INVARIANT HOMEWORK 1, DUE FEB 5

For simplicity, the base field below is \mathbb{C} . By G we denote a reductive algebraic group.

Problem 1

Let V be a faithful finite dimensional rational representation of G ("faithful" means that the homomorphism $G \to \operatorname{GL}(V)$ is injective). Suppose that every G-orbit in V is closed. Show that G is finite. Hint: look at fibers of the quotient morphism $\pi: V \to V//G$.

Problem 2

Let X be an affine variety with a G-action, Y a variety, and $\psi : X \to Y$ be a G-invariant morphism. Show that ψ uniquely factors through X//G (in Lecture 3 we have proved this in the case when Y is affine).