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1 Motivation fromLinearalgebra
A typical basic problem in thesubject is given a finite

dimensional vector space U form a related vectorspace V

eg lal linear operators U U or

61 bilinear forms U U maybe w a symmetry orskew

symmetry condition

c or a moregeneraltensous

Choosing a basis in U allows us to write elements of V as
collections of scalars that can often say in a 6 be

arranged into a matrix or a generalization ofsuch in c

When we change the basisofU thematrix or its generalization
changes and we want to find canonicalforms or more

generallyto find necessary and or sufficient conditions for one
matrix to be obtained fromanother via a change ofbasis
The Jordannormalform theorem addressing a is an exampleof
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suchresult A classification of homogeneous deg d polynomials
in n variables up to a linear change ofvariables is another
thisproblem was ofgreat importance in the19thcentury
It onlyhas nice solutions for small n and or α
Of course we can phrase theseproblems in a more educated

way
Thegroup G GLU of invertible linear operators U U

acts on V in a natural way eg for V EndU we have

the conjugation action g A gAg ge U A EV We

want to classify the orbits i.e find a bijection between the
set of orbits and a known set
We can also considermoregeneralgroups SL U

in Linear algebra this corresponds to the situation when U
comes w fixed volumeform G u for an orthogonalspace
U i e a space equipped w a nondegenerate symmetric bilinear

form Sp U for a symplecticspace or productofsuch

groups e.g G GL U
xGL U acting on V Hom U U by

go.ge A gAg
So our motivatingquestion is

Question how to classify orbits for a nice action of a
nice group G on a vectorspace V by lineartransformations
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2 Invariants

Let Fun V denote the set offunctions V it is

naturally a commutativeassociative unital C algebra
Note that the actionof C on Vgives rise to a Caction on
Fun V g f v fgu by algebraautomorphisms

Definition An element feFun V is calledCinvariant
if g f f geG f is constant on Corbits Thesubset
of all G invariants is denoted by Fun V19this is a sub
algebra
Let denote theequivalence relation on Vgivenby

U.TV if V E V2 A basic observation is
0 a v2 flu five fefun V o

A problem here is that we don't really havetools to
deal with all functions we needto restrict to something

manageable In this course we will dealwithpolynomialfunctionspolynomials in coordinates w.int a basis Let V

CFun V denote the subalgebra ofpolynomials It's G
stable Gacts by linear changesof variables so we can

consider the subalgebraofinvariantsCCV This is one ofthe
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main objects ofstudy in this course
Anadvantage of V over Fun V is that one can

actually study the former A disadvantage is that one can
not fully extract the informationabout the orbitsfrom
knowing v c V Define equivalence relation inv on

Vby v inv flu flu fe u

Example 0 Let G C themultiplicativegroup Vbe

any finite
dimensional space w C AV by dilations z.v zv

z e C ve V Choosing a basis in V we identify V w

x Xn Theaction of on x Xn is as follows Zee

multiplies Xi by z andso a degαmonomialby 2 Fromhere

we see that V thescalars So 1 badly fails
if we restrict to polynomial invariants inv is trivial

Example 1 Let G GLU acting on V EndU byconjugationsDefine X Xne V as the coefficients ofthe
characteristicpolynomial det 7.12 A X i X AX
Then Xne V One can show we will cover a more

generalresult that CV is the freealgebra ingenerators
tn 1 still fails but not as badly A in A iff A A



havethe same char polynomials but theymayhave different
Jordannormalforms

3 Work ofHilbert
So while computing the invariants doesn'tallow tofully
classify the Gorbits in V it stillgives a lot of information
Themost basic question in the studyof V3 is

Question 1 Is V finitelygenerated

Constructing finite sets of generators in various cases was an
importantpartof the 19th century Mathematics Then came
Hilbert He wrote twopapers in 1890 1803 that

completelyrevolutionized thesubject sothat it didn'trecover until the
2nd half of the 20th century andalso layingfoundations
of modern Commutative algebra
In modern language the maintheorem in Hilbert's 1800

paper is as follows

Thm 1 Let G be a reductive algebraicgroupacting on V
via a rational representation Then V is finitelygenerated
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For example all groups mentioned in Sec 1 are reductive

all representations mentionedthere are rational

Rem Aphilosophical implication ofthe theorem is that to
check V inv one needs to do onlyfinitelymany checks

if f f generate V then weneedto check fito
file i 1 K

Here's a geometric implicationof Thm1 ThealgebraCV3
has no nilpetents so we can form the corresponding variety
to be denotedby VAG The inclusion v V gives
rise to a dominant morphism 9 V VIC Thepair VAG
or abusing the terminology VAG itself is called the
categoricalquotient for theaction of G on V
Note that it is Ginvariant exercise so everyfiber is a

union oforbits Using techniques similar to theproofofThat
one canshow we will do this later

Proposition 1 IT is surjective
2 Everyfiberof IT contains a unique closed in Zariski
topology Gorbit
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So V14parameterites the closedGorbits in V

The 2ndpaperof Hilbert on the subject from 1803
addressed in our terminology a description of in

Exercise Use 2 of Proposition to show that theZariski
closure of every Gorbit in Vcontains a unique closedorbit

Hilbert in what is known now as theHilbertMumford
theorem

gave an efficientway of determining thatclosed
orbit Wepostpone stating thegeneral result butgive a
classical example

Example Let G SL2 V S C a.k.a thespaceof
homogeneous deg n polynomials in 2 variables xy

Wewant
to determine the inv equivalenceclassof 0 the common
set ofzeroes of all elements of CCV that vanish at 0
Note that every feV uniquely upto scalarfactors
decomposes into theproduct of linearfactors exercisehint
reducethis to the usualpolynomials in z y x Hilbert
proved that f inve fer fhas a linearfactor w



multiplicity 12 Note that one doesn'tknowhow towrite
generators of V3 for n sufficiently large

Rem ThetwoHilbertpapers are best known for their

auxiliaryresults the basis theorem in the1800paper Null
stellensatz in the 1803paper

4 Applications to Algebraic geometry
After revolutionarywork of Hilbert Invariant theory lest
its prominent status It gainedprominenceagain after
DavidMumfordused ageometricversionofthe theory toconstructmoduli spaces in Algebraicgeometry
In theprevious sections we talkedabout linearactions
GAV Both TheoremandProposition in Sec 3 continuetohold
for the actions of C on affinevarieties or finitetype affine
schemes X In particular we still have the categorical
quotient X G whosepointsparameterize theclosed Gorbits
What if we want toparameterize some otherorbits For

example by its verydefinition theprojective space P Vparameteritesthe nonzero C orbits in V forthedilationaction
Formoregeneral GRX we couldtry to immitatehow



P V is definedand
1 Coversome open Cstablesubset X'CX w Gstable

open affines X Xi
2 Form quotients illG andglue them along theirintersectionsXinX G
However

many things cango wrongwith thatprocedure
especially if we want our result to be a vanillavariety
or separated scheme It turns out that we haven't
used all of the structure in our basic example Namely
to a choice of characterX of C an algebraicgrouphome

morphism one can assign an open subset of
X semistable points X CX and its coverbyopen G
stable affines so that 1 2 give a

scheme X G a

GIT quotient parameterizing the closed Gorbits in X
S

In our basic example we take X id andget X V16
X a Blu
The usefulness of this construction as realizedby

Mumford is that one can use it to produce the coarse
moduli spaces ofvariousobjects in Algebraicgeometry i.e

varieties schemesparameterizing theseobjects
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