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2 Sections

1 Example of SL A 53 C finished

Here's where our studyof f groups is Let G Ag beas
before Let acg be a Cartan subspace andWecGLor be
the Weylgroup In Lec 7 we haveprovedtheChevalleyrestrictiontheorem log late and in Lec 8 weproved
that at least when G is semisimpleboth sides are the

isomorphicto thealgebra ofpolynomials in Lima variables
In Lec 0 we've learned to construct some examples ofCo2

g It turns out that most interestingexamples ones that can
not be handledusing usual Linearalgebra arise whenog is

exceptionalor when g 30 AeAut g projects to an order 3
element in Autley Antg
After we learned to construct GAgo a natural task is to

compute a We Take of 30 andwe consider theorder3auto
morphism ofof constructed in Sec1.3 of Leco so that go31

Rg 5 Q Recallthat in Sec 2ofLec 9 we constructed a

T



Cartan subalgebrab'cg preservedby where the E eigenspace
a is 2 dimensional We've seen that a is a Cartan subspaceof

g
We'vealsoseen that 3,1011

1 1 Computationof We
Let T denote themaximal torus in Gs w Lie T 5Considerthegroup W Na5 T ofgw.it 5 Wewrite A for

Alg Then Wo W Let W weWA'w we

Proposition Vinberg

1 Wpreserves a cb andacts on it faithfully The imageofW
in Glial is We
2 We is a complex reflectiongroup G to bedescribedbelow

Theproofof 1 in a moregeneralsetting is in V3Sec8
Then 2 is a result of a computation

Now we define thegroup Go Let S be the Kleiniangroup
of type E Recallthat it is constructed as follows Let I C
SO R be the group of rotations of a regular tetrahedron it
is isomorphic to thealternatinggroup 21 w 12 elements

Then F is thepreimage of under SU 50 D2 so has
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24 elements

In particular the inclusionof into SU c 5L e gives
rise to a 2 dimensional in fact irreducible representation U of 5
It is self dual bc it has an invariant symplectic form
Also I andhence has two nontrivial 1 dimensional

representations to be denotedby CeCe they are dual toeach
other Set Us U Ce

Fact extendedexercise
1 I acting on Ue is a complexreflectiongroup hint describe

the 7 conjugacy classes in computethe characterofUe
2 Let d α be thedegrees of freehomogeneousgeneratorsof U
Then4 422 6
Hints Showthat 4 3byelementary means Thenapply the

Chevalley ShephardTodd thm Sec 2.1 ofLec6 to show2,424

Remark It is classicallyknown Poincare that dog
S T for polynomials of degrees 4 for S and 6 for T

However their construction and theproofof theequalityabove
are not immediate See Sec 0.16 in PV fordetails
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2 Sections
We've seen that groups havepolynomialalgebras of

invariantsat least when G is semisimple andfinitelymanyorbits in
achfiberofthequotientmorphism In Remark in Sec 1 ofLec 5 we
have mentionedtwomore favorableproperties

i All fibers of it havethesame dimension
ii it has a section
Below we will examine theseproperties Let G be a connected

reductivegroupacting on its rational representation V Weassume
a V3 is a polynomialalgebra
161 Each fiber of o V VAGconsists offinitelymanyorbits

21 Flatness

Proposition If a b hold then it is flat

Sketchofproof We have EUIG all componentsof
IT X have him himV dimVAG

On the other hand the dimensionoforbits is uppersemicontinuous
vellhimGo 2 is Zariski open Combining thesewith 6 we see

that all fibers of it have thesame dimension
Then we use thefollowing commutativealgebrafact
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a morphism from a CohenMacayley e.g
smooth variety to a

smooth variety is flat iff all fibershave thesame dimension
see E Sec18.4

22 Existence construction

Wehave the following result due to knop

Theorem Suppose G is semisimple and a 16 holdThen

D V VIG admits a section L VIG V

Wellexplain ideasof aproof in Sec2.4 give aproofin a bonus
note We aregoing to look for S im c ofspecialform

Pick e est o w orbit ofmaximaldimension so that
LimGe dimV dimVAG

We'll find an affine subspace SCV w ees set S is

transverseto be is stableunder asuitedaction of fixinge

It turns out that theseproperties imply Tls S VIIC
Here's how theaction of is constructed Considerthe

action of on Vby Lilations It preserves it e henceevery
irreducible component of it e including G Hence itpreserves
Ge as theopen Corbit in Ge Let
51



Z Stabale Z Stabaxelel

Exercise E o E Z Z Gate

Lemma Let pdenote theprojection C Then homem

i Zarzo w pollt t ted
Sketch ofproof
Set F E Ru E so thatp

factorsthrough F notethat F
is reductive ByLevy'sThm Sec6.4 in OV Z Fadmits a

section F Z so it's enough to construct i asf w

poi t t Then one observes that F It As any connected
reductive

group F decomposes intoproduct Z Fo F F w

finite intersection since F F is s simple it maps trivially to
So we need to construct i C Z F'T w p i t t

Theexistenceof such i is left as an exercise

Consider theaction of C on V via C It fixes e
normalizesthe actionofG as E C C So it fixes ge CV Let

So be a C stable complement to The ge in V Set
S e So It's stable transverse to be bythe construction
We'll show later that stls S VIGprovingTheorem
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2 3 Examples motivations

2.3.1 Adjoint action Shadowyslices

Let Gbe a connectedreductivegroup g LieG Weare

concernedwith the adjoint action of G on g
A basic tool to study nilpotentorbits in g is the following

result
Thm Jacobson Morozov nilpotentelement eeg hfeog
st thedefining relations of3h are satisfied

he Ze h f3 2f e f h

Fortwodifferentproofs see CM Sec 3.3 Exercises 1619

to Sec 4.1 in OUT The triple eh f iscalledan 34triple
In particular we can construct a transverse slice S to be

known as the Shadowy slice inthisgenerality notethat
Ker ad f im ade g of courseg e im ade A action

is constructedas follows theelements eh fgive rise to a home
morphism 3h of which integrates to SL G Composingthis

SL t H diag t t weget a homomorphism 8 G
Wehave 8 t e t e Then we take the actiongivenby
t x 845te Clearly Ker ad f is stableunderthisaction
Weset S exker adf



23 2 Kestantslice
A special case of this construction was discoveredpreviously

by Kestant in Ke Let eihifi i t r be the Chevalleygene
ratorsofg Set e Eyes h 2p wherep'sÉwt To define f
let neth be defined by h nihi Set f nifi

Important exercise 1 Showthat ehf is an 8htriple
2 Show that dimCe himog r hence he isopen in IT_101

Hint all irreducible summandsofthe representation of8h in ofcoming
from the 34triple eh f are odddimensional hence

himKeradh him ker ade

So inthis case 5 glG provedby Kestant

2 3 3 Agroups
Now suppose f is a finiteorder automorphism ofG Considerthe

action of G ongo Let eeg be a nilpotent An upgraded
version of the Jacobson Morozov theoremsays that one can find
heg feg Bothproofs mentionedabove can beadaptedto the

gradedsetting It is easy to see that Ker adf Ng go.esg
exercise Applying this to the case when Ge is open in A o
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we see that e ker adf ng g G for ssimpleC

2.3.4 SL a 53 3

This is a special case ofSec2.3.3butalso themostclassicalofthe cases where a section is known Namely let xy zbe a
basis Then consider

S y'zpxt 923p.ge
known as the Weierstrasssection

Exercise 1 Showthatexity't is nilpotent byobservingthat
diag t.tt's e te tee

2 Showthat 31 e is thespanof all monomials but xz 223
3 Showthat S is Cstable for a suitable action

transverse to St e So 5 5 a 154

Remark Kestantslice is veryimportant for variousaspectsof
Geometric Representation theory Oneexample derivedSatake of
Betrukarnikov Finkelberg Generalizations of thisfromrelative

geometric Langlands likely require a moregeneralsettingof
the theorem
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24 Steps toprovethe theorem

Step1 Usingthat thefibersof IT V VIGare equidimensionalprove that cadim veUdust is surjective 2 Techniques

involvedare similar to those of steps 122 oftheproofofProp 1
in Lec8

Step2 Fromthe construction of the action re7h
8 G st the action fixing She isgivenby
t.ir t 8H10 So if we consider theaction of C on V14

inducedby Ho to we seethat S VIG is equivariant

This together with the transversality oftheintersection SACe
can be used to show

a Theaction of C on S contracts it toe
6 g e he
c s ES T S TGs V

Step3 From 6 andtheclaim that the Q action is

contractingone deduces thatoils is finite Notethat 5 VIG are

isomorphicaffine spaces For a finite endomorphism ofan affine space
the locus where it is ramified is a divisorOn the other hand
c implies that themap x 5 V g s gs is

smooth From

Jl



here Step 1 onededuces that Ils S VAG is unremifiedaway
from codim 1 Hence it is etale A finite etale endomorphism
of an affine space is an automorphism

Th


