
 Lecture 19 42 25

1 CITHamiltonian reductions Hillon C CMspace
Refs E Nak GG

1 CITHamiltonian reductions Hillon C CMspace
1.0 GITHamiltonianreduction

We've consideredHamiltonian reductions foractions ofcompact
groups on symplectic C manifolds The same constructions work for
actions ofreductivegroups on symplectic algebraicvarieties cfBonus
to Lec 16 A basic example is a symplectic vectorspace V over

w form wee AV actionof G comingfrom G Sp V The

action is Hamiltonian w momentmap ju V ofgivenby thesame
formula as in the compact case Cjulus w xvv1 So for

Xeg G C we can consider the CIT Hamiltonian
reduction V11 C jusX 1 C If the Gaction on jus x is

free then an algebraic versionoftheMarsden WeinsteinMeyerthem
from Sec 1.2 in Lec16 shows that V11 G carries analgebraic
symplectic form a unique 2 formbest 7 We We where

j 07 V is the inclusion To rigorously construct be
is an extendedexercise hint if Gactsfreely on X then it

is aprincipal Cbundle this is 6c 19 isgluedfromcategorical
A



quotients forwhichtheclaim isCorollary in Sec 1.4ofLec14
In this lecture we will consider special casesofthisconstructionHilbert schemes ofpoints on C CalogeroMeserspaces

1 1 Construction

We are interested in V of a specialform let Vbe a
vectorspace Set V V V T V equip it withthe

following symplecticform

W v α 02,221 2,2 cuh
thenatural formof T V Let C act linearly on V This

action extends to the Gaction on V Ve whichpreserves w

Lemma 1 Wehave

j4 v27 7 4 0,27 we V deV xeg
Proof

ju v 2 W x0,0 xr 27 1224 27 2 0,27

We will needthefollowingchoice of GV Fix ne 740 Let
U be an n dimensionalspace Set U let V Endu U
w a natural Caction Weidentify EndU w End 4 Rogw

g using thetraceform AB tr AB So we can identify Vw

End u U 4
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viewju as a morphism V EndU

Lemma2 Under these identifications we have

ju AB i j AB ij ABeEndlul ie Uje U
where we view i as a linearmap U sothat ij is a rk 1
linearoperator U U u tojluli

Proof Let ju End4 Endu Mi U U Endfulbethe

momentmaps for theactions ofGLUI Bypropertiesofmomentmaps
explained in Sec 1.3 ofLec16 wehave

su AB i j M AB Malij
Wehave tr µ i j x j xis trijxi tr ijx

Sincethetraceform is non degenerate this impliesMCijl ij
Similarly tr M AB1x tr B x.AM xD A tv B xAI
tr AB x µ AB AB

12 Semistable points
The lattice HG is identifiedwith via n det Similarly
0319 is identified w via z to ztr
We start by describing Ve for070and too RecallSec1.2

ofLec 17 that V dependsonly on the sign off
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Proposition

1 Forece ABi j E V i is cyclicfor AB i e U isthe

only A B stable subspace containing i is U
2 For670 AB i j E V j is cocyclic forAB i e e is

theonlyA B stable subspace contained inKerj

Proof 1 We use theHilbertMumford criteriumforsemistability
1 ofThem in Sec 1.1 ofLec18 AB i j eVe if fromthe
existence of Nt AB i j for 8 C G it follows that
46,87so Wewrite U Un81 w Un 8 ueU 8 t u thu
Then

Im 841A exists iffp.mu187 is A stablefor all me 7
Same for B

Em Atli exists iff ie Unck

EmAtlj exists iff j vanishes on Un 8

So if i is cyclic then U Un181 Since

CtAs A nhimUn 8

weseethat if 1 84 AB i j exists then 48,0750 so AB i j E
V9 Conversely let i benot cyclicThen let U su be an AB
stable subspace containing i let U be a complement Take 8w

U181 4 4,187 4 Forthis 8 we have 8,07 dimU 70
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showing AB i j V9
s

2 The case of tie is similar is left as an exercise
Here's a stronger statement

Exercise Identify U w U yielding A B End u j UK
it U C Then ABi j B A j restricts to

ve ss yet ss

Corollary For to CAVE'sisfree
Proof

ForA co use that anyelementof U can bewritten as PAB i
where P is a noncommutativepolynomial in 2 variables Anelement

ofG that stabilizes AB i also stabilizes PAB i hence istrivial
The case of toe is handledusing Exercise in theproofof

Proposition

13 CalogeroMeserspaces E Sec 15
Assume in this sectionthat I 0
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Proposition Let AB i j eju X Then

a Theonly A B stable subspaces in U are U2403
6 The stabilizerof AB i j in G is trivial
c ju XP'sgutX
Proof

a Let U'fU be a nonzero A B stablesubspace Let C
AB 712this is a re 1 operatorequal to ij Wewrite A B C
fortherestrictionsof ABC to U A B C for the induced

operatorson U UU Wehave to C tv AB to Idu hima

C'to similarly C 0 This implies rk C noC'the 72
contradictionproving a

161By Schur's lemmaapplied to a weseethat thestabilizer
consists of scalar operators Note that i j to so if a scalar
operatoracts trivially on i it mustbethe identity

c is adirectcorollaryof a Proposition in Sec1.2

Corollary 1 p X is a smoothsubvariety in Vofpurecodimensionm

2 V11G is a smoothaffine symplectic varietyofhim 2n
independent of
Proof left as an exercise use thepreviousproposition Use
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Sec 1.1 ofLec 16 for 1 Use Corollary in Sec1.4 ofLec14
to showthat ju X jus X IG is a principal Cbundle
Sec 1.0 to establish an algebraicsymplecticform and
Proposition in Sec 1.3 ofLee 17 to show that

VK.EC VAG
is an isomorphism

Remark The reduction V11C is known as the CalogeroMoser

space it is a compactifiedphase spaceof the Calogero Moser

systemand was defined by KazhdanKestant Sternberg

14 Hilton 4 Nak Sect
Here we investigate ju e 1 C w nonzero Here'sthemain

technicalresult

Proposition Let ABcj e g o
s

1 If Ace then j o
2 If 670 then i e

Beforeprovingthis result let'sexplain it's significance Assume

Aco first Since j o we have ij o AB 0 Sojustto



AB i o AB i C Theactionof G onjute isfree
Thenjustlet thesetoforbitsjute G recallthat

14 1071 C parameterizes closedGorbits injust e
9

Notethat fe xy FAB i o is a codimension n ideal
in xy dependingonly on the Gorbitof AB i Conversely

given a
codimension n ideal Ic x

y we can choose an

identificationxy I U define AB EndU as the operators
ofmultiplicationby x y i as I c xy

Then A B 1,0 E

ju o Note that different identifications xy I U
differby an elementof C and so we getmaps betweenjus o G

cedim n ideals in x
g In fact these maps are mutually

inverse exercise A stronger statement istruejute 1 C is a fine
moduli space it comes w a universalfamily parameterizingcodim

n ideals known as theHilbert scheme Hillon 4

Similarly to Corollary in Sec1.3 the Hamiltonianreduction

construction shows that Hill C is a smooth symplecticvariety

of dimension 2h

The case of 070 is handledusingExercise in Sec1.2 left
as exercise
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Proofof Proposition
Step1 We start w thefollowing linearalgebrafact
if A B End U satisfy rk AB 1 then AB are upper

triangularin some basis It's enough to show that Uadmits a
proper A B stable subspacethen we can argueby induction

on him U
We can replace A w A X Iduforsuitable X assum

A is degenerate If ker A is B stable then we are done
Otherwise uekerA w o ABUto Notethat v AB a
then im AB Cv We claimthat ImA is B stable Indeed
BAu Abn AB u The 1st summand is in ImA theherdis
in Cu CImA So kerA or ImA are a properA stablesubspace

Step2 We claim that for AB i j eju e wehave

CjCCABsi so
where we write CAB forthealgebraof noncommutative

polynomialsin A B Proposition in Sec1.2finishtheproof
Toprove we notethat

j fAB is tr fAB ij tr fAB AB AB are

uppertriangular in some basis AB is strictly uppertriangularso is fAB AB o

a



15 Remarks

1 One can alsodescribeg e Galthoughthis is technically
the hardest GG Sec2

14 Sn gut a IG
is an isomorphism wherethemorphism is inducedby

to Xnyouyn diagxom.tn diagyoyn 0,0
One can showthat

is surjective on the levelofpoints usingstep1 ofthe
proofof Proposition in Sec1.4

is a closedembedding by using a descriptionofgenerators
of Q goingback to Weyl

j o and hencejus o G is reducedThis requires

showing that jute has no irreducible componentscharacterizedby him CA Bi at thegenericpoint
showingthat eachofthe components contains afreeorbit

using properties ofmomentmaps to show thatguild is

genericallyreducedof him 2mn andthendeducing it's reduced

Wealsonote that thenaturalmorphismjuste11 gutalIG
for t o is theHilbert Chowmap sending an ideal I to its
support counted w multiplicities
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2 This constructiongeneralizes to PGL o A Rep2,01 see

Example 2 in Sec 2 ofLec18 the current construction is
a special case Gen g The resultingHamiltonian reductions

are known as Nakajimaquiver varieties and are very important
in Geometric representation theory MathematicalPhysics
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