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1 Averaging operators applications

Let F be a field V be a finitedimensional vectorspace
We write F V3 for thealgebra ofpolynomial functions i.e
the symmetric algebra of V denotedby S v it embeds
into functions V f if F is infinite
Let G be agroup equippedwith a homomorphism LU
In particular Gacts on F V byalgebra automorphisms
we can form the subalgebra of invariants F V

Question When is F V3 finitelygenerated

Ourgoal in this lecture is to find sufficientconditionsfor affirmative answer

1 1 Averaging operators axiomatically
When we work w representations V of a finitegroup G
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it's useful to consider the averaging operator
α V V u italEager

that makes sense when char f doesn't divide161 Wewantto
axiomatize some of its properties

Definition uncommon Let G be a group By a class of
finite dimensional representations of G we mean a set of
Grepresentations up to isomorphism that is closedunder
direct sums tensorproducts duals takingsubs quotients
contains the trivial representation

Anexample is providedby all finitedimensional

representationsof a finitegroup G We'll see otherexamples later

Definition Let E be a class of representations By an

averaging operator for C we mean a collection of linear
operators α V V Vee s.t

a inducV veV1gu v gel
a2 dy v v we V4
as Gequivariant linearmaps p U V U Vee

have q du dry
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In otherwords α is a functorialprojector to thesub

spaces of invariants
An example is provided by theaveraging operator

2 1Ecg forfinite G charFt Gl consideredabove

Rem An educatedname for a class is rigidmonoidal
full abelian subcategory of the category offinitedimensionalrepresentations of C

12 Hilbert's finitegeneration theorem
Thm Let Cbe a class of representations that has averaging
operator Let Vee ThenFLV is finitelygenerated

Scheme ofproof
1 We'llreducethequestion to thefinitegeneration of a

suitable ideal I c F v Notethat I Spangu I the
ideal in F V generatedby I is finitelygeneratedby
the Hilbert basis theorem

2 This is themainpart we will use the averagingoperatorto deduce that I is finitely generatedfrom I being
finitely generated
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Proof Set A F V3 Δ F V3

Step1 positivelygradedalgebras Note that A isgraded
by 7 A Ai where A 5 0 1 is the space of
homogeneous deg i polynomials being an algebragrading means
re A AA cAig i j Thisgrading is preserved bythe

Gaction for example if we choose a basis then every geG
acts by linear changesofcoordinates or we can see this

directly from theaction on S V It follows that A is a
gradedsubalgebra i e A Ai w Ai ANA Note that
D A F
Step2 Now let A be any 7 gradedcommutativealgebraw A F Set A Ai this is an ideal in A

Exercise Let a exeA be homogeneouselements TFAE
o a ae generate A as an algebra
2 a an generate A as an ideal
In particular A is finitelygenerated as an algebra iff

Aso is finitely generated as an ideal

Set I As I Spang I Wewant to showthat I
is finitelygenerated By the Hilbert basis thm A isNoetherian
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so in any collection ofgeneratorsof I we can choosefinite
set ofgenerators In particular f fire I generating I
We claim that f fi generate I

Step3 Here we definethe averaging operator 2 A A
Set Ai Ai for ie 7 so that each As is Gstable
A Asi We claim that Asite Forthis note that

V ee e is closedunderduals

V e e e is closedunder

S v ee bc it's a quotient of V
As EC b c C is closedunder

Let α A Asibethe averaging operator on Asi Let

ji L A As bethe inclusion it's Gequivariant So by
condition as in Sec 1.1 Lodgi dejel It followsthat the
followinggives a well definedoperator A A
2 a silal if aeAsi

Step4 Let heA f eA A Weclaim21h f2h Indeed
assume heAsi f eAsj Wehave a linearmap 4 Asi Asit

p a fa It's Gequivariant g fal g f g al f g a
Againby a3 dsijoy yed.si I fh f Jh
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Step 5 Newweprovetheclaim in theendof step2 font
generate I Pick FEI Since f fi generate I ha hit
F hit F I F Step4 Ʃ 2hilt x ̅hi e A

Rem In particular if G is finite char F doesn'tdivide
161 then F V3 is finitelygenerated In fact at least
when char F o there's a stronger more elementary result
due to Neether FCV isgeneratedby elements ofLegsGl

13 Other examples of averaging operators
Ofcourse the real usefulness ofHilbert's theorem is that

averaging operators exist beyondthesetting offinitegroups
Below in this section F for simplicity

Case 1 K is a compact Liegroup e.g U n or On R Let
Lie K n dimk
Note that A E is isomorphic to the space of left K invarian
top forms on K viatakingthe fiberat 1 So left invariant
top form say w st w 1 it's here that we use that K
is compact
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Now if f is a C function on K or moregenerally a C map
K V where V is a finitedimensional vectorspace we can
consider If we V Here are two importantproperties

P1 Forhek let f k fthic Then fw Ifw

P2 Let q V V be a linearmap Then

yet w q Fw This is because taking the integral is
linear in the integrand

Now let V be a C representation of K ie thematrixcoefficientsare C functions Equivalently oeV thefunction

to K V Kaku is C Set

Lv v few

Note that the C representations of K form a class in
the sense Sec 1.1

Preposition 1 Thecollection 2 141forthe classof C
representationsis an averaging operator



Proof a3 is a direct consequence of P2 a2 is left
as an exercise hint for weVK Let's check at
hauto h ffow P2appliedto h V V 5hrow
How PP few dulo

k

Case 2 G is an affine algebraicgroup ie an affinevariety
recall that thebasefield is C equipped w morphisms

m CxG G multiplication and i G G inverse

making into a group

Examples GL C its Zariski closed subgroups SL C
On C Spn C for even n are algebraic

It makes sense to talk about algebraicgroup homomorphisms
morphisms of varieties that aregroup homomorphisms Also

every algebraicgroup is a complexLiegroup so it makes to

speak about their Lie algebras
Now we are going to introduce a class ofrepresentations

that we will consider

Def Let Vbe a finitedimensional vectorspace By a
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rational representation of C in V we mean a representation

given by an algebraicgroup homomorphism

The terminology is explained as follows for G Gln C
thematrix coefficients arepolynomial functions on C in
particular are rational functions in thematrix entries
The next exercise outlines basicproperties of rational
representationsandallows to construct a lot of them

Exercise 1 Rational representations of C form a class in
the sense of Sec 1 1 Denote it by C
2 If HCC is an algebraic subgroup V is a rational

representation of G then it's also rational representation ofH
3 The tautological representationofGln C is rational

It's not true that theaveragingoperator for e exists
forany algebraicgroup C

Here's a sufficient andas wewill
mention later necessary condition

Definition G is reductive if it contains a Zariskidense

fat
Lie subgroup
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Lemma Assume C connected in theusualtopology infact
this is equivalent to Gbeingirreducible see OV 3.3.1
Let KCG be a compact Lie subgroups.t Epc og Then K
is Zariskidense in C hence Gis reductive

Proof Let G CG betheZariski closureof K an algebraic

subgroupof G We have Ecg gcog is a C subspace

g og G is connected C G

Examples G GL C K U n

Son e k Sonia
C Span C K Spn unitary transformations

of Bt whereB1 is thequaternions

A rational representation Vof G restricts to a C
representation of K For well let fo K V Roko Set
2 2 fow

Proposition 2 2 du is an averagingoperatorforthe
rational representations of G

I



Proof a2 a3 follow from Proposition 1 al reduces to
A V1 V
Let re V Note that stab u CG is Zariski closed
Since K is Zariski dense in C weget Stabato G
we V4


