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Abstract. These are notes for the MIT-NEU graduate seminar on Moduli of Sheaves on
K3 surfaces. The goal is to understand the deformation type of moduli spaces of stable
sheaves on a K3 surface.
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1. Introduction

Let X be a projective K3 surface over C. We will be concerned here with moduli spaces
of Gieseker stable sheaves on X. Since the discrete invariants (e.g. Chern character) of a
sheaf are constant in flat families, we will consider the moduli space of stable sheaves with
fixed discrete invariants. We’ve already explored one class of examples: Hilbert schemes of
n points HilbnX “ Xrns on X. The ideal sheaf of such a length n zero-dimensional subscheme
of X is a stable sheaf of Chern character prk, c1, ch2q “ p1, 0,´nq, and all stable sheaves
with this Chern character are ideal sheaves of zero-dimensional length n subschemes.

In general, given a Chern character ch “ prk, c1, ch2q that could come from a sheaf, e.g.
rk ą 0 or rk “ 0 and c1 is effective, and an ample class H with which to measure stability,
we might first ask:

Is the moduli space of H-stable sheaves of Chern character prk, c1, ch2q nonempty?

If it is nonempty, we’ve already seen that it is smooth and computed its dimension to be
dimTrEsX “ dim Ext1pE,Eq. And if H is a “generic” polarization with respect to the
invariants of the sheaf, MHpvq is proper, since the notions of stable and semistable sheaves
agree. To recall this, we define a more convenient packaging of the discrete invariants of
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a sheaf. For a sheaf E, let vpEq “ chpEq
?

tdX P HevenpX,Zq be its Mukai vector. As
X is a K3 surface, tdX “ 1 ` ω where ω P H4pX,Zq is the fundamental class of X. So
vpEq “ prkpEq, c1pEq, rkpEq ` ch2pEqq. We call a Mukai vector prk, c1, aωq primitive if
gcdprk, c1, aq “ 1. See section 1.2 of [9] for the fact the generic polarizations H with respect
to primitive Mukai vectors give rise to the same notion of stable and semistable sheaves.
Define the Mukai lattice of X to be HevenpX,Zq with pairing

xx, yy :“ ´

ż

X
x_y

“

ż

X
x1y1 ´ x0y2 ´ x2y0,

where xi is the component of x in degree 2i. Then the Grothendieck Riemann Roch theorem
gives

χpE,F q :“ Ext0pE,F q ´ Ext1pE,F q ` Ext2pE,F q

“ ´xvpEq, vpF qy.

Let MHpvq denote the moduli space of H-stable sheaves of Mukai vector v. The above
analysis gives that if MHpvq is nonempty, then it is smooth of dimension

dimMHpvq “ dim Ext1pE,Eq “ 2´ χpE,Eq “ 2` xvpEq2y.

However, we still have not established that there exist stable sheaves of a given Mukai
vector.

The goal of these notes is to appreciate the following theorem of Yoshioka [9, Theorem
8.1]:

Theorem 1.1. Let X be a projective K3 surface and let v “ prk, c1, aωq be a primitive Muaki

vector. If rk v ą 0 or c1 is ample, then MHpvq is deformation equivalent to Hilb
xv2y{2`1
X .

Remark. As a sanity check, the dimensions of both spaces agree! We have

dim Hilb
xv2y{2`1
X “ 2

`

xv2y{2` 1
˘

“ 2` xv2y.

Besides settling the question of existence of stable sheaves of a given Mukai vector, this
theorem allows one to reduce questions about deformation-invariant properties to Hilbert
schemes of points, e.g. the Betti numbers and Hodge structure. In particular, moduli
spaces of stable sheaves with primitive Mukai vector give no new examples of irreducible
holomorphic symplectic (IHS) varieties.

The proof of this theorem (in the level of generality achieved by Yoshioka) is rather
technical and quite delicate. For that reason, we’ll focus here on the two main steps of
the argument: reduction to proving the theorem for a single K3 surface, and proof of
deformation equivalence in this case. In the first step, we will use elliptic K3 surfaces.
These lend themselves nicely to the problem for two reasons: (1) there exist polarized
elliptic K3 surfaces of every degree 2d, and (2) we can use the fibration to leverage results
about elliptic curves. For the second step, we we will sketch an earlier argument, due to
Bridgeland [1], which proves the desired result in a special case.
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1.1. Outline of Proof. As indicated above, the first step is to reduce the problem of show-
ing that the moduli of stable sheaves MHpvq on an arbitrary K3 surface X is deformation
equivalent to a Hilbert scheme of points, to showing that MH 1pv

1q on some fixed K3 surface
X 1 is (for appropriate H 1 and v1). We can do this for two reasons: (1) the moduli space of
polarized K3 surfaces of fixed degree is connected, and (2) we can construct the moduli of
stable sheaves in the relative setting.

The second step of the proof is really where the magic happens. We begin with hypothet-
ical stable sheaves E of Mukai vector vpEq “ prkpEq, c1pEq, rkpEq`c1pEqq on an elliptic K3
surface X, and we want to somehow relate these to ideal sheaves of points on some (possibly
different) K3 surface. Throughout, we will assume that the polarization is “suitable”, which
means a torsion-free sheave is stable if and only if its restriction to a generic fiber is stable.
Suitable polarization exist, as observed by Friedman [2]. This is a key point, which we can
assume from the techniques of the first step, that allows us to leverage the theory of elliptic
curves in our situation.

Let π : X Ñ C be the elliptic fibration. Then we can construct a relative moduli space
M of stable sheaves on the fibers of π, which is itself an elliptic K3 surfaces fibered over C.
Letting P be the pushforward of the Poincare bundle on XˆCM, we have a Fourier-Mukai
transform

ΨP : DbpCohpXqq Ñ DbpCohpMqq.

It turns out that this is an equivalence of categories, which, in our case, will take stable
sheaves E to (possibly shifted) sheaves (e.g. complexes concentrated in one degree). The
new Mukai vector satisfies

vpΨpEqq “ ΨHpvq

where ΨH is the Fourier-Mukai transform on cohomology. We will show that this gives a
birational map

MHpX, vq 99KMH 1pM,ΨHpvqq.

By appropriately choosing the numerics of the moduli space M we can arrange that

ΨHpvq “ p1, 0,´xv2y{2q.

More precisely in section 3 we will prove

Theorem 1.2 ([1]). Let X be an elliptic K3 surface, f the numerical class of a fiber, and
v “ r ` c1 ` aω a primitive Mukai vector with r ą 1 and pc1 ¨ f, rq “ 1. If H is a suitable

polarization, then MHpX, vq is birational to Mrxv2y{2`1s, where M is another elliptic K3
surface.

To finish the argument, we need to show that if MHpvq is birational to a Hilbert scheme
of points on a K3 surface, then it is in face deformation equivalent. This is guaranteed by
the following two results:

Proposition 1.3. Let X be a projective symplectic variety and Y an irreducible holomorphic
symplectic variety. If X is birational to Y , then X is irreducible holomorphic symplectic as
well.

The proof of this result is given in Cor 6.2.7 of [5], where they prove that MHpvq is
irreducible holomorphic symplectic.

Proposition 1.4 ([4, Theorem 4.6]). Two irreducible holomorphic symplectic varieties
which are birational are deformation equivalent.
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2. Reduction to Elliptic K3 Surfaces

The first major step in the proof of this theorem is to reduce to understanding the defor-
mation type of the moduli space of stable sheaves on a particular K3 surface. As indicated
above, we will specialize to elliptic K3 surfaces. For this, we will need to understand how
to recognize an elliptic K3 surface from its Picard lattice.

2.1. Torelli Theorem for K3 Surfaces. Recall that for curves, the Torelli Theorem
states that a curve C is determined by its Jacobian, equivalently by its weight 1 Hodge
structure on H1pC,Zq. Hence the Torelli map from Mg to Ag is an injection. However, a
simple dimension count shows that not all abelian varieties are Jacobians of curves, so this
map cannot be surjective. The magical fact for (polarized) K3 surfaces is that they are also
determined by their (polarized) weight 2 Hodge structure on H2pX,Zq; but even better the
Torelli map is surjective, so given a polarized weight 2 Hodge structure which is of the type
of a K3 surface, it is possible to construct the corresponding K3 surface. We will discuss
this now, and give some examples.

Recall that for any K3 surface X, the second cohomology H2pX,Zq together with its
intersection pairing is an even, unimodular lattice of signature p3, 19q. In fact, this uniquely
determines the lattice to be

ΛK3 “ E8p´1q‘2 ‘ U‘3,

which we call the K3 lattice.
We will say that a weight 2 polarized Hodge structure V is of K3 type if V b C “

V 2,0 ‘ V 1,1 ‘ V 0,2 with dimV 2,0 “ dimV 0,2 “ 1 and dimV 1,1 “ 19. The primitive second
cohomology (orthogonal complement of the polarization) of an algebraic K3 surface is then
a Hodge structure of K3 type.

Theorem 2.1 (Surjectivity of the Period Map). Let vd P ΛK3 be such that xvd, vdy “ d ą 0.
Any polarized Hodge structure V of K3 type on vKd comes from a polarized K3 surface pX,Lq,

where L is big and nef on X, and V “ c1pLq
K Ă H2pX,Zq.

Proof. This stronger version of the surjectivity of the period map (e.g. [3, Theorem 4.1])
follows from a more general theorem which identifies all possible ample cones, see Surjec-
tivity Theorem [7, Section 12, pg. 76]. In that notation, we take R to be the union of all
e such that e2 “ ´2 and vd ¨ e “ 0. �

Recall that by the Lefschetz (1,1) Theorem we have that PicpXq “ NSpXq » H2pX,ZqX
H1,1pXq. So this theorem allows one “exhibit” a K3 surface with a desired Picard lattice.

Definition 2.2. An embedding of lattices M ãÑ Λ is called primitive if Λ{M is free. Two

primitive embeddings M ãÑ Λ and M ãÑ Λ1 are isomorphic if there is an isometry Λ
»
ÝÑ Λ1

which induces the identity on M .

The main lattice-theoretic result with interesting geometric consequences is:

Proposition 2.3 ([8, Corollary 1.12.3]). Any even lattice S of signature p1, ρ´1q for ρ ď 10
admits a unique primitive embedding S ãÑ ΛK3. Hence there exists an algebraic K3 surface
X and an isometry NSpXq » S.

Example 2.4. Let U be the hyperbolic lattice

ˆ

0 1
1 0

˙

. Since U ãÑ ΛK3 is an even lattice

of signature p1, 1q, there exist K3 surfaces X with PicpXq Ą U . The claim is that such an X
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is an elliptic K3 surface. To see this, first call the two basis classes F and C. Then we can
specify 2F `C to be ample (since p2F `Cq2 “ 4). Hence by the Nakai-Moishezon criterion,
´F is not effective. Thus by Serre duality h2pX,F q “ h0pX,´F q “ 0. The Riemann-Roch
theorem gives

χpF q “ h0pF q ´ h1pF q “
F 2

2
` 2 “ 2.

Thus h0pF q ě 2 and F is effective and moves in at least a pencil. In fact, |F | is a base-point
free linear series. Indeed, any base point would have to be on some effective curve F in the
series. By twisting the subscheme sequence defining F by OXpF q, we have

0 Ñ OX Ñ OXpF q Ñ OF pF q » NF {X Ñ 0.

The corresponding long exact sequence in cohomology is

0 Ñ H0pOXq Ñ H0pF q Ñ H0pNF {Xq Ñ H1pOXq “ 0.

Hence if F has a base-point, then so doesNF {X . But by the adjunction formula, NF {X » ωF ,
the dualizing sheaf. As the Reiamnn-Roch theorem implies that ωF is base-point free, we
have that the linear series |F | on X is as well.

And so the above exact sequence gives that h0pF q “ 2 and we have a morphism

π : X
|F |
ÝÝÑ P1.

By the adjunction formula, if papF q denotes the arithmetic genus of F , then

2papF q ´ 2 “ F 2 “ 0, ñ papF q “ 1.

And so the above map π is an elliptic fibration. Note that it also has a section, which is in
the class C ´ F . A similar argument to the one above shows that it is effective.

2.2. Deforming to Elliptic K3 Surfaces. Recall that the goal is to show that for any K3
surface X and primitive Mukai vector v with rk v ą 0, the moduli space of stable sheaves
MHpX, vq is deformation equivalent to some moduli space of stable sheaves MH 1pY,wq,
where Y is an elliptic K3 surface. The key technical lemma is the following proposition,
which makes the moduli of sheaves construction in families:

Lemma 2.5 ([9, Prop 5.1]). Let T be a connected curve, pX ,Lq p
ÝÑ T a smooth family

of polarized K3 surfaces. Assume that there exists t1 P T such that ρpXt1q “ 1. Let
v “ r ` dL` aω P Rp˚Z be a primitive Mukai vector. Then there exists an algebraic space
Mpvq Ñ T , smooth and proper, such that Mpvqt “ MHtpvtq, where Ht is a general ample
class except perhaps at finitely many places t P T .

As a result, all of the moduli spaces of sheaves which are fibers of the morphism Mpvq Ñ
T are deformation equivalent. We’ll use this to prove:

Theorem 2.6. Let X1 and X2 be K3 surfaces, v1 “ r ` ξ1 ` a1ω and v2 “ r ` ξ2 ` a2ω
primitive Mukai vectors such that

(1) r ą 0
(2) `pv1q “ `pv2q “ `
(3) xv2

1y “ xv
2
2y “ 2s

(4) a1 ” a2 pmod `q,

and H1 and H2 generic polarizations. Then MH1pv1q and MH2pv2q are deformation equiv-
alent.
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Proof Sketch. First, we may assume that the ξi are ample by twisting up by a sufficiently
multiply of Hi. The operation E ÞÑ E bHbnii does not affect stability with respect to Hi.

On Mukai vectors this corresponds to vi ÞÑ vi chpHbnii q.
Second, we may assume that the Xi are elliptic K3 surfaces of degree 2ξ2

i . This follows
almost directly from Lemma 2.5, since the moduli of polarized K3 surfaces of degree 2ξ2

i
is connected. Hence we can find curves Ti with the desired properties joining pXi, ξiq to
elliptic K3 surfaces. In fact, we can assume that the surfaces X1 “ X2 since elliptic K3
surfaces have polarizations of every degree; namely, σ ` nif , if σ is the class of a section
and f is the class of a fiber.

So we may assume that X1 “ X2 “ Xis an elliptic K3 surface and that ξi{` “ σ ` nif .
Because xv2

1y “ xv
2
2y, we have

ξ2
1 ´ 2ra1 “ ξ2

2 ´ 2ra2

`2p2n1 ´ 2q ´ 2ra1 “ `2p2n2 ´ 2q ´ 2ra2

`2n1 ´ ra1 “ `2n2 ´ ra2

rpa2 ´ a1q “ `2pn2 ´ n1q.

Now the difference

v2 ´ v1 “ ξ2 ´ ξ1 ` pa2 ´ a1qω

“ pn2 ´ n1q`f ` pa2 ´ a1qω

“
rpa2 ´ a1qf

`
` pa2 ´ a1qω

“ pr ` pσ ` n1fq`` a1ωq ¨

ˆ

pa2 ´ a1qf

`

˙

“ v1 ¨

ˆ

pa2 ´ a1qf

`

˙

.

Hence v2 “ v1 ¨ exp
´

pa2´a1qf
`

¯

. And exp
´

pa2´a1qf
`

¯

is the Chern character of a line bundle.

This corresponds to the operation of twisting the sheaves by the line bundle a2´a1
` ¨f . Since

this preserves stability [9, Lemma 1.1], we may reduce to the case v1 “ v2. We reduce to
H1 “ H2 by again applying Lemma 2.5 and passing through Picard rank 1. �

2.3. Producing the Elliptic K3 Surface. Let X be our projective K3 surface, H generic
polarization, and v primitive Mukai vector with rk v ą 0, Given the result of Theorem 2.6,
our goal here is to produce an elliptic K3 surface Y with Mukai vector w such that the
hypothesis of Theorem 2.6 are satisfies for pX, vq and pY,wq. Our main tool with be the
Torelli theorem!

The choice Yoshioka gives is as follows. Let v “ `pr ` c1q ` aωq and choose k ą 0 such
that n :“ r ¨ k ´ c2

1 ą 0. Let b be such that b` `r “ a´ `k. We may assume by altering k
that b is relatively prime to r.

Let L be the even rank 3 lattice with intersection matrix
¨

˝

0 1 0
1 0 0
0 0 ´2n

˛

‚.
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Note the the signature of L is p1, 2q, so by Proposition 2.3 L admits a primitive embedding
into the K3 lattice. Also, since L contains a copy of U , the K3 surface Y produced by the
Torelli theorem is an elliptic K3 with a section. Call σ the class of a section and f the class
of a fiber. Let ζn be the last basis class, with ζn ¨ f “ ζn ¨ σ “ 0 and ζ2

n “ ´2n. Note that
if n ą 1, then every fiber of π is irreducible. So we may assume this by making k larger.

Now we set w “ `pr ` p´ζn ` fqq ` pb` `rqω. Then we have

xw2y “ `2p´ζn ` fq
2 ´ 2`rpb` `rq

“ `2p´2nq ´ 2`rpb` `rq

“ `2p´2rk ` c2
1q ´ 2`rpa´ `kq

“ `2c2
1 ´ 2`ra

“ xv2y.

In addition, it can be easily seen that the other assumptions of Theorem 2.6 hold.

3. Fourier-Mukai Transforms on Elliptic K3 Surfaces

Recall from the introduction that the theorem we are aiming for is:

Theorem 3.1 ([1, Theorem 1.1]). Let X be an elliptic K3 surface, f the numerical class
of a fiber, and v “ r` c1` aω a primitive Mukai vector with r ą 1 and pc1 ¨ f, rq “ 1. If H

is a suitable polarization, then MHpX, vq is birational to Mrxv2y{2`1s, where M is another
elliptic K3 surface.

We begin by recalling the definition and some properties of Fourier-Mukai transforms in
general. Then we will discuss Fourier-Mukai transforms on elliptic curves and their relative
versions fro elliptic fibrations. Finally we will put this all together to define the above map
and prove that it is birational.

3.1. Fourier-Mukai Tranforms. Let DpXq :“ DbpCohpXqq be the bounded derived cat-
egory of coherent sheaves on X. Recall that the objects of DpXq are complexes of coherent
sheaves onX. Let ris be the shift functor that shifts complexes i places to the left. For a com-
plex A, let H ipAq denote the ith cohomology sheaf of A, e.g. kerpAi Ñ Ai`1q{ impAi´1 Ñ

Aiq. We say that E P DpXq is a sheaf if H ipEq “ 0 for i ‰ 0.
On a product of varieties X ˆ Y , let πX and πY denote the projections onto each factor

X ˆ Y

X Y

πX

πY

Given P P DpX ˆ Y q define the Fourier-Mukai transform with kernel P to be the map

ΦP : DpY q Ñ DpXq,

ΦP pyq “ RπX,˚pP b
L π˚Y pyqq.

If P is a sheaf on X ˆ Y , flat over Y , then the above tensor product is exact. When the
kernel is obvious from context, we will omit it and simply write Φ “ ΦP .

We can also define a Fourier-Mukai functor in the other direction, which in good circum-
stances will be an inverse of Φ. Let P_ :“ RHompP,OXˆY q, and define

Q :“ P_rdimX ` dimY ´ dimP s.



8 ISABEL VOGT

We then set

Ψ “ ΨQ : DpXq Ñ DpY q,

to be the corresponding Fourier-Mukai functor. The reason for the shift is to give Q the best
chance of being a sheaf. For example, if P is a torsion sheaf (e.g. dimP ‰ dimX `dimY ),
then HompP,OXˆY q “ 0, but higher Ext groups need not vanish. If P is a vector bundle,
then it is clear that Q is as well.

Grothendieck-Verdier duality gives that ΨrdimP ´ dimY s is a left adjoint of Φ, so if Φ
is fully faithful, then

(1) Ψ ˝ Φ » IdDpY qrdimY ´ dimP s.

By Grothendeick Riemann Roch, there is a cohomological Fourier-Mukai functor defined
such that the following diagram

DpY q DpXq

HevenpY,Zq HevenpX,Zq

ch

Φ

ch

ΦH

commutes.
As indicated in the introduction, we will use Fourier-Mukai transforms to turn stable

sheaves of arbitrary Mukai vector into ideal sheaves of points on a (possibly different) K3
surface. First we must understand when the Fourier-Mukai transform of a sheaf is again a
sheaf.

Definition 3.2. A sheaf E P CohpY q is Φ´WITi (weak index theorem) if

ΦjpEq :“ H jpΦpEqq “ 0

for i ‰ j.

Equivalently, E is Φ ´ WITi if ΦpEqris is a sheaf. In this case, we will call the sheaf

ΦipEq the transform of E, and denote it by Ê.
If Φ is fully faithful, we can relate the Ext groups of transforms of WIT sheaves to the

Ext groups of the original sheaves. If A is Φ´WITa and B is Φ´WITb, then

ExtiY pA,Bq “ HomDpY qpA,Brisq

“ HomDpXqpΦpAq,ΦpBqrisq

“ HomDpXqpÂr´as, B̂r´b` isq

“ Exti`a´bX pÂ, B̂q.

The relation

(2) ExtiY pA,Bq “ Exti`a´bX pÂ, B̂q

is referred to as the Parseval theorem.
Since our goal is to use the Fourier-Mukai functor to turn the universal family over MHpvq

into a family of ideal sheaves of zero-dimensional subschemes, we need to know that the
Fourier-Mukai functor behaves well with families of WIT sheaves. This is provided by the
following Lemma, which loosely says that Φ takes families of Φ´WIT sheaves to families
of sheaves.
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Lemma 3.3 ([1, 2.4]). Let S be a scheme and E a sheaf on Y ˆ S, flat over S. Further
suppose that the Fourier-Mukai kernel P is a sheaf on X ˆ Y . Then

U :“ ts P S : Es is Φ´WITiu

is open in S. In addition there exists a sheave F on X ˆ U , flat over U , such that for
s P U , Fs “ ΦipEsq.

3.2. Fourier-Mukai Transforms on Elliptic Curves and Elliptic Surfaces.

3.2.1. Elliptic Curves. We consider now the case that X and Y are both elliptic curves. Let
a, b be coprime integers with a ą 0. Let Y be the moduli space of stable bundles with Chern
class cpEq “ prpEq, dpEqq “ pa, bq, where rpEq is the rank of E and dpEq is its degree. In
fact, Y » X, but we will continue with the differentiated notation to reduce confusion.

Let P be the Poincaré bundle on X ˆ Y , satisfying the property that for all y P Y ,
P |Xˆtyu is the bundle parameterized by the point y. Let Φ “ ΦP : DpY q Ñ DpXq. Since

P is a vector bundle, Q “ P_ is again a vector bundle. Let Ψ “ ΦQ : DpXq Ñ DpY q. As
noted above, Ψr1s is a left adjoint to Φ.

Proposition 3.4 ([1, Prop 3.1]). The functor Φ is an equivalence of categories.

In particular, Ψ ˝Φ “ IdDpY qr1s. Thus the cohomological Fourier-Mukai functors satisfy

(3) ΨH ˝ ΦH “ ´ IdHevenpY,Zq .

In fact, we can understand the cohomological Fourier-Mukai functor ΦH very concretely.
If X and Y are elliptic curves, then HevenpY,Zq and HevenpX,Zq are both rank 2 free
Z-modules. So ΦH is an invertible 2ˆ 2 integer matrix. But we can say even more!

For y P Y , we have that

ΦpOyq “ RπX,˚pP b π
˚
Y pOyqq,

“ RπX,˚pP b π
˚
Y pOXˆtyuqq,

“ RπX,˚pP |Xˆtyuqq,

“ P |Xˆtyu,

as πX is an isomorphism restricted to Xˆtyu. So, as Oy has Chern class p0, 1q and P |Xˆtyu
has Chern class pa, bq, we have that

ΦH

ˆ

0
1

˙

“

ˆ

a
b

˙

.

So the matrix corresponding to ΦH is of the form

ˆ

c a
d b

˙

with bc ´ ad “ ˘1. We can in

fact say that it is `1. By (3) we have that

ΨH “ ˘

ˆ

´b d
a ´c

˙

.

But as observed above, a “ rpQ|txuˆY q ą 0 as Q is a sheaf.

The c and d in the matrix corresponding to ΦH in SL2pZq are only defined modulo the
addition of a fixed multiple n of a to c, and b to d. This corresponds to twisting the kernel
P by a line bundle of degree n on Y .
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3.2.2. Elliptic Surfaces. Our goal now is the make the entire picture above relative! Let
π : X Ñ C be an elliptic K3 surface with a section. Let f be the numerical class of a
fiber of π. For any sheaf E on X, let dpEq “ c1pEq ¨ f denote the fiber degree of E.

Further let µpEq :“ dpEq
rpEq denote the fiber slope of E. We will say that E is a fiber sheaf if

rpEq “ dpEq “ 0; equivalently if the support of E is contained in the union of finitely many
fibers. We will construct relative Fourier-Mukai functors which agree with the functors
above when restricted to the fibers of π.

Let MpX{Cq be the moduli space of stable, pure-dimension 1 sheaves supported on fibers
of π.

Definition 3.5. For coprime integers a and b, let π̂ : JXpa, bq Ñ C be the union of compo-
nents of MpX{Cq with a point corresponding to a sheaf of rank a and degree b supported
on a nonsingular fiber.

The coprimality assumptions guarantee that JXpa, bq is a projective, fine moduli space
whose points correspond to strictly stable sheaves. For convenience we will refer to JXpa, bq
as Y . Mukai showed that there is a Poincare sheaf P on X ˆC Y , with the property that
for all y P Y , P |π´1pπ̂pyqqˆtyu is the sheaf parameterized by the point y.

Extension by 0 (e.g. pushforward) defines an isomorphism

Y
„
ÝÑMHpp0, af,´bqq,

since any stable torsion sheaf E with c1pEq “ af is in fact supported on a fiber (since its
support must be contained in fibers and also connected). And from Mukai’s analysis of
moduli spaces with xv2y “ 2, we know that both sides are smooth projective K3 surfaces.

The kernel of our relative Fouier-Mukai transform will be the extension of P by 0 to
X ˆ Y , which we will also call P . Note that since this sheaf is supported on X ˆC Y , we
have that dimP “ 3, not 4. So we set Q “ P_r1s. By [1, Lemma 5.1] Q is a sheaf. Define
the relative Fourier-Mukai functors

Φ “ ΦP : DpY q Ñ DpXq

Ψ “ ΦQ : DpXq Ñ DpY q.

By similar arguments to the case of Fourier-Mukai transforms for elliptic curves, Bridgeland
[1] shows that these relative functors are equivalences, so in particular

(4) Ψ ˝ Φ » IdDpY qr´1s.

Let p P C, and define Xp :“ π´1ppq and Yp :“ π̂´1ppq be nonsingular fibers. Note that
by construction Yp is the moduli space of stable bundles of rank a and degree b on Xp. Let
ip : Xp ãÑ X and jp : Yp ãÑ Y be the inclusions of the fibers. Finally let Pp be the restriction
of P to Xp ˆ Yp and let

Φp “ Φ
Pp
p : DpYpq Ñ DpXpq,

be the restriction of Φ to the fiber over p.

Proposition 3.6. Φ and Ψ restrict to the elliptic curve Fourier-Mukai functors with pa-
rameters pa, bq on the fibers of π̂ : Y Ñ C and π : X Ñ C, e.g.

Li˚p ˝ Φ » Φp ˝ Lj
˚
p ,

Lj˚p ˝Ψ » Ψp ˝ Li
˚
p ,



DEFORMATION TYPES OF MODULI SPACES OF STABLE SHEAVES ON K3 SURFACES 11

Proof. The proofs of both results are identical, so we show the first. We have the following
commutative diagram, the bottom and top “squares” of which are cartesian:

Xp X

Xp ˆ Yp X ˆ Y

Yp Y

ip

πXp

πYp

kp

πX

πY
jp

Using the base change theorem for derived functors we have

Li˚p pπX,˚ pP b π
˚
Y p´qqq » πXp,˚

`

Lk˚p pP b π
˚
Y p´qq

˘

» πXp,˚
`

Pp b Lk
˚
pπ
˚
Y p´q

˘

» πXp,˚

´

Pp b π
˚
YpLj

˚
p p´q

¯

. �

By restricting to the fibers, we have

Corollary 3.7. If E is a sheaf on X of rank rpEq and fiber degree dpEq, then
ˆ

rpΨpEqq
dpΨpEqq

˙

“

ˆ

´b a
d ´c

˙ˆ

rpEq
dpEq

˙

,

for some c, d P Z such that bc´ ad “ 1.

Recall that our goal is to set the numerical parameters pa, b, c, dq appropriately such that
for E on X with given Mukai vector v, ΨpEq is (1) a sheaf, and (2) more particularly an
ideal sheaf of a zero-dimensional subscheme of Y . We’ll begin with (1), understanding when
Ψ and Φ bring (families of) sheaves into (families of) sheaves.

3.3. Weak Index Theorem Sheaves. Recall (4) that

Ψ ˝ Φ » IdDpY qr´1s, Φ ˝Ψ » IdDpXqr´1s.

First note that this implies that if E is Ψ ´WITi, then Ê is Φ ´WIT1´i and visa versa;
indeed, ΦjpΨpEqq “ 0, unless j “ 1, in which case it is E.

More generally, isomorphism of functors feeds nicely into the Grothendieck composition
of derived functor spectral sequence! Taking the second isomorphism of functors, the E2

page of this spectral sequence is:

Φ0pΨ0pEqq Φ1pΨ0pEqq ¨ ¨ ¨

Φ0pΨ1pEqq Φ1pΨ1pEqq ¨ ¨ ¨

Φ0pΨ2pEqq Φ1pΨ2pEqq ¨ ¨ ¨

... . .
.
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This spectral sequence abuts to the rightward shift of E, so

Ep,q2 “ ΦppΨqpEqq ñ

#

E : p` q “ 1

0 : else.

Using Proposition 3.6, ΦipΨjpEqq “ 0 for i or j greater than 1 (or less than 0), since it
restricts to 0 on a generic fiber. So in fact the E2 page is concentrated in the square box
where 0 ď p, q ď 1.

Φ0pΨ0pEqq Φ1pΨ0pEqq 0

Φ0pΨ1pEqq Φ1pΨ1pEqq 0

0 0 0

0 0 . .
.

All differentials pass out of this box, so the spectral sequence must degenerate on the E2

page. Hence we further have that Φ0pΨ0pEqq “ Φ1pΨ1pEqq “ 0, since the sequence abuts
to the shift of E. To summarize, we have three pieces of information

(1) Φ0pΨ0pEqq “ 0, so Ψ0pEq is Φ´WIT1,
(2) Φ1pΨ1pEqq “ 0, so Ψ1pEq is Φ´WIT0,
(3) We have an exact sequence 0 Ñ Φ1pΨ0pEqq Ñ E Ñ Φ0pΨ1pEqq Ñ 0. By our first

observation, Φ1pΨ0pEqq is Ψ´WIT0 and Φ1pΨ0pEqq and Ψ´WIT1.

Similarly, we have another spectral sequence with the roles of Φ and Ψ reversed, which gives
the reversed information.

Lemma 3.8. For any sheaf E on X, there is a unique short exact sequence

0 Ñ AÑ E Ñ B Ñ 0,

where A is Ψ´WIT0 and B is Ψ´WIT1.

Proof. Existence follows from observation (3) above: A “ Φ1pΨ0pEqq and B “ Φ0pΨ1pEqq.
Suppose that there existed another sequence 0 Ñ A1 Ñ E Ñ B1 Ñ 0. The composition
b ˝ a1,

0 A1 E B1 0

0 A E B 0

b˝a1

a1 b1

a b

lives in the group HompA1, Bq. By the Parseval Theorem (2),

HomXpA
1, Bq “ Ext0

XpA
1, Bq

“ Ext´1
Y pÂ

1, B̂q

“ 0.

So the map is necessarily 0, and so factors through A. Considering HompA,B1q, we see that
the same is true in the other direction, and so A “ A1 and B “ B1. �
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Lemma 3.9. Let E be a torsion-free sheaf on X. If E is Ψ ´WIT0, then the fiber slope
µpEq ě b{a. If E is Ψ´WIT1, then µpEq ď b{a.

Proof. Recall that by Corollary 3.7, ΨH to the matrix

ˆ

´b a
d ´c

˙

. In particular rpΨpEqq “

´brpEq ` adpEq.

‚ If E is Ψ´WIT0, then ΨpEq is a sheaf, so rpΨpEqq ě 0. Hence µpEq ě b{a.
‚ If E is Ψ´WIT1, then ΨpEqr1s is a sheaf, so rpΨpEqq ď 0. Hence µpEq ď b{a. �

Lemma 3.10. Let T be a torsion Ψ´WIT1 sheaf on X. Then T is a fiber sheaf.

Proof. Since T is a torsion sheaf, rpT q “ 0 and so it suffices to show that dpT q “ 0. As
above we have rpΨpT qq “ ´brpT q ` adpT q “ adpT q ď 0, since T is Ψ ´ WIT1. Thus
dpT q “ c1pT q ¨ f ď 0, since a ě 0. But as c1pT q is effective and f is nef, dpT q “ 0. �

Recall that our goal is to use the Fourier-Mukai functor to transforms stable sheaves with
Mukai vector v to ideal sheaves of points. We now see that stability (with respect to a
suitable polarization) is exactly what will guarantee for us that ΨpEq is again a sheaf.

Lemma 3.11. Let E be a torsion-free sheaf on X, such that the restriction of E to a generic
fiber is stable. Then if µpEq ă b{a, E is Ψ´WIT1.

Proof. Consider the unique short exact sequence

0 Ñ AÑ E Ñ B Ñ 0,

where A is Ψ´WIT0 and B is Ψ´WIT1. We want to show that A “ 0. If not, then A is
torsion-free because E is. Lemma 3.9 implies that the fiber slope

µpAq ě b{a ą µpEq,

which contradicts our assumption that the restriction of E to a generic fiber is stable. �

Finally, we have that the opposite holds: the Fourier-Mukai transform of a sheaf whose
restriction to the general fiber is simple again has this property. Recall that a sheaf E is
called simple if HompE,Eq “ k.

Lemma 3.12. Let E be Φ ´WIT sheaf on Y whose restriction to a general fiber of π̂ is
simple. Then the restriction of Ê to a general fiber of π is simple.

Proof. Because of Prop 3.6, this follows directly from the Parseval theorem (2) for Fourier-
Mukai transforms on elliptic curves:

HompE,Eq “ Ext0pE,Eq “ Ext0pÊ, Êq. �

Remark. For elliptic curves, a simple sheaf is either a stable vector bundle or the skyscrapper
sheaf of a point (see Remark 3.4 of [?]). Hence, because we will always work with a suitable
polarization, this result shows that the (torsion-free) transform of a stable sheaf is stable.

3.4. Proof of the Main Theorem. We will now carry out the process that we have been
alluding to for the past seven pages!

Let π : X Ñ C be an elliptic K3 surface with a section and let f be the numerical class
of a smooth fiber. Fix v “ pr, c1, r` ch2q a primitive Mukai vector with r ą 1 and d “ c1 ¨ f
relatively prime to r. Let H be a suitable polarization on X, e.g. one for which a torsion-free
sheaf E on X is stable if and only if its restriction to a generic fiber of π is stable.
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Let a, b be the unique integers such that

br ´ ad “ 1, 0 ă a ă r.

Let Y “ JXpa, bq » MHpp0, af,´bqq. Let H 1 be a suitable polarization on Y . Let P be
the Poincare sheaf on X ˆ Y , and let Φ and Ψ be the Fourier-Mukai functors defined in

Section 3.2.2. So we have that Φ corresponds to the matrix

ˆ

r a
d b

˙

and Ψ corresponds to

the matrix

ˆ

´b a
d ´r

˙

on the fibers. Hence if E is a stable sheaf on X of rank and fiber

degree prpEq, dpEqq “ pr, dq, then the complex ΨpEq has rank and fiber degree
ˆ

rpΨpEqq
dpΨpEqq

˙

“

ˆ

´b a
d ´r

˙ˆ

r
d

˙

“

ˆ

´1
0

˙

.

Furthermore, since br ´ ad “ 1, we have that

d

r
ă
b

a
.

So by Lemma 3.11, E is Ψ´WIT1 (e.g. a sheaf concentrated in degree 1.) So by the above

calculation Ê is a rank 1 sheaf of fiber degree 0. However, our goal was to produce a sheaf
of rank one with trivial first Chern class. We can arrange that by modifying the relative
Fourier-Mukai functor P . Let L “ c1pÊq be the fiber degree 0 line bundle on Y , and replace
P by P b π˚Y pL

´1q. Since the fiber degree of L (and hence L´1) is 0 this does not alter the
cohomological Fourier-Mukai transform on the fibers. But by the push-pull formula:

πY ˚pP b π
˚
XpEq b π

˚
Y pL

´1qq “ πY ˚pP b π
˚
XpEqq b L

´1.

Hence, making such an alteration, we may assume that c1pÊq “ 0. Thus the Mukai vector
of the transform

vpÊq “ p1, 0,´xv2y{2q “ v1,

since xvpÊq2y “ xvpEq2y as the Fourier-Mukai transform is an isometry of Mukai lattices. So
as desired, the transform of E is an ideal sheaf of points on Y , another elliptic K3 surface.

And this construction works in families. Define

U “ tE PMHpvq : Ê is torsion-freeu,

and
V “ tF PMH 1pv

1q : F is Φ´WIT0u.

Recall that Lemma 3.11 guarantees that all E PMHpvq are already Ψ´WIT1. By Lemma
3.3 and the fact that stability is an open condition in flat families [5, Prop 2.3.1.], U and
V are open subsets of MHpvq and MH 1pv

1q respectively. In what follows we will show
that U and V are nonempty and in fact isomorphic (via the Fourier-Mukai functor Φ).
After arguing that these moduli spaces are irreducible, this will establish their birationality,
completing the proof.

Lemma 3.13. The Fourier-Mukai transform Φ is an isomorphism between U and V .

Proof. Since Φ˝Ψ » IdDpXqr´1s and Lemma 3.3 guarantees that Φ behaves well in families,
it suffices to show that Φ and Ψ bring U and V into eachother.

Let E be in U . Then since E is Ψ ´ WIT1, we have that Ê is Φ ´ WIT0. Thus Ê is
in V , since a rank 1 sheaf is stable if and only if it is torsion-free. In the other direction,
given F P V , set E “ F̂ “ ΦpF q. We want to show that E is in U , e.g. that it is stable.
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Since the restriction of F to a generic fiber is stable, hence simple, the restriction of E to
a generic fiber is simple, hence stable. As H is a suitable polarization, it suffices to show
that E is torsion-free.

Suppose that E had a torsion subsheaf T . Consider the exact sequence

0 Ñ T Ñ E Ñ E{T Ñ 0.

Since Ψ is left exact, and E is Ψ ´WIT1, T is also Ψ ´WIT1. Hence applying Ψ we get
an exact sequence

0 Ñ Ψ0pE{T q Ñ T̂ Ñ F Ñ Ψ1pE{T q Ñ 0.

By Lemma 3.10 T is a fiber sheaf and so T̂ is as well. In particular, it is a torsion sheaf;
but as F is torsion-free, the map

Ψ0pE{T q Ñ T̂

must be an isomorphism. But Ψ0pE{T q is Φ ´WIT1 and Ψ1pT q “ T̂ is Φ ´WIT0. Thus
both sheaves are in fact 0 and T “ 0 and E is torsion-free. �

To show that they are nonempty, we will show that certain ideal sheaves of length xv2y{2`
1 “ ´ ch2pv

1q are Φ´WIT0.

Lemma 3.14. Let F “ Lb IZ where L P Pic0pY q and Z is a set of xv2y{2` 1 points lying
on distinct fibers of π̂ : Y Ñ C. Then F is in V .

To prove this we need the following Lemma. Recall that Q “ P_r1s.

Lemma 3.15. A sheaf F on Y is Φ´WIT0 if and only if

HomY pF,Q|txuˆY q “ 0,

for all x P X.

Proof. For simplicity we will write Qx for Q|txuˆY . We have that Qx “ ΨpOxq, and is hence
Φ´WIT1. Thus if F is Φ´WIT0, the Parseval Theorem (2) implies that

HompF,Qxq “ Ext´1pF̂ ,Oxq “ 0.

Conversely, if F not Φ´WIT0, then as in Lemma 3.8, there is a surjection F Ñ B, where
B is a nonzero Φ´WIT1 sheaf. Again by the Parseval theorem

HompB,Qxq “ HompB̂,Oxq.

If x is in the support of B̂, then there is a nonzero map B̂ Ñ Ox, and hence from B Ñ Qx.
Composing we have F Ñ B Ñ Qx, a nonzero map. �

Proof of Lemma 3.14. By the above Lemma it suffices to show that there are no nonzero
maps from F Ñ Qx for any x P X. As Qx is supported on the fiber Yπpxq over πpxq, any
such map factors through F |Yπpxq . The (push-forward to Y of this) restriction is a stable,

pure-dimension 1 sheaf on Y with Chern class p0, f, sq, where s is the number of points of
Z in the fiber Yπpxq. Hence s “ 1 for finitely many values of πpxq, and is otherwise 0. Qx
is also stable of pure dimension 1 with Chern class p0, af, rq. But then there cannot be any
nonzero maps F Ñ Qx since r{a ą 1 ě s and Qx is stable. �

Finally to complete the proof that MHpvq and MH 1pv
1q are birational, we need that these

nonempty open set U and V are dense in their respective moduli spaces. In other words,
we need that these spaces are irreducible, e.g. have only one connected component. This
general result for moduli of (semi)stable sheaves on a K3 surface with respect to a generic
polarization is Theorem 4.1 of [6]. This completes the proof.
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