CRYSTALS

HUIJUN ZHAO

In these notes we introduce the crystal structures of modules over Kac-Moody algebras obtained from Berenstein-
Kazhdan perfect bases, especially on the complexified Grothendieck groups of type A Kac-Moody categorifications.

In Section 1 we describe the structure of simple objects in an sl;-categorification. In Section 2, we introduce the
Berenstein-Kazhdan perfect bases of integrable highest weight representations of a Kac-Moody algebra. Finally in
Section 3, we apply what we have in the first two sections to the example of Categoricafl\ g[\l—action on modules over
cyclotomic Hecke algebras, and conclude that this is a categorification of an irreducible sl;-module.

1. SIMPLE OBJECTS IN AN §l5-CATEGORIFICATION

1.1. Reminder and notation. Let C be a general artinian and noetherian F-linear abelian category equipped with
a categorical sly-action given by the endofunctors E and F, the parameter ¢ € F* and a € F, where a # 0 if ¢ # 1,
and L € End(E), T € End(E?). We adopt some notation from [Si] and [CR]:

e Let [C] = Ko(C) ® C denote the complexified Grothendieck group of C and H2%(n) denote the affine Hecke
algebra generated by Xq,---,X,,,T1,---,T,_1 subject to the Hecke relations.

e For some U € C, denote hy(U) := max{j : E/U # 0}, h_(U) := max{j : F/U # 0}, and d(U) := hy(U) +
h_(U)+ 1. Also, denote the socle of U by soc(U), which is the maximal semisimple subobject of U in C, and
the head by head(U), which is the maximal semisimple quotient.

o EW FU) denote the categorified divided powers.

e Let m,, C P, := F[Xi,..., X*] be the ideal generated by (X; —a), i = 1,...,n. Let n, := mS» C Ha ().
Let N, be the category of Hgﬂ(n)-modules with locally nilpotent n,-action. Since n,, is contained in the center
of H2(n), the quotient H(n) = H2(n)/n,H2 (n) is an algebra. For 0 < i < n, denote by B ,, the image of
the subalgebra H3% (i) inside H(n). Define the Kato modules K,, := H3(n) @p, P,/m, = (H2T(n)/n,)c], to
be the unique simple module in A, where ¢}, =3 s q )1 (T,)T,, for T € {triv,sign}.

e As in [Si, Proposition 3.3], for any U € C and n > 0, E"(U) has a natural left 2% (n)-module structure. It
induces a morphism *,, : ’Hgﬂ(n) — End(E™) defined by T; — 1gn-i-1T1gi-1 and X; — 1gn—iLlgi-1.

e Given d > 0, let C=? be the full Serre subcategory of C consisting of all simple objects S such that d(S) < d.
Let [C]=¢ be the maximal submodule of [C] containing all modules of dimension < d. Clearly [C=¢] C [C]=1.
In fact this is an equality.

1.2. Simples in C. In this subsection, we focus on the categorical action of E and F on a simple object S in C. In
general, ES and F'S (or more generally, EWS and F (i)S) are not necessarily simple, but their socles and heads are.
Also we prove some results describing End(E®S).
The following result is due to Chuang-Rouquier [CRL Prposition 5.20].
Proposition 1.1. Let S be a simple object of C, and let n = hy(S). Then, for every i < n:
(a) The object E™ S is simple.
(b) The socle and the head of E)S are isomorphic to a simple object S' of C. We have H3% (i)-equivariant
C-isomorphisms: soc(E'S) = head(E'S) =2 S’ @ K;.
(¢) The canonical homomorphism ~;(S) : Ha¥ (i) — Endc(E'S) factors through B;,. Moreover, it induces an
isomorphism B; , =, Endc(E'S).
aff (;
Hg (@)
can i%(s)
By, > End(ELS).

(d) We have [ED(S)] — (7)[5] € [C]S4S)-1,
The corresponding statements with E replaced by F and hy(S) by h_(S) hold as well.

To prove the proposition, we need the following two lemmas.
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Lemma 1.2. Let M be an object of C. If d(S) > r for any simple subobject (resp. quotient) S of M, then d(S') > r
for any simple subobject (resp. quotient) of EM or FM.

Proof. By the weight decomposition of C ([Si, Proposition 3.5]), it is enough to consider the case where M lies in a
single weight space. Let T be a simple submodule of EM, by adjunction, Hom(FT, M) = Hom(T, EM) # 0. So there
exists S being a simple subobject of M that is a composition factor of FT. Hence, d(T) > d(FT) > d(S) > r. The
proofs for F'M and simple quotients are similar. O

For 1 <i < j <n, denote by &[; ;; the symmetric group on [i,j] = {i,i+1,---,j}. We define similarly Hgﬂ([i,j])

and H([z, j]) and we put cﬁ’j] = Zwee[w_] qif(w)T( Tw)Tw.

Lemma 1.3. The ”Hgﬂ(i)—module Cliy1,mHn has a simple socle and head.

Proof. See [CR), Lemma 3.6], or [Ven, Theorem 5.10]. O
Proof of Proposition|1.1] The proof is in several steps.

Step 1. (a) holds when FS = 0. Since [E], [F] define an sly-action on [C], [F(™) E(™)S] = 7[S] for some r € Z~g. By
adjointness, Hom(F(™E™ S §) = Hom( EMS EMS ) # 0. So there exists a nonzero homomorphism F(™ E(M™ S — &
hence an isomorphism. Then F(WEM™ S =~ §. If E(") S has at least two composition factors, then by weight consid-
eration, F(™) E(™ S also has at least two composition factors, and thus cannot be simple. So E(™ S = S’ must be simple.

Step 2. (a) holds in general. Let L be a simple quotient of F(") S, where » = h_(S). Note that, by our choice
of 7, FL. = 0 so, by Step 1, E®*" L = T is simple and EMEML = (»*")T. By adjunction we have that
Hom(S EML) = Hom(F(T)S L) # 0, so S must be a subobject of E(ML. Tt follows that E™ S must be a sub-
object of ("*")T. So EMS = mT for some m > 0. Clearly, m = dim Hom(E™ S, T) = dim Hom(S, F™T). But
ET =0, so by Step 1 (with E and F swapped) soc(F(™T) is simple. Thus, m = 1.

Step 3. (b) holds whenever (a) does. Clearly, (b) holds when ¢ = n. But let us observe a bit more. We have
E™S = nlS’ for some simple module S’. Thus, E"S = S’ ® R for some left ’Hgﬁ(n)-module R in MN,,. Since
dim R = n! = dim K,,, we must have R = K,,.

For i < n we have, using exactness of E and the above paragraph, that E"~*soc(E("S) C E*'E(®)S = §" @ K, c}.
The H2¥(n — i)-module K,c}! has a simple head and socle, (Lemma , so the same is true for S” ® K,cI (as a
Ha (n — i)-module in C). It follows that E"~ soc(E®WS) is indecomposable as a H2 (n — i)-module in C. Now, if S’
is a nonzero summand of soc(E(®)S), then E"~*S’ # 0 (Lemma [1.2). So soc(E(®S) has no more than one summand
and hence must be simple. We have soc(E*S) = S’ ® R for some "Haﬁ( )-module R in N;. Since dim R = 3!, it follows
that R = K. soc(E(i)S) = S’. The proof for the head being simple is similar. It remains to show that the head and
the socle are isomorphic.

Step 4. Estimating the dimension of End(E'S). Since S’ = soc(E(®S) is simple, the dimension of Hom(M, E(*)S)
is at most the multiplicity of S’ in M. Taking M = E®S, we get that the dimension of End(E®S) is at most the
multiplicity of §” in E®S. Since E("~)S" #£ 0, we have that the dimension of End(E(®S) is at most the number of
composition factors of E"~)EW S, But EM~)E0)S = (7)S”. Thus, dim(End(E®S)) < (7). Since E'S = i!E® S,
it follows that dim End(E'S) < (i) (?) = dim B; .

Step 5. (c) holds whenever (a) holds. ker~,(S) C nnHaH( ) since the former is a proper ideal and the latter is a
maximal ideal of H3T(n). For i < n, we have that ker;(S) C Ha% (i) Nker v, (S) € HAT(i) N (n,H2T(n)). Then, we
have an induced surjective map im~;(S) — B;,,. By Step 4 (that was done under the assumption that (a) holds) this
must be an isomorphism and v;(S) must be surjective.

Step 6. (d) holds whenever (a) holds. In Step 4 we also get that the multiplicity of S’ as a composition factor of
EW(S) is (7;) If L is a composition factor of E®S with E(~9[ = 0, then L = S’. And since the multiplicity of
head(E™S) in E®WS is also () and head(E¥S) is not killed by E(~9, head(E")S) = " = soc(E"S). Now we also
finish the proof of (b) and we are done. O

Take ¢ = 1 in the proposition above, we get a map

(1) € : IrrC — IrrC U {0}, S+ soc(ES) = head(ES),
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and similarly
(2) f:TIreC — IrrC U {0}, S + soc(FS) = head(FS).
Note that if £S = 0 then &(S) = soc(ES) = 0; If &(S) # 0, we have féS = S.

2. BERENSTEIN-KAZHDAN PERFECT BASES

In this section we introduce the Berenstein-Kazhdan perfect bases. In a g-module, a basis is perfect in the sense
that it behaves nicely under the action of Chevalley generators. It equips the g-module with a crystal structure, which
was first defined by Kashiwara using quantum groups. The main reference of this section is [BK| Section 5].

Let I be a finite set of indices. Let A be a lattice and AY = A* be its dual lattice, and let {a; : 4 € I} be a
subset of A and {a]V :j € I} be a subset of AV. Denote by g the Kac-Moody algebra associated to the Cartan matrix
A = (aij)ijer with a;; = (@i, ay), where (-,-) is the evaluation pairing. Also denote by e;, f; i € I the Chevalley
generators of g. We say a g-module V' is an integrable highest weight module if:

e V admits a weight decomposition V' = @V, and the weights are bounded above.
e ¢; and f; act locally nilpotently for ¢ € I, i.e., for any v € V and any i € I, there exists an integer N such that
eN(v) =0 and fN(v) =0.

K2

For a non-zero vector v € V and i € I, denote by h;y (v) the smallest positive integer j such that ¢ (v) = 0 and
we use the convention hi; (0) = —oco for v = 0. Similarly 2;_(v) = min{j € Z : f/T'(v) = 0}. Further, denote
d;(v) := hix(v) + hi—(v) + 1 to be the maximal dimension of the irreducible sly-submodule in U(g;)v, where g; is the
subalgebra of g generated by e;, f; and h; = [e;, fi].

For each i € I and d > 0, define the subspace
Vi<di={veV:di(v) < d}.

We say that a basis B of a integrable highest weight g-module V is a weight basis if B is compatible with the weight
decomposition, i.e., By := V), N B is a basis of V) for any \ being a weight of V.

Definition 2.1. We say that a weight basis B in an integrable highest weight g-module V' is perfect if for each i € I
there exist maps é;, f; : B — B U {0} such that é;(b) € B if and only if e;(b) # 0, and in the latter case on has

®) e;(b) € Cx*. é:(b) + V*i<d1;(b);
and fl(b) € B if and only if f;(b) # 0, and in the latter case on has
(4) fi(b) € C* f’z(b) + Vfdi(b)_

We refer to a pair (V,B), where V is an integrable highest weight g-module and B is a perfect basis of V, as a based
g-module.

Denote by VT the space of the highest weight vectors of V:
Vi={veV:elv)=0,Viel}
Denote BT := BN V. Then we have the following result.
Proposition 2.2. For any perfect basis B for V, the subset BT is a basis for V1.
Proof. For v e V', e;j(v) =0, Vi€ 1. Bis a basis of V, so v =3, g apb with a; € C. Therefore

e;(v) = Z ape;(b) = Z ape;(b) = 0.

beB bEB,e; (b)#0
B is perfect so by equation , if e;(b) # 0 then for some x;, € Vfdi(b) and B, € C*,
ei(b) = Bpéi(b) + xp.

Hence
> (wBéi(d) + ) = 0.
bEB,e; (b)£0
Take n = max{h;(€;(b)) : b € B,e;(b) # 0} and B,, :={b € B: o # 0, h;1(€;(b)) = n}. Then
e (ei(v) =0="Y" appe} (&(D)).
beB,

Note that for any b € B,,, By # 0 and e’ (€;(b)) # 0. So ap = 0 and B,, is empty. So for any b € B such that oy # 0,
hiy(€;(b)) =0. So h;1 (b)) =0 and b € BT. O
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3. PERFECT BASIS IN [C]

Recall from [Si, Section 2.5], if given ¢ # 1 being a primitive /th-root of unity in F and q = (qo,- - ,q—1) € F!
with ¢; = ¢" for k; € Z/I7Z, we can construct an gﬁ—categoriﬁcation on C =, H, —mod, where H,, = Hp 4 4(n)
denotes the cyclotomic Hecke algebra, which is the quotient of the affine Hecke algebra ’H,gff(n) by the extra relation
(X1 —qo) - (X1 — q—1) = 0 (which is also called a cyclotomic polynomial). The categorification data is given as
follows:

e The biadjoint endofunctors E = @ Res" and F = @ Ind”**, with the decompositions F = @li:é E; and
F = @ F;, where E; is the i-Restriction and F; is the i-Induction, defined in [Si, Section 2.4].
o L= L, € End(F) with L,, denoting the n-th Jucys-Murphy element in H,.
o T =T, 1 € End(E?) with T,,_; € H,, being a particular generator of the cyclotomic Hecke algebra.
For i =0.---,l—1, [E;] and [F}] define a sly-action on [C] = K(C) ® C. It is mentioned in [Si, Proposition 3.4] that
we have the weight decomposition C = @, Cx, where C) is the full subcategory of C consisting of objects whose class
is in the weight space [C]}.

The reason why we are interested in crystals is that the categorical ;[\l action on C gives rise to a canonical crystal
structure on the set IrrC of simple objects in C. In this section, we are going to construct a perfect basis for the
sl-module [C] using results in Propostion and deduce that [C] is an irreducible sl-module.

Denote V' = [C]. According to the weight decomposition, V' is an integrable highest weight g-module. Take the
basis B of V = [C] consisting of classes of all simple objects. Similarly to Equation and , we can define maps
€, fi : TrrC — TrrC L {0} for i € I. Note that for a simple object S in C, &(S) = 0 if and only if soc E;(S) = 0, iff and
only if £;S =0, i.e., ¢;[S] = 0. Together with Proposition we see that é;, fz are maps satisfying conditions and
, so B = IrrC is a perfect basis of V and (V,B) is a based g-module.

Now consider the basis BT of the space of highest weight vectors. [S] € B* means that S is simple and ¢;([S]) = 0
for all ¢ € I. Then e;[S] = 0, which means exactly E;S =0 foralli e I. So ES=@ E;S=0,ie, @PRes, ;5=0
for all n > 0. The only simple S in C is a simple Hy-module. Since Hy = F, so S ~ F is unique up to isomorphism.
[S] is the unique (up to scalar) highest weight vector in V. Therefore V is irreducible.
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