INVARIANT HOMEWORK 5 (THE LAST), DUE MAY 5

PROBLEM 1, 10PTS

Let V be a finite dimensional vector space equipped with a rational representation of a torus T. Pick a nontrivial character θ of T. Recall that to a vector $v \in V$ we can assign a convex polytope $\mathsf{Conv}(v)$ (see Section 1.1.1 of Lecture 11). Show that

a) $v \in V^{\theta-ss}$ iff the ray connecting 0 and $-\theta$ intersects $\mathsf{Conv}(v)$.

b) And Tv is closed in $V^{\theta-ss}$ iff there is a point in the relative interior of Conv(v) in that intersection.

Problem 2, 10pts

Let G be a connected reductive group and X be an affine variety acted on by G. This problem analyzes the dependence of $X^{\theta-ss}$ on θ . Consider the \mathbb{R} -vector space $\mathfrak{X}_{\mathbb{R}} := \mathfrak{X}(G) \otimes_{\mathbb{Z}} \mathbb{R}$. Note that it has a rational structure, so it makes sense to speak about rational (linear) hyperplanes. A collection of such, Γ , partitions $\mathfrak{X}_{\mathbb{R}}$ into the disjoint union of rational cones that are open in their closures. We refer to these cones as facets of the hyperplane arrangement Γ . For example, for any nontrivial collection of hypeplanes in the 1-dimensional space we have exactly three facets.

Show that there is a finite collection of rational linear hyperplanes such that

- X^{θ1-ss} = X^{θ2-ss} if θ1, θ2 are in the same facet.
 X^{θ1-ss} ⊂ X^{θ2-ss} if the facet of θ1 contains θ2 in its closure.

Hint: you may try to reduce to the case of a linear action of a torus.