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1 Hilbert Mumford theorem

1 e Statement
Weneedthefollowingconstruction Let Xbe an affinevariety

over equippedwith an action of C Pick xeX Thenwehave

a morphism 2 C X t tot x This morphismadmits atmost
one extension 2 X If I exists we saythatftp.t.x
existsand equals 2101 Ofcourse Ild isequal to thelimitin
the sense of the usual topology
Ourgoal forthis lecture is to provethe following result

Thm Mumford Let G be a reductivegroupacting on an
affine variety X Let xeXandyetbe such that Gy istheunique
closed Gorbit in Cx Then an algebraicgroup homomorphism

8 G such homomorphisms are known as oneparametersub
groups s.t.fm 84 x existsandlies in Gy

In thenext lecture we'll consider some applications to
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checkingthe closedness oforbits computingfibersof XVG

We'llneed the following fact whichfollows easily from
theclaim that irreducible varieties are connected in the
usual topology

Fact 1 Let X be an irreducible variety I X'be an open
subvariety Then X'CX is dense in theusual topology
2 As a corollary if X is anyvariety YCX a Zariski

locally closed subvariety Then the closures of Y in Zariskia
usual topologiescoincide

Hence the condition Cy GImeans gieG no suchthatthe
limit ftp.gicx intheusual topology exists andlies in Gy The
theorem

says that one can choose thegi's in a subgroupofG
Isomorphic to Q making takingthe limit muchmorecontrollable

The theorem is proved in 2 steps Firstwe analyzethecase
when G is a torus and then reduce thegeneralcase to thisone

1 1 Caseoftorus
Let C T be a torus so that T C Vbe its finite
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dimensional rational representation completely reducible bc T is
reductive

1 1 1 Support polytopes Any irreducible representationof T
is 1 dimensional hencegivenby a character i e an algebraic

group homomorphism T GL C Such charactersform agroup
called the character lattice of T denotedbyJET Indeed
under an identification of Twith C thecharacters are given
by H tn It for unique do dnt7hgiving a groupisomorphismJECT 72

Now let veV We can uniquely write v

Ex it w t.us t o
notethat sum has onlyfinitelymany nontero summands

Definition 1 By supportof o we mean the set
Supp o Xe T U to

2 Denote by Conv o the convex hull of Supp o i.e
Convo Espp ax 1ago Eap c t Ro T

and by Int u therelative interiorof Convco
Int o Esppnaxtla.pe East
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It turns out that one can extract a lot ofuseful info
from these invariants E.g

Exercise him To himSpank Supp o
Hint Stab o

supplo
ker

1 12 Invariants
Choose a basis Unof eigenvectors for Tw eigenvalues

to Xne T Let to XneV bethedualbasis Then T acts onthe
monomial xd by character Ediki In particularwehave

Lemma VITCCEV is thespanof all monomials x 4ᵗʰ
w Edidi e

Bonus remark Anicefeatureofthevariety VAT isthat it is
toric In general a toricvariety is a normalvariety equipped

with an action of a terusH that has an openorbit in X These
varieties are important forAlgebraicgeometry bc they can be
understood completely combinatorially It turns out that VAT
is an example Namely let F be thesubgroupof diagonalmatricesin GL V wv t the basis up vn Then TCT T T
T



acts on VAT turningthe latter into a toric variety Basically
any affine toric variety can beobtained in thisway

113 Closedorbits

Proposition Let re V If de Int o then To is closed

In fact theconverse is true as well but wedon'tneedthis
Proof
Let Supplo Xp Xn so that a Evi w t.rs Xittler
Vito Note that To a Span vili n which is a Tstable

subspace Clearly To is closed in Viff it's closedin this
ubspece so we can assume that V Span Vi SincetheUi's are

linearly independent eigenvectors w pairwise distincte values

they form a basis in V Let xp neVe thedualbasis
The condition de Int V is equivalent to do de

4olEdiXi o Lemme in Sec 1.1.2 f xp xd V3
Notethat Xi o 1 flu 1

Now suppose TucTT flat 1 u Ear Mait t
a o i Supp a Supplo

Now we use Exercise in Sec 1.1.1 to deduce that dimTu
Lim To Tu To proving To is closed
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1 14 HilbertMumfordfor tori
Proof of Theorem for C T
Step1 Here we reduce to the case when X is a rational

representation First assume that C is generalalgebraicgroup
acting on an affine variety X BySec 1.2 in Lec 3 there is
a finitedimensional rational subrepresentation V c X w

SIV X V where V'sV
Apply this for G T For EX theclosureofGx in X

s the same as theclosure in V So we can replace X w V
Our strategy in subsequent steps is as follows from veV

we construct a vector u eV w closedTu V T w

Im A u u implyingtheclaimofThm forG T bc To
contains a unique closedorbit

Step2 Here we construct ueV Notethat anyconvexpely
topehas at most one face whoserelative interior contains 0
We need to treat two cases separately

Case1 face F ofConvto whose interior contains a
Observethat Fequalsthe convex hull of Fo Supploin F Set

Eix
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Then Conv u F so de Int u By Proposition in Sec 1.1.3
Tu is closed
Case2 Conv v has no suchface Set U so Tu isclosed

Step3 We construct 8 T Such homomorphisms
form a lattice denotedby T It has a natural pairing
H T 7 T 7 givenby 84 t te e
This pairing isperfect exercise Notethat 2,1T is a 72latticein E Here'show 8 is constructed If de Int u take to
be trivial Otherwise we do thefollowing

Case1 We can find a rational linear hyperplane Ctp
s.tn Conv o F Convto lies to one side of T E.g

cnn.FI or

Take 8 T s t ker 8 870 onConv o

Case2 Similarly we canfind 8 s t 8 ispositive on
Cenu o e.g
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Step4 We claim that 1 84 o u Notethat if
eSupplot then 8,1770 w equality iff e Fo declared

to be empty in Case 2 Then

Ditto Esuppet

Now we are done bythe following important easy exercise

Exercise Suppose acts on a vectorspace V for ie7L
we set Vn veV to to Write well as on w VieVi
Thenftp.t.o exists iff wise for all ice and in this case it
equals V

12 Caseofgeneral G
Here G is connectedreductivegroup We willgive aproofthat

only works ever

12.1 Cartan decomposition

Fact 1 see OV Sec5.1 antiholomorphic involution 6 G G

s.t K G is compact and is maximalcompactsubgroup wv t
inclusion infact it's Zariski dense Moreover we can find a
6stablemaximaltorus TCG
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Example Let G n Then 6g g where
g g Wehave

K Un For T we can takethesubgroupofdiagonalmatrices

Theorem Cartan decomposition

G KTK r.tk R ReK teT
Proof for C Gln
FromLinearalgebra we know polardecomposition
H Un Gln hu ishu whereH is thesubsetofpositive
definiteHermitianmatrices By Spectral theorem hell
REU n te TAH w h Rtr So anygeGLn can be

written as hu Rt Ru yielding theclaim of Them

We will providemoredetails on Cartan decomposition in
Bonus Section 1.2.3

12 2 ProofofHilbertMumfordtheorem
Thanks to Fact 2 fromSec 1.0 we can deal w theusual

topology insteadofZariski topology
Theactionmap Kxx X isproperpreimageof compactis

compact hence closed HenceGx ̅ K TRT TKTAGy
sequences tiet Riek ise s t ftp.tikixshy heG
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Since K is compact can replace Ri w a subsequence assume

make R forsome re K
Now consider thequotientmorphism 19 X XIT Wehave

thy IM JT t Rix A Hikix IT RX GmfRX Rx

Let Ty bethe uniqueclosed Torbit in If itchy Then

Ty cTyc Gy is closed Gy Also Ty's Tx BySec1.1.4
8 T s.t.fm tt RxeTy'cGy This impliesthetheorem
Rem For an algebraicproofsee MF Sec2.1

12 3 Bonus Cartandecompositionforgeneral reductivegroups
A reference here is OV Sec 5.2 A keyfact is that for

any
connectedreductive algebraic subgroup G CGLUI there's a

Hermitian scalar product on V s.t C is closedunder gag
Then one can set 6 from Sec 1.2.1 to be g g j

Then one

shows that exp defines a diffeomorphism
F E H HAT positivedefiniteHermitian operators

inEndv

Fromhere we see that every element of HIVINGhas a unique
square root in H VIAC Then wegetpolar decomposition for
4 we have gg eHAVING we can write



g Fg Eg g Eggett V1
Moreoverevery element of is K conjugate to an element

of Ent where f is a 6 stable Cartan Thisgives ageneralizationof thespectral theorem for H V AC thx to
With these ingredients theproof of Cartan decomposition

forgeneral G repeats that for G Gln


