Proof of Main Lemma, Sec 1.3 of Lec 14 Recall that the lemma is follows: Main Cemma: Suppose X, Y are irreducible & smooth. Let y EY be s.t. Ly, Gu(y) are closed. Moreover, suppose: I) q is stale at y, and II) q: Gy ~ Gq(y) Then I open offine (Y//G)° = Y//C containing ST, (y) s.t. the restriction $\varphi: \pi_{\gamma}^{-1}((\gamma // G)^{\circ}) \longrightarrow X$ is excellent, i.e. (a) φ: (Y//G)°→ X//G is etale (6) $Y^{\circ} \xrightarrow{\sim} (Y//G)^{\times} \times_{X//G} X$, where $Y^{\circ} = \mathcal{R}_{Y}^{-1} ((Y//G)^{\circ})$.

Notation: For a finite type affine scheme Z & a closed subscheme Z, we consider the completion $C[\tilde{Z}]^{2} := \lim_{n \to \infty} C[\tilde{Z}]/I_{Z}^{n}$ where Iz is the defining ideal of Z. Relevant completions include: C[X][^], C[Y][^], C[X][^], C[Y][^], C[X/G][^] (we abuse the notation and write x instead of sty(x)), C[Y//G]." The proof is in 3 steps: 1) Prove that $\varphi^* : \mathbb{C}[X]^{A_{G_X}} \xrightarrow{\sim} \mathbb{C}[Y]^{A_{G_Y}}$ 2) Prove that 's *: C[X//G] ~ ~ (C[X] GX), and the same for Y. This together w. 1) implies of is stale at STy (y). 3) Finish the proof. 1

1) Step 1: $\varphi^*: \mathbb{C}[X]^{A_{GX}} \xrightarrow{\sim} \mathbb{C}[Y]^{A_{GY}}$ Note that the composition C[X] - C[Y] - C[Y]^GY extends to $\mathbb{C}[X]^{\wedge c_{X}} \longrightarrow \mathbb{C}[Y]^{\wedge c_{Y}} \ b/c \ \varphi^{*}(I_{G_{X}}) \subset I_{G_{Y}} \Rightarrow$ $\varphi^*(I_{G_X}^k) < I_{G_Y}^k \notin K70.$ Denote the extension also by φ^* We note that the algebras C[X]^{rs} C[Y]^{rg} come w. descending filtrations (as inverse limits) & q* is a filtered algebra homomorphism. The filtrations are complete & separated so to show q* is iso it is enough to show that $\operatorname{gr} \varphi^* : \operatorname{gr} \mathbb{C}[X]^{\Lambda_{G_X}} \xrightarrow{\sim} \operatorname{gr} \mathbb{C}[Y]^{\Lambda_{G_Y}}$ Note that $\operatorname{gr} \mathbb{C}[X]^{\Lambda_{G_X}} = \bigoplus_{i=0}^{\infty} I_{G_X}^i / I_{G_X}^{i+1} = \mathbb{C}[\mathcal{N}_X(G_X)]$ (a normal bundle). Since q is G-equivariant & etale at y, it's etale at every point of Gy. And since it restricts to $G_Y \xrightarrow{\sim} G_X$, it gives rise to an isomorphism $N_{\gamma}(L_{\gamma}) \xrightarrow{\sim} N_{\chi}(L_{\chi})$. The corresponding pullback homomorphism is nothing else but gr q* finishing the proof.

2) Step 2: $\mathfrak{R}_{x}^{*}: \mathbb{C}[X//G]^{*} \xrightarrow{\sim} (\mathbb{C}[X]^{^{A}})^{G}$ We will prove a more general claim:

Lemma: Let A be a finitely generated commutative algebra equipped with a rational representation of a reductive group L' by algebre automorphisms. Let ICA be a C-stable ideal. 2

Set $A := A^{C}$, $I := I^{C}$. Then $\lim_{n} A/\underline{I}^{n} \xrightarrow{\sim} (\lim_{n} A/\underline{I}^{n})^{G}$ Proof: Note that Inc(In) so we indeed have a homomorphism lim A/In -> (lim A/In) To show that this is an isomorphism we need to show that the filtrations <u>I</u>, (I")^G on <u>A</u> are competible which reduces to: (*) $\forall n = 0 \quad \exists m = 0 \quad (I^m)^{L} \subset \underline{I}^n$ This is done by using the usual trick with blow-up algebras: set $Bl_{I}(A) := \bigoplus I^{n}$. This is a finitely generated algebra w. vational action of G, so $Bl_{I}(A)^{G} = \bigoplus_{n \ge n} (I^{n})^{G}$ is finitely generated. Choose a finite collection of homogeneous generators from fr of the A-algebra Bl_ (A), of degrees dy ... dx 70. By the construction $(\underline{I}^n)^c \subset Span_A(f_*, f_*^{a_k} | \geq a_i d_i = n) \subset [f_i \in \underline{I}^c = \underline{I}; set d: =$ $\max(d_i)] I^{\lceil n/d \rceil} - This proves (*).$ П

To apply this to our situation, observe that the maximal ideal of $\mathcal{M}_{X}(x)$ in $\mathbb{C}[X//G]$ is $I_{GX}^{C}(exercise)$. So we have isomorphisms: $\mathbb{C}[X//G]^{^{*}} \xrightarrow{\sim} (\mathbb{C}[X]^{^{A_{CX}}})^{^{C}} \xrightarrow{\sim} (\mathbb{C}[Y]^{^{A_{CY}}})^{^{C}} \xleftarrow{\sim} \mathbb{C}[Y//G]^{^{A_{Y}}}$ The resulting isomorphism $\mathbb{C}[X//G]^{^{*}} \xrightarrow{\sim} \mathbb{C}[Y//G]^{^{A_{Y}}}$ is nothing but $q^{^{*}}$. 3]

Hence q is stale at Ty (y).

3) Finishing the proof 3.1) First of all, the lows in YIG, where y: YIIG -> X/IG is stale, is open (this is the lows where the sheaf of relative Kähler differentials is locally free of rx1). So we can find $f \in \mathbb{C}[Y]^{h}$ s.t. $f(y) \neq 0 \& \varphi$ is etale on $(Y//h)_{f}$. We can then replace Y w. Yp (so that Yp // G ~ (Y// G)p) and assume q is etale.

Set $Y' = Y//G \times_{X/G} X$; Y' is smooth 6/c X is smooth. What remains to do is to find $f_2 \in \mathbb{C}[Y]^G = \mathbb{C}[Y']^G$ s.t. $f_2(y) \neq 0$ & Ye ~ Y' We write y' for the image of y in Y' so that Gy ~ Gy!

3.2) First, we claim that I f3 E C[Y] s.t. Y -> Y' is etale, f3(y) = 0. Let ZCY be the locus, where Y -> Y' fails to be etale. It's closed & G-stable. It doesn't contain y. Since by is the only closed G-orbit in M- (My (y)), the closed G-stable subvariety ZN ST, "(IT, (y)) must be empty. So the closed subvariety Ty (Z) < Y/G doesn't contain Ty (y). Pick for varishing on Ty (Z) but not at Tyly). Replacing Y w. Ye we achieve that Y -> Y' is etale. 4

3.3) We claim that can find $f_4 \in \mathbb{C}[Y]^{c}$ s.t. $Y_{f_4} \longrightarrow Y_{f_4}$ is finite. Since Y -> Y' is etale, it's guasi-finite (= all fibers are finite). Note that by the Zariski main thm for quasi-finite morphisms, we can factorite $Y \rightarrow Y'$ as $Y \rightarrow \overline{Y} \rightarrow \overline{Y}'$, where $Y \rightarrow \overline{Y}'$ is an open embedding & Y ->> Y' is finite. Note that C[Y] is defined as the integral closure of C[Y'] in C[Y]. In particular, it is G-stable. Since C[Y'] ~ C[Y] C[Y], we have $\mathbb{C}[Y']^{G} \hookrightarrow \mathbb{C}[\overline{Y}]^{G} \hookrightarrow \mathbb{C}[Y]^{G}$ Since $\mathbb{C}[Y]^{G} = \mathbb{C}[Y']^{G}$, this implies C[y]⁴=C[y]⁴ Observe that by is closed in Y. Indeed, $\psi(by)$ is the closure of $\psi(h_y) = h_y'$ but h_y' is closed. It follows that Horbit in Cy goes to Cy' but for dimension reasons, only Cy can. Now we argue as in 3.2) to show that STy (Y/Y) is a closed subvariety in Y//G = Y//G that doesn't contain Tryly). So we can find $f_4 \in \mathbb{C}[Y]^{c}$ w. f_4 vanishing on $\mathfrak{N}_{y}(\overline{Y} | Y)$ but not at My (y). Then Y -> Y' is etale and finite.

3.4) We now prove that $Y \xrightarrow{\sim} Y'$ (no need to cut further). Let d denote the degree of this morphism. We need to prove that d=1. Let $y=y_1,...,y_d$ be the preimages of $y' \in Y'$. Arguing as in 3.3), we see that Gy; are closed. But then $\mathfrak{T}_{Y_i}(y_i) = \mathfrak{T}_{Y_i}(y')$. 5

Since every fiber of the quotient morphism The contains a unique closed orbit, we see that Gy; = Gy Hi. And since Gy ~ Gy', we finally get d=1.

6