DEFORMATION TYPES OF MODULI SPACES OF STABLE SHEAVES
ON K3 SURFACES

ISABEL VOGT

ABSTRACT. These are notes for the MIT-NEU graduate seminar on Moduli of Sheaves on
K3 surfaces. The goal is to understand the deformation type of moduli spaces of stable
sheaves on a K3 surface.
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1. INTRODUCTION

Let X be a projective K3 surface over C. We will be concerned here with moduli spaces
of Gieseker stable sheaves on X. Since the discrete invariants (e.g. Chern character) of a
sheaf are constant in flat families, we will consider the moduli space of stable sheaves with
fixed discrete invariants. We’ve already explored one class of examples: Hilbert schemes of
n points Hilby = X ("] on X. The ideal sheaf of such a length n zero-dimensional subscheme
of X is a stable sheaf of Chern character (rk,ci,chs) = (1,0, —n), and all stable sheaves
with this Chern character are ideal sheaves of zero-dimensional length n subschemes.

In general, given a Chern character ch = (rk, ¢1, chg) that could come from a sheaf, e.g.
rk > 0 or rk = 0 and ¢; is effective, and an ample class H with which to measure stability,
we might first ask:

Is the moduli space of H-stable sheaves of Chern character (rk,c1,cha) nonempty?
If it is nonempty, we’'ve already seen that it is smooth and computed its dimension to be
dim T X = dimExt'(E, F). And if H is a “generic” polarization with respect to the
invariants of the sheaf, My (v) is proper, since the notions of stable and semistable sheaves

agree. To recall this, we define a more convenient packaging of the discrete invariants of
1
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a sheaf. For a sheaf E, let v(E) = ch(E)ytdx € H®*(X,Z) be its Mukai vector. As
X is a K3 surface, tdxy = 1 + w where w € H*(X,Z) is the fundamental class of X. So
v(E) = (tk(E),c1(E),rk(F) + cha(E)). We call a Mukai vector (rk,ci,aw) primitive if
ged(rk, e1,a) = 1. See section 1.2 of [9] for the fact the generic polarizations H with respect
to primitive Mukai vectors give rise to the same notion of stable and semistable sheaves.
Define the Mukai lattice of X to be H®V*"(X,Z) with pairing

(z,y) = —vay

= J T1Y1 — ToY2 — T2Yo,
X

where x; is the component of x in degree 2i. Then the Grothendieck Riemann Roch theorem
gives

X(E,F) :=Ext’(E, F) — Ext'(E, F) + Ext*(E, F)
= —(E),v(F)).

Let My (v) denote the moduli space of H-stable sheaves of Mukai vector v. The above
analysis gives that if My (v) is nonempty, then it is smooth of dimension

dim My (v) = dimExt!(E, E) = 2 — x(E, E) = 2 + (v(E)?).

However, we still have not established that there exist stable sheaves of a given Mukai
vector.

The goal of these notes is to appreciate the following theorem of Yoshioka [9, Theorem
8.1]:

Theorem 1.1. Let X be a projective K3 surface and let v = (rk, c1, aw) be a primitive Muaki

2
vector. If tkv > 0 or ¢y is ample, then My (v) is deformation equivalent to Hilbgg "L

Remark. As a sanity check, the dimensions of both spaces agree! We have

dim Hilby /2! = 2 ((w2)/2 + 1)
=2+ (W?).

Besides settling the question of existence of stable sheaves of a given Mukai vector, this
theorem allows one to reduce questions about deformation-invariant properties to Hilbert
schemes of points, e.g. the Betti numbers and Hodge structure. In particular, moduli
spaces of stable sheaves with primitive Mukai vector give no new examples of irreducible
holomorphic symplectic (IHS) varieties.

The proof of this theorem (in the level of generality achieved by Yoshioka) is rather
technical and quite delicate. For that reason, we’ll focus here on the two main steps of
the argument: reduction to proving the theorem for a single K3 surface, and proof of
deformation equivalence in this case. In the first step, we will use elliptic K3 surfaces.
These lend themselves nicely to the problem for two reasons: (1) there exist polarized
elliptic K3 surfaces of every degree 2d, and (2) we can use the fibration to leverage results
about elliptic curves. For the second step, we we will sketch an earlier argument, due to
Bridgeland [1], which proves the desired result in a special case.
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1.1. Outline of Proof. As indicated above, the first step is to reduce the problem of show-
ing that the moduli of stable sheaves My (v) on an arbitrary K3 surface X is deformation
equivalent to a Hilbert scheme of points, to showing that Mg/ (v') on some fized K3 surface
X' is (for appropriate H' and v’). We can do this for two reasons: (1) the moduli space of
polarized K3 surfaces of fixed degree is connected, and (2) we can construct the moduli of
stable sheaves in the relative setting.

The second step of the proof is really where the magic happens. We begin with hypothet-
ical stable sheaves E of Mukai vector v(E) = (rtk(E), c1(E),rk(E)+c1(E)) on an elliptic K3
surface X, and we want to somehow relate these to ideal sheaves of points on some (possibly
different) K3 surface. Throughout, we will assume that the polarization is “suitable”, which
means a torsion-free sheave is stable if and only if its restriction to a generic fiber is stable.
Suitable polarization exist, as observed by Friedman [2]. This is a key point, which we can
assume from the techniques of the first step, that allows us to leverage the theory of elliptic
curves in our situation.

Let m: X — C be the elliptic fibration. Then we can construct a relative moduli space
M of stable sheaves on the fibers of 7, which is itself an elliptic K3 surfaces fibered over C.
Letting P be the pushforward of the Poincare bundle on X x & M, we have a Fourier-Mukai
transform

Up: D’(Coh(X)) — D°(Coh(M)).
It turns out that this is an equivalence of categories, which, in our case, will take stable
sheaves E to (possibly shifted) sheaves (e.g. complexes concentrated in one degree). The
new Mukai vector satisfies
o(W(E)) = 0¥ (1)
where U is the Fourier-Mukai transform on cohomology. We will show that this gives a
birational map
MH(Xv U) -=> My (M¢ \IIH(U))
By appropriately choosing the numerics of the moduli space M we can arrange that
W (0) = (1,0,~(0%)/2)
More precisely in section [3| we will prove

Theorem 1.2 ([1]). Let X be an elliptic K3 surface, f the numerical class of a fiber, and
v =7+ c + aw a primitive Mukai vector with r > 1 and (¢1 - f,r) = 1. If H is a suitable
polarization, then Mg (X, v) is birational to M[<”2>/2+1], where M is another elliptic K3
surface.

To finish the argument, we need to show that if My (v) is birational to a Hilbert scheme
of points on a K3 surface, then it is in face deformation equivalent. This is guaranteed by
the following two results:

Proposition 1.3. Let X be a projective symplectic variety andY an irreducible holomorphic
symplectic variety. If X is birational to Y, then X is irreducible holomorphic symplectic as
well.

The proof of this result is given in Cor 6.2.7 of [5], where they prove that Mg (v) is
irreducible holomorphic symplectic.

Proposition 1.4 ([4, Theorem 4.6]). Two irreducible holomorphic symplectic varieties
which are birational are deformation equivalent.
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2. REpucTION TO ELLIPTIC K3 SURFACES

The first major step in the proof of this theorem is to reduce to understanding the defor-
mation type of the moduli space of stable sheaves on a particular K3 surface. As indicated
above, we will specialize to elliptic K3 surfaces. For this, we will need to understand how
to recognize an elliptic K3 surface from its Picard lattice.

2.1. Torelli Theorem for K3 Surfaces. Recall that for curves, the Torelli Theorem
states that a curve C is determined by its Jacobian, equivalently by its weight 1 Hodge
structure on H'(C,Z). Hence the Torelli map from M, to A, is an injection. However, a
simple dimension count shows that not all abelian varieties are Jacobians of curves, so this
map cannot be surjective. The magical fact for (polarized) K3 surfaces is that they are also
determined by their (polarized) weight 2 Hodge structure on H?(X,Z); but even better the
Torelli map is surjective, so given a polarized weight 2 Hodge structure which is of the type
of a K3 surface, it is possible to construct the corresponding K3 surface. We will discuss
this now, and give some examples.

Recall that for any K3 surface X, the second cohomology H?(X,Z) together with its
intersection pairing is an even, unimodular lattice of signature (3,19). In fact, this uniquely
determines the lattice to be

Ags = E3(-1)®2 @ U®,
which we call the K3 lattice.

We will say that a weight 2 polarized Hodge structure V is of K3 type if V ® C =
V20 Vil @ V0?2 with dim V2?9 = dim V%2 = 1 and dim V5! = 19. The primitive second
cohomology (orthogonal complement of the polarization) of an algebraic K3 surface is then
a Hodge structure of K3 type.

Theorem 2.1 (Surjectivity of the Period Map). Let vy € Ags be such that {vg,vgy = d > 0.
Any polarized Hodge structure V of K3 type on vj comes from a polarized K3 surface (X, L),

where L is big and nef on X, and V = ¢1(L)* < H*(X,7Z).

Proof. This stronger version of the surjectivity of the period map (e.g. [3, Theorem 4.1])
follows from a more general theorem which identifies all possible ample cones, see Surjec-
tivity Theorem [7, Section 12, pg. 76]. In that notation, we take R to be the union of all
e such that e? = —2 and vg - e = 0. ]

Recall that by the Lefschetz (1,1) Theorem we have that Pic(X) = NS(X) ~ H?(X,Z) n
HY1(X). So this theorem allows one “exhibit” a K3 surface with a desired Picard lattice.

Definition 2.2. An embedding of lattices M < A is called primitive if A/M is free. Two
primitive embeddings M < A and M — A’ are isomorphic if there is an isometry A — A/
which induces the identity on M.

The main lattice-theoretic result with interesting geometric consequences is:

Proposition 2.3 ([8, Corollary 1.12.3]). Any even lattice S of signature (1, p—1) for p < 10
admits a unique primitive embedding S — Ags. Hence there exists an algebraic K3 surface
X and an isometry NS(X) ~ S.

Example 2.4. Let U be the hyperbolic lattice . Since U — A, is an even lattice

0 1
10
of signature (1, 1), there exist K3 surfaces X with Pic(X) o U. The claim is that such an X
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is an elliptic K3 surface. To see this, first call the two basis classes F' and C. Then we can
specify 2F + C to be ample (since (2F +C)? = 4). Hence by the Nakai-Moishezon criterion,
—F is not effective. Thus by Serre duality h?(X, F) = h°(X, —F) = 0. The Riemann-Roch

theorem gives
2

x(F) = h'(F) — h}(F) = % +2=2.

Thus h°(F) > 2 and F is effective and moves in at least a pencil. In fact, |F| is a base-point
free linear series. Indeed, any base point would have to be on some effective curve F' in the
series. By twisting the subscheme sequence defining F' by Ox (F'), we have

The corresponding long exact sequence in cohomology is
0 — H(Ox) — H*(F) > H’(Np/x) — H'(Ox) = 0.

Hence if F has a base-point, then so does Np,x. But by the adjunction formula, Np/x ~ wr,
the dualizing sheaf. As the Reiamnn-Roch theorem implies that wg is base-point free, we
have that the linear series |F'| on X is as well.

And so the above exact sequence gives that h’(F) = 2 and we have a morphism

x x Fopt

By the adjunction formula, if p,(F') denotes the arithmetic genus of F', then
2,(F)—2=F%=0, = pu(F)=1

And so the above map m is an elliptic fibration. Note that it also has a section, which is in
the class C'— F. A similar argument to the one above shows that it is effective.

2.2. Deforming to Elliptic K3 Surfaces. Recall that the goal is to show that for any K3
surface X and primitive Mukai vector v with rkv > 0, the moduli space of stable sheaves
My (X,v) is deformation equivalent to some moduli space of stable sheaves My (Y, w),
where Y is an elliptic K3 surface. The key technical lemma is the following proposition,
which makes the moduli of sheaves construction in families:

Lemma 2.5 ([9, Prop 5.1]). Let T be a connected curve, (X,L£) & T a smooth family
of polarized K3 surfaces. Assume that there exists t1 € T such that p(Xy,) = 1. Let
v=1r+dL + aw € Rp.Z be a primitive Mukai vector. Then there exists an algebraic space
M(v) — T, smooth and proper, such that M(v); = My, (v¢), where Hy is a general ample
class except perhaps at finitely many places t € T'.

As a result, all of the moduli spaces of sheaves which are fibers of the morphism M (v) —
T are deformation equivalent. We’ll use this to prove:

Theorem 2.6. Let X1 and Xo be K3 surfaces, vi = r + & + ajw and vy = r + £ + asw
primitive Mukai vectors such that

(1) r>0

(2) L(v1) = b(ve) =L

(3) (vi) = (v3) =2s

(4) a1 = az (mod £),
and Hy and Hy generic polarizations. Then M, (v1) and My, (v2) are deformation equiv-
alent.
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Proof Sketch. First, we may assume that the & are ample by twisting up by a sufficiently
multiply of H;. The operation £ — E® H. Z®nz does not affect stability with respect to H;.
On Mukai vectors this corresponds to v; — v; ch(H, z®"l)

Second, we may assume that the X; are elliptic K3 surfaces of degree 2£2. This follows
almost directly from Lemma since the moduli of polarized K3 surfaces of degree 2£2
is connected. Hence we can find curves T; with the desired properties joining (X;,&;) to
elliptic K3 surfaces. In fact, we can assume that the surfaces X; = X5 since elliptic K3
surfaces have polarizations of every degree; namely, o + n; f, if ¢ is the class of a section
and f is the class of a fiber.

So we may assume that X; = Xy = Xis an elliptic K3 surface and that &;/¢ = o + n;f.
Because (v?) = (v3), we have

{% —2ra; = {% — 2rag
2(2n; — 2) —2ra; = 62(2712 —2) —2rag
’nq —ray = Pny — ras
r(ag — a1) = 2(ngy — n1).

Now the difference

vy — v =& — &1+ (a2 — a1)w
= (ng —n)lf + (a2 — a1)w
r(az —a1)f

= ———" +(az —a1)w

l
=(r+(c+nf)l+aw)- ((‘12_;1)f>

- <(a2 _gal)f)

Hence vo = v1 - exp (%) And exp (%) is the Chern character of a line bundle.

This corresponds to the operation of twisting the sheaves by the line bundle #2;%. - f. Since
this preserves stability [9, Lemma 1.1], we may reduce to the case v; = vy. We reduce to
H, = H, by again applying Lemma [2.5 and passing through Picard rank 1. O

2.3. Producing the Elliptic K3 Surface. Let X be our projective K3 surface, H generic
polarization, and v primitive Mukai vector with rkv > 0, Given the result of Theorem [2.6
our goal here is to produce an elliptic K3 surface ¥ with Mukai vector w such that the
hypothesis of Theorem are satisfies for (X,v) and (Y,w). Our main tool with be the
Torelli theorem!

The choice Yoshioka gives is as follows. Let v = £(r + ¢1) + aw) and choose k£ > 0 such
that n:= 7 -k —c? > 0. Let b be such that b + ¢r = a — k. We may assume by altering k
that b is relatively prime to 7.

Let L be the even rank 3 lattice with intersection matrix

01 0
1 0 0
0 0 —2n
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Note the the signature of L is (1,2), so by Proposition L admits a primitive embedding

into the K3 lattice. Also, since L contains a copy of U, the K3 surface Y produced by the

Torelli theorem is an elliptic K3 with a section. Call o the class of a section and f the class

of a fiber. Let ¢, be the last basis class, with {, - f = ¢, -0 = 0 and (2 = —2n. Note that

if n > 1, then every fiber of 7 is irreducible. So we may assume this by making k larger.
Now we set w = £(r + (=, + f)) + (b + ¢r)w. Then we have

(w?y = 02 (—Cn + £)* = 20r(b + 0r)
= (%(—2n) — 20r(b + 0r)
= (2(=2rk + &) — 20r(a — (k)
= 620% — 20ra
= <v2>.

In addition, it can be easily seen that the other assumptions of Theorem hold.

3. FOURIER-MUKAI TRANSFORMS ON ELLIPTIC K3 SURFACES
Recall from the introduction that the theorem we are aiming for is:

Theorem 3.1 ([I, Theorem 1.1]). Let X be an elliptic K3 surface, f the numerical class
of a fiber, and v =1 + ¢1 + aw a primitive Mukai vector with r > 1 and (cy - f,r)=1. If H
is a suitable polarization, then My (X,v) is birational to M[<v2>/2+1], where M is another
elliptic K3 surface.

We begin by recalling the definition and some properties of Fourier-Mukai transforms in
general. Then we will discuss Fourier-Mukai transforms on elliptic curves and their relative
versions fro elliptic fibrations. Finally we will put this all together to define the above map
and prove that it is birational.

3.1. Fourier-Mukai Tranforms. Let D(X) := D?(Coh(X)) be the bounded derived cat-
egory of coherent sheaves on X. Recall that the objects of D(X) are complexes of coherent
sheaves on X. Let [i] be the shift functor that shifts complexes i places to the left. For a com-
plex A, let ##%(A) denote the ith cohomology sheaf of A, e.g. ker(A; — A;41)/im(A;—1 —
A;). We say that E € D(X) is a sheaf if 7#(E) = 0 for i # 0.

On a product of varieties X x Y, let mx and 7y denote the projections onto each factor

XxY
Ty
X
X Y
Given P € D(X x Y') define the Fourier-Mukai transform with kernel P to be the map
of: DY) - D(X),

®F(y) = Rrx (P @" 75 ().
If P is a sheaf on X x Y, flat over Y, then the above tensor product is exact. When the
kernel is obvious from context, we will omit it and simply write ® = ®%.
We can also define a Fourier-Mukai functor in the other direction, which in good circum-
stances will be an inverse of ®. Let PY := RHom(P, Ox«y ), and define

Q = PY[dim X 4+ dimY — dim P].
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We then set
U =09 D(X) - D(Y),

to be the corresponding Fourier-Mukai functor. The reason for the shift is to give () the best
chance of being a sheaf. For example, if P is a torsion sheaf (e.g. dim P # dim X +dimY'),
then Hom(P, Ox«y) = 0, but higher Ext groups need not vanish. If P is a vector bundle,
then it is clear that @ is as well.

Grothendieck-Verdier duality gives that ¥[dim P — dim Y] is a left adjoint of ®, so if @
is fully faithful, then

(1) Vo ® = Idppy)[dimY — dim P].

By Grothendeick Riemann Roch, there is a cohomological Fourier-Mukai functor defined
such that the following diagram

DY) —2 4 D(X)

th ch

HBVGH(Y’ Z) q>H 3 HBVGH (X’ Z)

commutes.

As indicated in the introduction, we will use Fourier-Mukai transforms to turn stable
sheaves of arbitrary Mukai vector into ideal sheaves of points on a (possibly different) K3
surface. First we must understand when the Fourier-Mukai transform of a sheaf is again a
sheaf.

Definition 3.2. A sheaf E € Coh(Y') is ® — WIT; (weak index theorem) if
®I(E) := #?(®(E)) =0
for ¢ # j.

Equivalently, E is ® — WIT; if ®(F)[i] is a sheaf. In this case, we will call the sheaf
®'(E) the transform of E, and denote it by E.

If @ is fully faithful, we can relate the Ext groups of transforms of WIT sheaves to the
Ext groups of the original sheaves. If A is ® — WIT, and B is ® — WIT}, then

= Hompx)(®(A), ®(B)[i])
= Homp(x)(A[~a], B[~b + i])
= Extg?a*b(/l, B).

The relation

@) Extl (A, B) = Extif"b(A, B)

is referred to as the Parseval theorem.

Since our goal is to use the Fourier-Mukai functor to turn the universal family over My (v)
into a family of ideal sheaves of zero-dimensional subschemes, we need to know that the
Fourier-Mukai functor behaves well with families of WIT sheaves. This is provided by the
following Lemma, which loosely says that ® takes families of ® — WIT sheaves to families
of sheaves.
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Lemma 3.3 ([, 2.4]). Let S be a scheme and & a sheaf on'Y x S, flat over S. Further
suppose that the Fourier-Mukai kernel P is a sheaf on X x Y. Then

U:={seS:& is®— WIT;}
is open in S. In addition there exists a sheave ZF on X x U, flat over U, such that for
seU, Fg =D (8).
3.2. Fourier-Mukai Transforms on Elliptic Curves and Elliptic Surfaces.
3.2.1. Elliptic Curves. We consider now the case that X and Y are both elliptic curves. Let
a, b be coprime integers with a > 0. Let Y be the moduli space of stable bundles with Chern
class ¢(E) = (r(F),d(E)) = (a,b), where r(F) is the rank of E and d(FE) is its degree. In
fact, Y ~ X, but we will continue with the differentiated notation to reduce confusion.

Let P be the Poincaré bundle on X x Y, satisfying the property that for all y € Y,
P|xx{y is the bundle parameterized by the point y. Let ® = ®”: D(Y) — D(X). Since

P is a vector bundle, Q = PV is again a vector bundle. Let ¥ = ®%: D(X) — D(Y). As
noted above, ¥U[1] is a left adjoint to ®.

Proposition 3.4 ([I, Prop 3.1]). The functor ® is an equivalence of categories.
In particular, ¥ o ® = Idpy, [1]. Thus the cohomological Fourier-Mukai functors satisfy
(3) U oo = — Idgeven(yz) -

In fact, we can understand the cohomological Fourier-Mukai functor ® very concretely.
If X and Y are elliptic curves, then H®V"(Y,Z) and H®"(X,Z) are both rank 2 free

Z-modules. So ®¥ is an invertible 2 x 2 integer matrix. But we can say even more!
For y € Y, we have that

®(0y) = Rrx«(P @7y (Oy)),
= Rrx o (P @7y (Oxxqyy)):
= R7x «(P|xxy}))s
= Plxxy}

as mx is an isomorphism restricted to X x {y}. So, as O, has Chern class (0,1) and P|x

has Chern class (a, b), we have that
H 0 _[a
' (3)- ()

So the matrix corresponding to ® is of the form

fact say that it is +1. By we have that

o (b d
() )

But as observed above, a = 7(Q|(z}xy) > 0 as @ is a sheaf.

ccl Z) with bc — ad = +1. We can in

The ¢ and d in the matrix corresponding to ® in SLy(Z) are only defined modulo the
addition of a fixed multiple n of a to ¢, and b to d. This corresponds to twisting the kernel
P by a line bundle of degree n on Y.
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3.2.2. Elliptic Surfaces. Our goal now is the make the entire picture above relative! Let
m: X — C be an elliptic K3 surface with a section. Let f be the numerical class of a
fiber of m. For any sheaf E on X, let d(E) = c¢1(E) - f denote the fiber degree of E.

Further let u(E) := % denote the fiber slope of E. We will say that E is a fiber sheaf if
r(E) = d(F) = 0; equivalently if the support of F is contained in the union of finitely many
fibers. We will construct relative Fourier-Mukai functors which agree with the functors
above when restricted to the fibers of 7.

Let M (X /C) be the moduli space of stable, pure-dimension 1 sheaves supported on fibers

of 7.

Definition 3.5. For coprime integers a and b, let 7: Jx(a,b) — C be the union of compo-
nents of M(X/C) with a point corresponding to a sheaf of rank a and degree b supported
on a nonsingular fiber.

The coprimality assumptions guarantee that Jx(a,b) is a projective, fine moduli space
whose points correspond to strictly stable sheaves. For convenience we will refer to Jx (a, b)
as Y. Mukai showed that there is a Poincare sheaf P on X x¢ Y, with the property that
forallyeY, P|7r71(7}(y))x{y} is the sheaf parameterized by the point y.

Extension by 0 (e.g. pushforward) defines an isomorphism

Y — MH((()? afa _b>)7
since any stable torsion sheaf E with ¢;(F) = af is in fact supported on a fiber (since its
support must be contained in fibers and also connected). And from Mukai’s analysis of
moduli spaces with (v?) = 2, we know that both sides are smooth projective K3 surfaces.
The kernel of our relative Fouier-Mukai transform will be the extension of P by 0 to

X x Y, which we will also call P. Note that since this sheaf is supported on X x¢ Y, we
have that dim P = 3, not 4. So we set @ = PY[1]. By [I, Lemma 5.1] @ is a sheaf. Define
the relative Fourier-Mukai functors

d=oF: DY) - D(X)

¥ =% D(X)— D(Y).
By similar arguments to the case of Fourier-Mukai transforms for elliptic curves, Bridgeland
[1] shows that these relative functors are equivalences, so in particular
(4) Vod ~Idpgy) [—1].

Let p € C, and define X, := 7~ !(p) and Y, := #~!(p) be nonsingular fibers. Note that
by construction Y), is the moduli space of stable bundles of rank a and degree b on X,,. Let

ip: Xp — X and j,: Y, — Y be the inclusions of the fibers. Finally let P, be the restriction
of P to X, x Y, and let

P
Dy = @7 D(Yp) — D(Xp),
be the restriction of ® to the fiber over p.

Proposition 3.6. & and V restrict to the elliptic curve Fourier-Mukai functors with pa-
rameters (a,b) on the fibers of 7: Y — C and 7: X — C, e.g.

Liy o ® ~ &0 Ljy,
Lj, oV ~ W0 Liy,
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Proof. The proofs of both results are identical, so we show the first. We have the following
commutative diagram, the bottom and top “squares” of which are cartesian:

X, <7, x

p
ﬂ'Xp
/ k
k
X, xY, 5 X xY
TYp
\ ) Ty

Using the base change theorem for derived functors we have
Liy (txs (P @7y (-))) = x5 (Lky (P @ 75(-)))
~ x5 (Pp ® Limy(—))
> mx, (B @7, Lig () O
By restricting to the fibers, we have
Corollary 3.7. If E is a sheaf on X of rank r(E) and fiber degree d(E), then
(r(\II(E))> _ <—b a > <r(E)>
d(¥(E)) d —c)\dE))’

for some c¢,d € Z such that bc —ad = 1.

Recall that our goal is to set the numerical parameters (a, b, ¢, d) appropriately such that
for £ on X with given Mukai vector v, ¥(E) is (1) a sheaf, and (2) more particularly an
ideal sheaf of a zero-dimensional subscheme of Y. We’ll begin with (1), understanding when
U and ® bring (families of) sheaves into (families of) sheaves.

3.3. Weak Index Theorem Sheaves. Recall that

First note that this implies that if £ is ¥ — WIT;, then Eis ®— WIT,_; and visa versa;
indeed, ®/(¥(E)) = 0, unless j = 1, in which case it is E.

More generally, isomorphism of functors feeds nicely into the Grothendieck composition
of derived functor spectral sequence! Taking the second isomorphism of functors, the Fs
page of this spectral sequence is:

O(V3(E)) @(TX(E))
U (TH(E)) SN TH(E))

O(P(E)) 2N (TO(E))




12 ISABEL VOGT

This spectral sequence abuts to the rightward shift of F, so

E :p+qg=1

By = o((E)) - {O : else

Using Proposition ®!(W/(E)) = 0 for i or j greater than 1 (or less than 0), since it
restricts to 0 on a generic fiber. So in fact the E5 page is concentrated in the square box
where 0 < p,q < 1.

0 0 0
V(PH(E)) OH(THE) 0

/(WO(E)) H(T(E) 0

All differentials pass out of this box, so the spectral sequence must degenerate on the Fo
page. Hence we further have that ®°(¥°(E)) = &!(¥!(E)) = 0, since the sequence abuts
to the shift of E. To summarize, we have three pieces of information

(1) ®°(VY(E)) =0, so ¥)(E) is ® — WITy,

(2) ®H(V(E)) =0, so ¥(E) is ® — WITy,

(3) We have an exact sequence 0 — ®(V(E)) - E — ®°(¥!(E)) — 0. By our first

observation, ®1(V9(E)) is ¥ — WIT and ®!(V9(E)) and ¥ — WIT;.

Similarly, we have another spectral sequence with the roles of ® and W reversed, which gives
the reversed information.

Lemma 3.8. For any sheaf E on X, there is a unique short exact sequence
0>A—-FE—>B-—0,
where A is WV — WITy and B is V — WITy.

Proof. Existence follows from observation (3) above: A = ®}(UY(E)) and B = ®°(V!(E)).
Suppose that there existed another sequence 0 — A" — E — B’ — (0. The composition
bod,

0 A e VB 0
\\\\\\H\boa’
0 A—* g _"3p 0

lives in the group Hom(A’, B). By the Parseval Theorem (2)),
Homx (A’ B) = Ext%(A’, B)
= Exty' (A, B)
= 0.

So the map is necessarily 0, and so factors through A. Considering Hom(A, B’), we see that
the same is true in the other direction, and so A = A’ and B = B’. O
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Lemma 3.9. Let E be a torsion-free sheaf on X. If E is W — WITy, then the fiber slope
w(E)=b/a. If E is W — WIT, then u(E) < b/a.

Proof. Recall that by Corollary 3.7, ¥ to the matrix <_db _ac>. In particular r(V(E)) =
—br(E) + ad(E).

o If E'is ¥ — WIT), then ¥(FE) is a sheaf, so r(V(E)) = 0. Hence u(E) = b/a.

o If £'is U — WIT}, then ¥(E)[1] is a sheaf, so r(¥(F)) < 0. Hence u(E) < b/a. O
Lemma 3.10. Let T be a torsion ¥ — WITy sheaf on X. Then T is a fiber sheaf.

Proof. Since T is a torsion sheaf, 7(T') = 0 and so it suffices to show that d(T) = 0. As
above we have r(¥(T)) = —br(T) + ad(T) = ad(T) < 0, since T is ¥ — WIT;. Thus
d(T) =c1(T) - f <0, since a = 0. But as ¢ (7)) is effective and f is nef, d(T") = 0. O

Recall that our goal is to use the Fourier-Mukai functor to transforms stable sheaves with

Mukai vector v to ideal sheaves of points. We now see that stability (with respect to a
suitable polarization) is exactly what will guarantee for us that W(E) is again a sheaf.

Lemma 3.11. Let E be a torsion-free sheaf on X, such that the restriction of E to a generic
fiber is stable. Then if u(E) < b/a, E is W — WIT}.

Proof. Consider the unique short exact sequence
0>A—-F—>B-—0,

where A is ¥ — WITy and B is ¥ — WIT;. We want to show that A = 0. If not, then A is
torsion-free because F is. Lemma [3.9| implies that the fiber slope

1(A) = bja > p(E),
which contradicts our assumption that the restriction of E to a generic fiber is stable. [

Finally, we have that the opposite holds: the Fourier-Mukai transform of a sheaf whose
restriction to the general fiber is simple again has this property. Recall that a sheaf F is
called simple if Hom(FE, E) = k.

Lemma 3.12. Let E be ® — WIT sheaf on Y whose restriction to a general fiber of 7 is
simple. Then the restriction of E to a general fiber of m is simple.

Proof. Because of Prop , this follows directly from the Parseval theorem for Fourier-
Mukai transforms on elliptic curves:

Hom(E, E) = Ext’(E, F) = Ext°(E, E). O

Remark. For elliptic curves, a simple sheaf is either a stable vector bundle or the skyscrapper
sheaf of a point (see Remark 3.4 of [?]). Hence, because we will always work with a suitable
polarization, this result shows that the (torsion-free) transform of a stable sheaf is stable.

3.4. Proof of the Main Theorem. We will now carry out the process that we have been
alluding to for the past seven pages!

Let w: X — C be an elliptic K3 surface with a section and let f be the numerical class
of a smooth fiber. Fix v = (7, ¢1, 7 + chg) a primitive Mukai vector with r > 1 and d = ¢; - f
relatively prime to r. Let H be a suitable polarization on X, e.g. one for which a torsion-free
sheaf E on X is stable if and only if its restriction to a generic fiber of 7 is stable.
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Let a, b be the unique integers such that
br —ad =1, O<a<r.

Let Y = Jx(a,b) ~ My((0,af,—b)). Let H' be a suitable polarization on Y. Let P be
the Poincare sheaf on X x Y, and let ® and ¥ be the Fourier-Mukai functors defined in

Section [3.2.2] So we have that ® corresponds to the matrix <; Z) and ¥ corresponds to
the matrix _db _ar on the fibers. Hence if F is a stable sheaf on X of rank and fiber

degree (r(E),d(E)) = (r,d), then the complex ¥(E) has rank and fiber degree

tete) - (7 =) G)- ()

Furthermore, since br — ad = 1, we have that
d b

r o a
So by Lemma E is ¥ — WIT; (e.g. a sheaf concentrated in degree 1.) So by the above
calculation E is a rank 1 sheaf of fiber degree 0. However, our goal was to produce a sheaf
of rank one with trivial first Chern class. We can arrange that by modifying the relative
Fourier-Mukai functor P. Let L = cl(E) be the fiber degree 0 line bundle on Y, and replace
P by P@m#(L™1). Since the fiber degree of L (and hence L™1) is 0 this does not alter the
cohomological Fourier-Mukai transform on the fibers. But by the push-pull formula:
Tyx(P@TX(E) @y (L7Y)) = myw (P @ X (E) ® L.

Hence, making such an alteration, we may assume that ¢;(£) = 0. Thus the Mukai vector
of the transform
U(E) = (1,0, _<02>/2) = UI7
since (v(E)?) = (v(E)?) as the Fourier-Mukai transform is an isometry of Mukai lattices. So
as desired, the transform of E is an ideal sheaf of points on Y, another elliptic K3 surface.
And this construction works in families. Define

U ={Ee My(v): E is torsion-free},

and
V={FeMgp@):Fis®—WITy}.

Recall that Lemma guarantees that all £ € My (v) are already ¥ — WIT;. By Lemma
and the fact that stability is an open condition in flat families [5, Prop 2.3.1.], U and
V are open subsets of My (v) and My (v') respectively. In what follows we will show
that U and V are nonempty and in fact isomorphic (via the Fourier-Mukai functor ®).
After arguing that these moduli spaces are irreducible, this will establish their birationality,
completing the proof.

Lemma 3.13. The Fourier-Mukai transform ® is an isomorphism between U and V.

Proof. Since @0V ~ Idp(x)[—1] and Lemm guarantees that ® behaves well in families,
it suffices to show that ® and ¥ bring U and V into eachother.

Let E be in U. Then since E is ¥ — WIT;, we have that E is ® — WITy. Thus E is
in V, since a rank 1 sheaf is stable if and only if it is torsion-free. In the other direction,
given F € V, set E = F = ®(F). We want to show that E is in U, e.g. that it is stable.
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Since the restriction of F' to a generic fiber is stable, hence simple, the restriction of E to
a generic fiber is simple, hence stable. As H is a suitable polarization, it suffices to show
that F is torsion-free.

Suppose that E had a torsion subsheaf T. Consider the exact sequence

O—>T—>E—>E/T—>O.

Since W is left exact, and E is ¥ — WITy, T is also ¥ — WIT;. Hence applying ¥ we get
an exact sequence )
0—-9YE/T)>T—F -V (E/T) 0.

By Lemma T is a fiber sheaf and so 7' is as well. In particular, it is a torsion sheaf;
but as F' is torsion-free, the map )

VYE/T) > T
must be an isomorphism. But WO(E/T) is ® — WIT; and ¥ (T) = T is ® — WIT,. Thus
both sheaves are in fact 0 and 7' = 0 and F is torsion-free. ]

To show that they are nonempty, we will show that certain ideal sheaves of length (v?)/2+
1 = —chg(v') are & — WIT.
Lemma 3.14. Let F = L®Ty where L € Pic®(Y) and Z is a set of (v?)/2 + 1 points lying
on distinct fibers of 7: Y — C. Then F isin V.

To prove this we need the following Lemma. Recall that @ = PV[1].
Lemma 3.15. A sheaf F on'Y is ® — WITy if and only if

Homy (F), Q[z}xy) = 0,
forallze X.

Proof. For simplicity we will write Q. for Q| <y. We have that Q. = ¥(O,), and is hence
® — WIT;. Thus if F'is & — WITy, the Parseval Theorem implies that

Hom(F,Q,) = Ext }(F,0,) = 0.

Conversely, if F' not ® — WITy, then as in Lemma there is a surjection F' — B, where
B is a nonzero ® — WIT; sheaf. Again by the Parseval theorem

Hom(B, Q,) = Hom(B, O,).

If z is in the support of B, then there is a nonzero map B — @, and hence from B — Q..
Composing we have ' — B — (), a nonzero map. O

Proof of Lemma([3.14 By the above Lemma it suffices to show that there are no nonzero
maps from F' — Q. for any x € X. As @, is supported on the fiber Y, over m(x), any
such map factors through F' \yﬂ(w). The (push-forward to Y of this) restriction is a stable,
pure-dimension 1 sheaf on Y with Chern class (0, f, s), where s is the number of points of
Z in the fiber Y (,). Hence s = 1 for finitely many values of 7(z), and is otherwise 0. Q.
is also stable of pure dimension 1 with Chern class (0, af,r). But then there cannot be any
nonzero maps F — @, since r/a > 1 > s and @, is stable. O

Finally to complete the proof that My (v) and Mg/ (v') are birational, we need that these
nonempty open set U and V are dense in their respective moduli spaces. In other words,
we need that these spaces are irreducible, e.g. have only one connected component. This
general result for moduli of (semi)stable sheaves on a K3 surface with respect to a generic
polarization is Theorem 4.1 of [6]. This completes the proof.
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