INVARIANT HOMEWORK 3, DUE MAR 28

For simplicity, the base field below is \mathbb{C} .

Problem 1

Let m, n, d be positive integers, $G = \operatorname{GL}_d, V = \operatorname{Mat}_{n,d} \times \operatorname{Mat}_{d,m}$ with action of GL_d given by $g.(A, B) = (Ag^{-1}, gB)$. Show that for $(A, B) \in V$ the following conditions are equivalent:

- (1) G.(A, B) is closed,
- (2) and ker $A \oplus \operatorname{im} B = \mathbb{C}^d$.

Problem 2

Let X_d denote the variety of all matrices in $\operatorname{Mat}_{n,m}$ of rank $\leq d$. It is known that X_d is normal¹. Let G, V be as in the previous problem. Prove that there is an isomorphism of X_d with V//G such that the quotient morphism π becomes $(A, B) \mapsto AB$.

Problem 3

Let $F \in S^3(\mathbb{C}^3)$ be a nonzero element, and let $C := \{[a : b : c] | F(a, b, c) = 0\}$ be the corresponding degree 3 curve in \mathbb{P}^2 . Show that SL₃ $\cdot F$ is closed if and only if one of the following conditions hold:

- C is smooth,
- C is the union of three lines not passing through the same point.

¹we may prove this in the course invariant-theoretically, time permitting