CHEREDNIK ALGEBRAS AT T=0 AND CALOGERO-MOSER SPACES

IVAN LOSEV, WRITTEN BY SETH SHELLEY-ABRAHAMSON

ABSTRACT. These are notes for a talk in the MIT-Northeastern Spring 2015 Geometric Representation Theory Seminar. We discuss rational Cherednik algebras at t=0.

Contents

1.	Calogero-Moser Spaces	1
2.	Poisson Structure	2
3.	Smoothness	3

1. Calogero-Moser Spaces

We use notation from the previous lecture, with $\mathfrak{h}:=V$. In particular, \mathfrak{h} is a finite-dimensional \mathbb{C} -vector space, and $W\subset GL(\mathfrak{h})$ is a finite subgroup generated by complex reflections. We have the $\mathbb{C}[\mathcal{C}]$ -algebra $\mathbb{H}_0=\mathbb{H}/(T)$, the generic rational Cherednik algebra at T=0. It is naturally \mathbb{Z} -graded with $\deg\mathfrak{h}^*=\deg W=0$, $\deg\mathfrak{h}=\deg C_s=1$. One has other gradings as well, for example, $\deg\mathfrak{h}=\deg W=0$ and $\deg\mathfrak{h}^*=1$. For a $c\in\mathcal{C}$, we have the associated specialization $\mathbb{H}_{0,c}$, a filtered \mathbb{C} -algebra.

We briefly recall a few results from Yi's talk.

a) We have the PBW theorem, stating that the natural $\mathbb{C}[\mathcal{C}]$ -linear multiplication map

$$\mathbb{C}[\mathcal{C}] \otimes S\mathfrak{h}^* \otimes \mathbb{C}W \otimes S\mathfrak{h} \to \mathbb{H}_0$$

is an isomorphism.

b) Let $\mathcal{Z} = Z(\mathbb{H}_0)$ denote the center of \mathbb{H}_0 , and similarly let $\mathcal{Z}_c = Z(\mathbb{H}_{0,c})$ denote the center of $\mathbb{H}_{0,c}$. We have the Satake isomorphism, which states that the maps

$$\mathcal{Z} \to e \mathbb{H}_0 e$$

and

$$\mathcal{Z}_c \to e \mathbb{H}_{0,c} e$$

given by $z \mapsto ze$ are isomorphisms. The algebra \mathcal{Z}_c is filtered, as the specialization of the graded algebra \mathcal{Z} , and we have

$$\operatorname{gr} \mathcal{Z}_c = \mathcal{Z}_0 = S(\mathfrak{h} \oplus \mathfrak{h}^*)^W.$$

 $Date \hbox{: February 3, 2015}.$

c) Let $\delta = (\prod_{s \in S} \alpha_s)^? \in S\mathfrak{h}^{*W}$ denote a W-invariant power of the discriminant element, so that \mathfrak{h}^{reg} is the associated principal open set. Then we have the localization lemma, stating that the following diagram of $\mathbb{C}[\mathcal{C}]$ -algebras commutes, where the diagonal map is given by the Dunkl operator embedding:

$$\mathbb{H}_0 \xrightarrow{\cong} \mathbb{H}_0[\delta^{-1}]$$

$$\cong \bigvee_{\mathbb{C}[\mathcal{C}] \otimes \mathbb{C}[T^*\mathfrak{h}^{reg}] \rtimes \mathbb{C}W}$$

All maps here are injective maps of algebras, with the vertical map an isomorphism \mathbf{c}^*) Similarly, setting $\delta^* = (\prod_{s \in S} \alpha_s^{\vee})^? \in S\mathfrak{h}^W$, we have the diagram

$$\mathbb{H}_0 \xrightarrow{\cong} \mathbb{H}_0[\delta^{*-1}]$$

$$\cong \bigvee_{\mathbb{C}[\mathcal{C}] \otimes \mathbb{C}[T^*\mathfrak{h}^{*reg}] \rtimes \mathbb{C}W}$$

Let $X = \operatorname{Spec}(\mathcal{Z})$. Then there is a natural flat map $X \to \mathcal{C}$, and $X_c := \operatorname{Spec}(\mathcal{Z}_c)$ is the fiber above $c \in \mathcal{C}$. We call X and X_c Calogero-Moser spaces.

Note by PBW we have an embedding $S\mathfrak{h}^W \otimes S\mathfrak{h}^{*W} \hookrightarrow \mathbb{H}_0$. Even better:

Lemma 1.
$$S\mathfrak{h}^W \otimes S\mathfrak{h}^{*W} \subset \mathcal{Z}$$
.

Proof. That $S\mathfrak{h}^{*W} \subset \mathcal{Z}$ follows immediately from the Dunkl operator embedding. The case of $S\mathfrak{h}^W$ is similar, using the diagram \mathbf{c}^*) above.

So, we see
$$\mathcal{Z} \supset \mathbb{C}[\mathcal{C}] \otimes S\mathfrak{h}^{*W} \otimes S\mathfrak{h}^{W}$$
.

Lemma 2. \mathcal{Z} is free graded rank |W| module over $\mathbb{C}[\mathcal{C}] \otimes S\mathfrak{h}^{*W} \otimes S\mathfrak{h}^{W}$.

Proof. We see that $S(\mathfrak{h} \oplus \mathfrak{h}^*)^W$ is a direct summand of $S\mathfrak{h} \otimes S\mathfrak{h}^*$ as a $S\mathfrak{h}^W \otimes S\mathfrak{h}^{*W}$ -module (in fact, as a $S(\mathfrak{h} \oplus \mathfrak{h}^*)^W$ -modules) - indeed, a complement is given by $(1-e)(S\mathfrak{h} \otimes S\mathfrak{h}^*)$ where $e=\frac{1}{|W|}\sum_{w\in W}w\in \mathbb{C}W$. By the Chevalley theorem, $S\mathfrak{h} \otimes S\mathfrak{h}^*$ is a free module over $S\mathfrak{h}^W \otimes S\mathfrak{h}^{*W}$, and hence $S(\mathfrak{h} \otimes \mathfrak{h}^*)^W$ is a finitely generated projective, hence free, module over $S\mathfrak{h}^W \otimes S\mathfrak{h}^{*W}$. The rank is |W|, as one can see for example by considering the fiber at a point of $(\mathfrak{h} \times \mathfrak{h}^*)^{reg}$. This gives the result for the specialization at c=0. The result then follows from a version of Nakayama's lemma and the facts that \mathcal{Z} is $\mathbb{Z}_{\geq 0}$ -graded with $\deg \mathcal{C}=1$ and that \mathcal{Z} is free over $\mathbb{C}[\mathcal{C}]$.

So we see that the natural maps $X \to \mathcal{C} \times \mathfrak{h}/W \times \mathfrak{h}^*/W$ and the specialization $X_c \to \mathfrak{h}/W \times \mathfrak{h}^*/W$ are finite degree-|W| maps. In view of \mathbf{c}) and \mathbf{c}^*) we see over $\mathcal{C} \times \mathfrak{h}^{reg}/W \times \mathfrak{h}^*/W$, X is $\mathcal{C} \times (\mathfrak{h}^{reg} \times \mathfrak{h}^*)/W$, and similarly over $\mathcal{C} \times \mathfrak{h}/W \times \mathfrak{h}^{*reg}/W$, X is $\mathcal{C} \times (\mathfrak{h} \times \mathfrak{h}^{*reg})/W$.

2. Poisson Structure

We define a $\mathbb{C}[\mathcal{C}]$ -linear Poisson bracket on \mathcal{Z} as follows. Let $\iota: \mathcal{Z} \to \mathbb{H}$ be any $\mathbb{C}[\mathcal{C}]$ -linear lift of the inclusion $\mathcal{Z} \to \mathbb{H}_0$ to the algebra \mathbb{H} :

By the PBW theorem, a lift $\mathbb{H}_0 \to \mathbb{H}$ exists, giving the existence of a lift ι . Given $a, b \in \mathcal{Z}$ and $h \in \mathfrak{h}$, that a is central in \mathbb{H}_0 implies $[\iota(a), h], [\iota(b), h] \in T\mathbb{H}$. It follows from the Jacobi identity that $[[\iota(a), \iota(b)], h] \in T^2\mathbb{H}$. It follows that $[\iota(a), \iota(b)] \in T\iota(\mathcal{Z}) + T^2\mathbb{H}$. We then define

$$\{a,b\} := \frac{1}{T}[\iota(a),\iota(b)] \bmod (T)$$

It is an exercise to see that this is independent of the lift ι , that $\{\cdot,\cdot\}$ is Poisson, and of degree -1. It is easy to see that $\{\cdot,\cdot\}$ vanishes on $S\mathfrak{h}^W$ and $S\mathfrak{h}^{*W}$.

Definition 3. Let X be an affine Poisson variety. A closed subscheme $Y_0 \subset X$ is called Poisson, if $\{\mathbb{C}[Y], I(Y_0)\} \subset I(Y_0)$, where we write $I(Y_0)$ for the ideal of Y_0 .

Definition 4. We say a Poisson variety Y has finitely many leaves if Y has a finite stratification $Y = \coprod_i Y_i$ into locally closed subvarieties such that Y_i is symplectic and $\overline{Y_i}$ is Poisson. We call the Y_i the symplectic leaves of Y.

Exercise 5. Let V be a symplectic vector space, $\Gamma \subset Sp(V)$ a finite subgroup, and $Y = V/\Gamma$. Then the symplectic leaves of Y are in bijection with the conjugacy classes of stabilizers Γ_v of Γ , with the conjugacy class $[\Gamma']$ corresponding to the image in V/Γ of $\{v \in V : \Gamma_v = \Gamma'\}$.

Exercise 6. $Y^{sing} \subset Y$ is Poisson. Also, the nonsymplectic locus in a smooth Poisson variety is a Poisson subvariety.

Proposition 7. X_c has finitely many symplectic leaves.

Proof. The Poisson structure on $Z_0 = S(\mathfrak{h} \oplus \mathfrak{h}^*)^W$ is the standard Poisson structure restricted from $S(\mathfrak{h} \oplus \mathfrak{h}^*)$. Indeed, the bracket is independent of the lift $Z_0 \to \mathbb{H}_{T,0}$. The standard Poisson bracket on $S(\mathfrak{h} \oplus \mathfrak{h}^*)^W$ comes from a lift

$$\iota_0: \mathcal{Z}_0 \to \mathcal{D}_T(\mathfrak{h})^W \subset \mathbb{H}_{T,0} = \mathcal{D}_T(\mathfrak{h}) \rtimes \mathbb{C}W.$$

It follows that the zero fiber of the scheme $X_{\mathbb{C}c}/\mathbb{C}c$ is generically symplectic, so X_c is generically symplectic. Now let $Y \subset X_c$ be an irreducible Poisson subvariety. It is enough to show Y is generically symplectic. Indeed, by the previous exercise, the locus, where Y is not smooth or not symplectic is a proper Poisson subvariety and we can apply the induction on dimension of Y.

Let $I \subset \mathbb{C}[X_c]$ be the ideal of Y. The algebra $\mathbb{C}[X_{\mathbb{C}c}]$ is the Rees algebra $R_t(\mathbb{C}[X_c]) = \bigoplus_{i \geq 0} \mathbb{C}[X_c]_{\leq i}t^i$. Consider the subscheme $Y_{\mathbb{C}c} \subset X_{\mathbb{C}c}$ defined by $R_t(I)$. Its zero fiber is a Poisson subscheme in $X_0 = (\mathfrak{h} \oplus \mathfrak{h}^*)/W$ and hence has finitely many leaves. In particular, it is generically symplectic. So Y_c is generically symplectic. \square

3. Smoothness

It is natural to ask whether X_c can be smooth, and to characterize the smooth points.

Let us address the smoothness. In the case $W = G(\ell, 1, n)$ (this is the group $S_n \ltimes (\mathbb{Z}/\ell\mathbb{Z})^n$ acting on \mathbb{C}^n) all X_c are Nakajima quiver varieties, and X_c is smooth for generic c. There is exactly one more exceptional complex reflection group (known as G_4) where a generic Calogero-Moser space is smooth.

 $\mathbb{H}_{0,c}e$ is a finitely generated \mathcal{Z}_c -module, so we can view it as a coherent sheaf on X_c . Now consider the subvariety

$$X_c^{sph} := \{x \in X : \dim(\mathbb{H}_{0,c}e)_x \text{ is minimal}\}.$$

This is a nonempty Zariski open subset. Over $\mathfrak{h}^{reg}/W \times \mathfrak{h}^*/W$, X_c is $(\mathfrak{h}^{reg} \times \mathfrak{h}^*)/W$. There, $\mathbb{H}_{0,c}e$ is $\mathbb{C}[T^*\mathfrak{h}^{reg}]$, which is a free rank-|W| module over $\mathbb{C}[T^*\mathfrak{h}^{reg}]^W$. So we see the minimal fiber dimension of $\mathbb{H}_{0,c}e$ is |W|.

Theorem 8. $X_c^{sph} = X_c^{smooth}$.

For $x \in X_c^{sph}$, we have the associated maximal ideal $\mathfrak{m}_x \subset \mathcal{Z}_c$, and one has $\mathbb{H}_{0,c}/\mathbb{H}_{0,c}\mathfrak{m}_x = \operatorname{Mat}_{|W|}(\mathbb{C})$ by considering the isomorphism $\mathbb{H}_{0,c} \cong \operatorname{End}_{\mathcal{Z}_c}(\mathbb{H}_{0,c}e)$ from Yi's talk.

Proof. First we show $X_c^{smooth} \subset X_c^{sph}$. We need to show that all fibers of $\mathbb{H}_{0,c}e$ have dimension |W| on X_c^{smooth} , and for this it suffices to produce a (local) connection for $\mathbb{H}_{0,c}e$ over this open set. To this end, given a section s of $\mathbb{H}_{0,e}$ and ξ some vector field, we define $\nabla_{\xi}s$ as follows. First note that, since we are only interested in constructing the connection locally, i.e, in a neighborhood of each point, it suffices to assume ξ is a Hamiltonian vector field v(f) for some given function f. Indeed, X^{smooth} is symplectic by Proposition 7 so every point has a neighborhood where one can choose a basis of vector fields consisting of Hamiltonian vector fields and it is enough to define the connection on the basis elements. Let $\iota_c: \mathcal{Z}_c \to \mathbb{H}_{T,c}$ be a lift as in the previous section, and pick a lift \tilde{s} of the section s in $\mathbb{H}_{T,c}e$. Then define

$$\nabla_{\xi} s := \frac{1}{T} [\iota_c(f), \tilde{s}] \mod (T).$$

Note that the right hand side is independent of \tilde{s} (but, generally, depends on ι).

Now we show the reverse inclusion $X_c^{sph} \subset X_c^{smooth}$. Recall that an affine variety Y is smooth if and only if $\mathbb{C}[Y]$ has finite homological dimension. Observe also that we have the following bound on homological dimension

HomDim
$$\mathbb{H}_{t,c} \leq 2 \dim_{\mathbb{C}} \mathfrak{h} < \infty$$

This follows from the fact that $\operatorname{gr}\mathbb{H}_{t,c}=S(\mathfrak{h}\oplus\mathfrak{h}^*)\rtimes\mathbb{C}W$ has homological dimension $2\dim\mathfrak{h}$, and that the homological dimension is does not increase under filtered deformations. So, for $f\in\mathcal{Z}_c$, $\mathbb{H}_{0,c}[f^{-1}]$ always has finite homological dimension. If $X_{c,f}$, the principal open subset associated to f, is contained in X_c^{sph} then $\mathbb{H}_{0,c}[f^{-1}]$ is $\operatorname{End}_{\mathcal{Z}_c[f^{-1}]}(\mathbb{H}_{0,c}e[f^{-1}])$, a vector bundle. But then we see $\mathbb{H}_{0,c}[f^{-1}]$ is Morita equivalent to $\mathcal{Z}_{0,c}[f^{-1}]$, so the latter has finite homological dimension and $X_{c,f}$ is smooth, as needed.