INVARIANT HOMEWORK 2, DUE FEB 21

For simplicity, the base field below is \mathbb{C} .

Problem 1

Let d, n be positive integers d > 1, $G = \operatorname{GL}_{nd}$ and γ be the diagonal matrix

diag
$$(1,\ldots,1,\epsilon,\ldots,\epsilon,\epsilon^2,\ldots,\epsilon^2,\ldots,\epsilon^{d-1},\ldots,\epsilon^{d-1}),$$

where ϵ is a primitive *d*-th root of 1 and each ϵ^i occurs *n* times. Let $\theta = \operatorname{Ad}(\gamma)$. For the corresponding pair (G_0, \mathfrak{g}_1) identify the Cartan subspace of \mathfrak{g}_1 with \mathbb{C}^n and the Weyl group with $S_n \ltimes \mu_d^n$, where μ_d is the group of *d*-th roots of 1.¹

Problem 2

For each n > 1 construct an example of the following: a vector space V acted on by \mathbb{C}^{\times} and a \mathbb{C}^{\times} -stable divisor $D \subset V$ such that $\dim(V//\mathbb{C}^{\times}) = n$ and the image of D in $V//\mathbb{C}^{\times}$ is a single point.

¹In particular, for d > 2 we get a genuine complex reflection group