Lecture 18, 03/26/25

1) Hilbert - Mumford type theorems 2) Examples Ref: [MF], Sec 2.1.

1.0) Reminder. Let G be a reductive group $\mathcal{X} \ \Theta: \ G \rightarrow \mathbb{C}^{\times}$ be a character. Let CA denote the 1-dimensional G-representation corresponding to Q. Let G act on a finite type affine scheme X. In Lec 17, we defined the GIT-quotient $X//^{G}G$ as the Proj of the graded algebra $G[X \times G]^{G} \xrightarrow{\sim} \bigoplus G[X]^{G, n\theta}$; where $G[X]^{G, n\theta} = \{f \in M^{2}\}$ $\mathbb{C}[X][q.f=\Theta(q)^n f \overline{s}.$ We defined the locus of Θ -semistable points $\chi^{\Theta-ss} = \bigcup \chi_q$, where f runs over $\mathbb{C}[X]^{G,n\Theta} \neq n70.$ We have constructed a G-invariant morphism It. X - ss X/1G s.t. the following diagram is commutative $\chi_{\rho} \xrightarrow{} \chi_{\theta} \xrightarrow{} \chi_{\theta$ (*) $X_{\ell}// \mathcal{C} \longrightarrow X//^{\theta} \mathcal{C} \longrightarrow X// \mathcal{C}$ Moreover, r'é is surjective, the left square is Cartesian & every fiber of T^o contains a unique closed G-orbit.

Further, in Lec 17 we have proved the following lemma.

Lemma: a) For XEX TFAE: (1) $x \in X^{\theta-ss}$ (2) $\overline{G(x,1)} \cap (X \times \{0\}) = \phi \text{ in } X \times \mathbb{C}_{\theta}$

1.1) Hilbert - Mumford type theorems We would like to understand a criterium for x eX to lie in X^{0-ss} & for an orbit of x to be closed there. For this we will state and prove statements similar in spirit to the Hilbert. Mumford theorem from Lec 11. Note that for $\theta: G \to C^{\times} \notin V: C^{\times} \to G$ we can consider their pairing <0,87E% defined by 0.8(t)=t <0,87

Theorem: 1) For XEX TFAE: (a) $X \in X^{\theta-ss}$ (6) If lim 8(t) × exists in X, then <0, Y> ≤0.

2) Suppose that XEX^{0-ss} & yEX^{0-ss} are s.t. LyCX & Ly is closed in $X^{\theta-ss}$ Then \exists 1-parameter subgroup $V: \mathbb{C}^* \to G$ s.t. < Q 87=0 & lim 8(t) x exists and lies in Gy 2

1) is often called the Hilbert-Mumford criterium for semistability.

Example: Suppose G= C & C ~ X is s.t. the resulting grading on C[X] is by Zzo. The locus X^{0-ss} was determined in Exercise from Sec 1.3 in Lec 17. Let's revisit this computation using the theorem. Since the grading on C[X] is by Z=0 we have (exercise): So, for 070, X consists of all points not satisfying (i). For $\theta = 0, X^{\theta-ss}$ consists of all points, while for $\theta < 0, X^{\theta-ss} = \phi$. This recovers the conclusions of the exercise in Sec 1.3 of Lec 17. Proof: 1): By Lemma in Sec 1.0, (a) <⇒ (c) $G(x,1) \land X \times \{0\} = \phi \text{ in } X \times C_{\theta} \iff$

(c') the closed C-orbit in C(x,1) doesn't lie in X× {03. Note that

 $\lim_{t \to 0} Y(t)(x, 1) = \lim_{t \to 0} (Y(t)x, t^{<\delta, \theta_{7}})$ (**) exists iff lim 8(t) × exists & <8,07 =0. Moreover, under these conditions, (**) lies in X× {0} iff < 8,8 > 70. To show that (b) <⇒ 3

(c) we combine (c') w. the Hilbert-Mumford theorem: I Y s.t. $\lim_{x \to \infty} Y(t).(x,1)$ exists in $X \times \mathbb{C}_{\theta}$ and lies in the unique closed Gerbit in the closure of C. (x, 1). Details are exercise.

2) Let $f \in \mathbb{C}[X]^{C,n\theta}$ w. $f(x) \neq 0$. Since $\pi^{-\theta}(x) = \pi^{-\theta}(y)$, we deduce $f(y) \neq 0$ from $\mathcal{T}^{\theta}(x) \in X_{\varrho} / / C$.

Exercise 1: Cy is the unique closed orbit in the closure of Cx In Xp- Hint: use that the left square of (*) is Cartesian.

Note that $f(Y|t|x) = [f(g^{-1}x) = \Theta(g)^{-n}f(x)] = t^{-n < \delta, \Theta >}f(x)$ has nontero limit iff < 8,07=0. So the following two conditions are equivalent: (i) (im 8/t) × exists in Xp (ii) $\lim_{t \to 0} Y(t) \times exists in X & f(\lim_{t \to 0} Y(t) \times) \neq 0 \iff \langle Y, \Theta \rangle = 0.$ Again, the to this equivalence we deduce 2) from the Hilbert-Mumford theorem applied now to the action of G on Xg (exercise).

The following exercise will be useful in the next lecture.

Exercise 2: Use 2) of Thm (and its proof) to show that TFAE: (a) For $x \in X^{\theta-ss}$, the orbit Gx is closed in $X^{\theta-ss}$ 4

(b) G. (x, 1) is closed in $X \times C_{\alpha}$

2) Examples Example 1: Let V be a finite dimensional vector space, RE 1/20, X= Hom (C, V), G= GLR acting on X by g. x= xg? Let A= det. We claim that (a) $x \in X^{\theta-ss} \iff x$ is injective & (6) $X//^{\theta} G \xrightarrow{\sim} Gr(R,V)_{-}$ First, we need to understand when lim X 8(t) - exists for $\mathcal{Y}: \mathbb{C}^{\times} \to \mathcal{GL}_{\mu}.$ Exercise (also useful for the homework!) Let $\mathbb{C}_{i}^{k}(\delta) = \{u \in \mathbb{C}^{k} | \delta(t)u = t^{i}u\}$. Set $\mathbb{C}_{\gamma_{0}}^{k}(\delta) := \bigoplus \mathbb{C}_{i}^{k}(\delta)$. TFAE · lim x 8(t)⁻¹ exists • $\operatorname{Fer}_X \supset \mathbb{C}_{20}^k(\mathcal{X})$

Note that Cro(8)=0 => <0,87=0. So, by Theorem, if x is injective, then it's θ -semistable. Conversely, if ker $x \neq 0$ we can choose a complementary subspace U= C & & define V(t) acting by ton ker x & trivially on U. Then lim x8(t)⁻¹ exists but <0,87= dim Ker x >0. Theorem shows that x is not A-semistable. This finishes the proof of (a). 5

Let's establish (b). We note that the map $X^{\theta \text{-ss}} \rightarrow Gr(R,V)$, $x \mapsto \ker x$ is a morphism (exercise in Plücker charts) & each fiber is a GL(R)-orbit (exercise in Linear algebra). For each $f \in C[X]^{G, n \Theta}$ $n = 0, X \mapsto \ker x : X_{\rho} \longrightarrow Gr(R,V)$ descends to a morphism $X_{\rho}//G \longrightarrow$ Gr(R,V) by Problem 2 in HW1. The morphisms agree on $X_{\rho}//G \longrightarrow$ $GX_{\rho}//G$ and so descend to $X//^{\Theta}G \longrightarrow Gr(R,V)$. We get a bijective morphism to a normal variety, hence an iso morphism. There are also at least two other ways to establish this isomorphism.

Remark: 1) It's easy to see that $\bigoplus_{n \ge 0} \mathbb{C}[X]^{C, n\theta}$ coincides with $\mathbb{C}[X]^{SL_{k}}$. The latter algebra can be computed: it equals to the homogeneous coordinate algebra of Gr(K,V) for the Plücker embedding. This also shows that X//G = Proj (C[X] SCK) but is more complicated: the description of C[X] Six above requires knowing that the homogeneous coordinate ring is normal.

2) The description in 1) can be generolized as follows. Let X be a vector space & $G \subset GL(X)$ be a reductive subgroup containing. the scaling torus. Let G:=GNSL(X). Let A be the restriction of det -1: $GL(X) \rightarrow C^{\times}$ to G (note the change of sign from the previous example). Then $X/PC = Proj(C[X]^{C})$. Moreover, X^{P-S} is 6

 $X \mid \mathcal{H}_{c}^{-1}(o) \ (exercise).$

Example 2: We now consider a generalization of the previous exemple: representations of quivers. By a quiver we mean an oriented graph Q = (Q, Q, t, h), where Q is a set of vertices, Q is a set of arrows (= oriented edges) & t, h: Q, -> Q, are tail & head maps: . 2 . A representation of Q is a collection of vector spaces Vi, iel, and linear maps $X_{a} : V_{t(a)} \to V_{h(a)}$, $a \in Q$. We consider the case when all V; are finite dimensional, so we can assign the dimension vector is: = (dim Vi)ieq = 220. Let Rep (Q, v) denote the set of representations of Q in fixed vector spaces Vi of dimension v so that $Rep(Qv) = \bigoplus_{\alpha \in Q_a} Hom(V_{t(\alpha)}, V_{h(\alpha)})$. It is a vector space with an action of GL(v):= M GL(V:). Note that the 1-dimensional torus { (Z Idv;) Z ∈ C×3 acts trivially on Rep (Q, v) & so the action of GL(v) factors through PGL(v):=GL(v)/{(ZIdy.)}. For $v, \theta \in \mathbb{Z}^{4}$ let $\theta \cdot v = \sum_{i \in Q} \theta_i v_i$. The character lattice of PGL(o) is identified with {DEZ^0 [D. v=0] vie $(\theta_i)_{i \in Q_0} \mapsto [(g_i) \mapsto \prod_{i \in Q_0} det(g_i)^{\Theta_i}]$ For such $\theta \in \mathbb{Z}^{2^{\circ}}$ we want to describe $\operatorname{Rep}(Q, v)^{\theta-ss}$ Note that we can talk about subrepresentations of $(V_i)_{i\in Q_i}$: a collec-7

tion Ui CV: w. Xa Uta CUha Hael,

Proposition: $x \in \text{Rep}(Q, v)^{\theta^{-ss}} \Leftrightarrow \# \text{ subrepresentation}(U_i) \text{ of }(V_i)$ we have $\theta \cdot (\dim U_i)_{i \in Q} \leq 0.$

Proof: Again, we start by analyzing when lim VIt) x exists. Set V= OV; Choose a lift & of & to GL(o) For nell, let V"(8)= {u E V | 8/t] u= t"u3. The different lifts differ by a homomorphism to {(ZId,)}, so for a different charle of lift 8, we have $V''(\tilde{s}') = V'''(\tilde{s})$ w. $m \in \mathbb{Z}$. Hence we can assume that $V''(\tilde{s})$ = {03 for n < 0. For $n \ge 0$, set $V^{\ge n}(\widetilde{Y}) = \bigoplus V^m(\widetilde{Y})$. Similarly to Sec 1.4 of Lec 12 (of which the present setup is a special case), lim Y(t) × exists iff V²ⁿ(8) = @V.²ⁿ(8) is a subrepresentation for each N7.0. Let 25" denote the dimension vector of $V^{n}(\tilde{s}') \notin S^{2n} = \sum_{m=n}^{\infty} S^{m}$, dimension vector of $V^{2n}(\tilde{s}')$. Then $\langle \theta, \rangle = power of t in \Pi deg(\tilde{Y}_i(t))^{\theta_i} = \left[\tilde{Y}_i(t) has \sigma_i^n eigen$ values $t^n] = \sum_{i \in Q} \sum_{n \neq 0} n v_i^n \theta_i = \sum_{n \neq 0} v_i^{\pi n} \theta$. So if U. O = O & dimension vectors U of subrepresentations, then $\langle \theta, \delta \rangle \leq 0$. Conversely, for any subrepresentation $(U_i) \subset (V_i)$ we can find \widetilde{Y} w. $V_i = V_i^{n} U_i = V_i^{n}$, $\{0\} = V_i^{n}$. For such \widetilde{S} , we have <0, y7 = 0. (dim U;) finishing the proof. 8

Kemarks: 1) A connection to Example 1 is as follows: consider the quiver of a where w= dim V & dimension vector v = (R, 1). Then $GL(v) = GL(R) \times GL(1) & the inclusion <math>GL(R) \hookrightarrow GL(v)$ gives use to an isomorphism GL(R) ~> PGL(v). Take 0 of the form (d, -Rd) for d70. Let x = (xa) acq: C" --> C." There are two kinds kinds of subrepresentations: • (U_{i}, C) for $U_{i} \subset C^{k}$, they satisfy $(\dim U_{i}) \cdot \theta = (\dim U - R) d \leq 0$ · (U, {0}) for U, < Ker X, they satisfy (dim U;). 0 = 0 (= 10]. We recover the stability condition from Example 1. 2) Move generally, for 0-0-0-0-0= a dimension vector o= $(R_1, \dots, R_e, 1)$ & $\theta = (1, \dots, 1, -\Sigma R_i)$ we have $\operatorname{Rep}(Q, v)^{\Theta-ss}$ fall maps C ~ C ~ ~ ~ C are injective & $\operatorname{Rep}\left(\mathcal{Q}, v\right) / \operatorname{CL}(v) \longrightarrow \operatorname{FL}\left(K_{\mu}, K_{\mu}, \dots, K_{e}; V\right)$ In general, the CIT quotient of interest doesn't admit such an explicit description.

.9