot 0)] = \sum_{w \in W_J} (-1)^{\ell(w)} [\Delta(yw \cdot 0)]$ for $w \in W^J$.

So we can identify $K_0(\mathcal{O}_{W\cdot 0,J})$ with both $\mathcal{M}|_{v=-1}$ and $\mathcal{N}|_{v=1}$ so that $[\Delta_J(x\cdot 0)]$ gets identified with $M_x|_{v=-1}$ in the first case and $N_x|_{v=1}$ in the second case. This is the identification of right W-modules, where the action of s_i on the K_0 is via $[\Theta_i]+1$.

Theorem 3.8 (Parabolic Kazhdan-Lusztig theorem). The following claims are true:

- (1) $[P_J(x \cdot 0)] = \underline{N}_x|_{v=1}$ if we identify $[\Delta_J(x \cdot 0)] = N_x|_{v=1}$.
- (2) $[L(w_{0,J}x\cdot(-2\rho))] = \underline{M}_x|_{v=-1}$ if we identify $[\Delta_J(w_{0,J}x\cdot(-2\rho))] = M_x|_{v=-1}$.
- (3) $[T_J(w_{0,J}x \cdot (-2\rho))] = N_x|_{v=1}$ if we identify $[\Delta_J(w_{0,J}x \cdot (-2\rho))] = N_x|_{v=1}$.