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1 Proofof Chevalleyrestrictiontheorem
2 Weylgroup is a complexreflectiongroup
Refs V3 PV Sec8.3

10 Reminder

We are inthesetting of Sec 1.0ofLec 6 G is a connected
reductivegroup w an order2 automorphism giving rise to
thegrading 9 ay Di

We care about theaction ofthe
connected reductive group Go G ong
In Lec 5 we have introduced Cartan subspaces acg

maximal subspaces ofpairwise commutingsemisimpleelements
Such a subspace is actedon by thefinitegroupWeNo a Za.la
the Weylgroup Wehavestated thefollowing general versionof
the Chevalleyrestriction theorem due to Vinberg

Thm LetC agg denotetheinclusionmap Then

Ig a
W

In Sec 3.2 we have shown two results useful toprove
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the theorem

Proposition 1 If eg is semisimplethenGax is closed
Proposition 2 Thenumber ofnilpotentGorbits in g isfinite

1 1 ClosedG orbits in g
Proposition 3 Wehave Gx Tox ego Inparticular if

Gex is closedthen x is semisimple

Proof We firstprove that Got fornilpotent x andthen
reduce to this case bypassing to a suitable stablesubgroup
of G

Case1 x is nilpotent Let SVdenotethe locusofnilpotent
elements in g a closedsubvariety stableundertheaction

of Got It where actsbyscaling SinceSVIGparameterizes
theclosed G orbits in N our task is to showNYC pt
First observe that SV CC N is stable bc theaction

of G and commute Wehavethefollowingdiagramofalgebra
homomorphisms g c

U
IN G IN Go eggs

is surjectiveby Proposition in Sec1.4 in Lec3 Note



that dog I bc the action is by scaling Hence

IN I NIG
On theotherhand Proposition 2 in Sec 1.0 andthe

surjectivityofSV NIC implythat SVIG is finite as aset
Since C is connected it's action on a finitevariety is trivial
Hence NAG NYC

Case2 x isgeneral Set L Zg x in fact Za xs is
already connected this is a so calledLevisubgroupofG
Adapting an argumentoftheproofof Proposition in Sec 1.2of
Lec 5 we see that L is reductive Since f x Exs eg

fog by Corollary in Sec2.1 ofLec6 wehave f Z xs

Za f Xs Z Xs So L is A stable

Note that xs.xneg.nl CandLottobyCase1 Also L
fixes Lex stLex XgeLTCGT

From theproof we can deduceproperty 6 from the intro to Sec
1 in Lec 7

Corollary lettheproof Let it g g11Godenotethequotient
morphism Everyfiber consistsoffinitelymanyorbits
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Proof Recall Sec 1.4ofLec3 that thepointsofg.tlG
are in bijection with theclosedCoorbits ingo By Propositions 1
3 these are exactly thesemisimple orbits Moreover Proposition 3

shows that yes are in the samefiberof IT G x Goys

Exercise xeg
there's a bijection

nilpotentEaks orbits in 1 GerbitsGay w Coys Cox

Zaks Glistz

The set in the l.h.s.is finiteby Proposition 2

12 Proofof Theorem
Geometrically we have the uniquemorphism 1 a We gallh

makingthefollowing diagram commutative

avg.tws.a
and we want toprove that is an isomorphism SincegollG
is normal it's enough to show is bijective cf Sect ofLect
Step1 surjectivity
Let eg.tlG and xest x lie in theunique closedG
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orbit Theelement x is semisimpleby Prop3 hencelies in some
Cartan subspace Cx is a subspace consistingofpairwise

commutings simpleelements We can replace w a conjugate assume

ear Then Wax X so is surjective

Step2 injectivity
Since 6 x is closed xea andeach fiber of it contains a

uniqueclosedG orbit the injectivity reduces to checking
eGay for yea xeNa.lay

So suppose 6x Cy geG w gy x Both Cartan

subspaces a andg a contain Let Zalx Then ag act
andare Cartan subspaces there Hence heL w g a h.at
Notethat h x x Hence hg y x h'g as a kgeNg.la
finishing theproof

2 Weylgroup is a complexreflectiongroup
2 1 Complex reflectiongroups
Definition Let Vbe a finitedimensional vectorspace

se V is called a complex reflection a.k.a pseudo

reflection if it hasfiniteorder k s id 1

A finite subgroup W GL V is called a complexreflection

I



subgroup if it isgeneratedbycomplex reflections

Examples 1 A complex reflectiongrouppreserving a realform
VRCV resp a rational form VacV is the same thing as a real
reflectiongroup resp a crystallographic reflectiongroup a.k.a

theWeylgroupof a semisimple ie algebra

2 If dimV 1 thenanyfinite subgroup ofGL V is a complex
reflectiongroup

Here is themain reason whyone cares about complexreflectiongroups is
the following result

Thm Chevalley ShepherdTodd For afinitesubgroupWGLU
TFAE

1 W is a complexreflectiongroup
2 V W is an affinespace
3 at V VAW is flat V is a free V34module

Wewon'tgive a completeproof it can befound in B
Ch V 55 Some implications are easier Forexample 2 3



follows from a basic commutativealgebraobservation that
a finitedominantmorphism A At is flat We willprove
2 1 below

2 2 Main result
Thm 1 Vinberg WecGL a is a complexreflectiongroup

Combining thiswith theorems fromSecs 1.0and2.1wearrive at

Corollary gallC allW is an affinespace

Vinberg's proof in thegeneral situation is notpleasantinvolvessome case by case considerations We will onlyprove an

important special case when G is semisimple Here wehavethe

following cute generalresult due to Panyusher

Theorem 2 Let UUbe finitedimensional vectorspaces

and C GL u CGLV be finiteandconnected ssimple
subgroups respectively If UIS VIC are isomorphic as

varietiesthen F is a complex reflectiongroup andhence UAT is an
affine space
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Theproof is essentially topological uses thefollowing can

ept
Definition Let X be an irreduciblevariety ever C Wesay
thatX is strongly simply connected if XLY is simplyconnected
closed subvariety YcX w cedim 472

Example exercise A is strongly simply connected

Panyusher's theorem follows fromthefollowing two results
to beprovednexttime We usethenotation of Thm2forboth

Proposition 1 VAC is strongly simplyconnected

Proposition 2 If UIT is strongly simply connectedthen f
is a complex reflectiongroup
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