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Abstract. These are notes for a talk in the MIT-Northeastern Spring 2015
Geometric Representation Theory Seminar. We discuss rational Cherednik

algebras at t = 0.
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1. Calogero-Moser Spaces

We use notation from the previous lecture, with h := V . In particular, h is a
finite-dimensional C-vector space, and W ⊂ GL(h) is a finite subgroup generated
by complex reflections. We have the C[C]-algebra H0 = H/(T ), the generic rational
Cherednik algebra at T = 0. It is naturally Z-graded with deg h∗ = degW = 0,
deg h = degCs = 1. One has other gradings as well, for example, deg h = degW = 0
and deg h∗ = 1. For a c ∈ C, we have the associated specialization H0,c, a filtered
C-algebra.

We briefly recall a few results from Yi’s talk.
a) We have the PBW theorem, stating that the natural C[C]-linear multiplication

map
C[C]⊗ Sh∗ ⊗ CW ⊗ Sh→ H0

is an isomorphism.
b) Let Z = Z(H0) denote the center of H0, and similarly let Zc = Z(H0,c)

denote the center of H0,c. We have the Satake isomorphism, which states that the
maps

Z → eH0e

and
Zc → eH0,ce

given by z 7→ ze are isomorphisms. The algebra Zc is filtered, as the specialization
of the graded algebra Z, and we have

grZc = Z0 = S(h⊕ h∗)W .

Date: February 3, 2015.

1



2 IVAN LOSEV, WRITTEN BY SETH SHELLEY-ABRAHAMSON

c) Let δ = (
∏
s∈S αs)

? ∈ Sh∗W denote a W -invariant power of the discriminant
element, so that hreg is the associated principal open set. Then we have the lo-
calization lemma, stating that the following diagram of C[C]-algebras commutes,
where the diagonal map is given by the Dunkl operator embedding:

H0 > H0[δ−1]

C[C]⊗ C[T ∗hreg] oCW

∼=
∨>

All maps here are injective maps of algebras, with the vertical map an isomorphism
c∗) Similarly, setting δ∗ = (

∏
s∈S α

∨
s )? ∈ ShW , we have the diagram

H0 > H0[δ∗−1]

C[C]⊗ C[T ∗h∗reg] oCW

∼=
∨>

Let X = Spec(Z). Then there is a natural flat map X → C, and Xc := Spec(Zc)
is the fiber above c ∈ C. We call X and Xc Calogero-Moser spaces.

Note by PBW we have an embedding ShW ⊗ Sh∗W ↪→ H0. Even better:

Lemma 1. ShW ⊗ Sh∗W ⊂ Z.

Proof. That Sh∗W ⊂ Z follows immediately from the Dunkl operator embedding.
The case of ShW is similar, using the diagram c∗) above. �

So, we see Z ⊃ C[C]⊗ Sh∗W ⊗ ShW .

Lemma 2. Z is free graded rank |W | module over C[C]⊗ Sh∗W ⊗ ShW .

Proof. We see that S(h⊕h∗)W is a direct summand of Sh⊗Sh∗ as a ShW ⊗Sh∗W -
module (in fact, as a S(h ⊕ h∗)W -modules) - indeed, a complement is given by
(1 − e)(Sh ⊗ Sh∗) where e = 1

|W |
∑
w∈W w ∈ CW . By the Chevalley theorem,

Sh ⊗ Sh∗ is a free module over ShW ⊗ Sh∗W , and hence S(h ⊗ h∗)W is a finitely
generated projective, hence free, module over ShW ⊗ Sh∗W . The rank is |W |, as
one can see for example by considering the fiber at a point of (h×h∗)reg. This gives
the result for the specialization at c = 0. The result then follows from a version of
Nakayama’s lemma and the facts that Z is Z≥0-graded with degC = 1 and that Z
is free over C[C]. �

So we see that the natural maps X → C × h/W × h∗/W and the specialization
Xc → h/W × h∗/W are finite degree-|W | maps. In view of c) and c∗) we see over
C×hreg/W ×h∗/W , X is C×(hreg×h∗)/W , and similarly over C×h/W ×h∗reg/W ,
X is C × (h× h∗reg)/W .

2. Poisson Structure

We define a C[C]-linear Poisson bracket on Z as follows. Let ι : Z → H be any
C[C]-linear lift of the inclusion Z → H0 to the algebra H:

H

Z >

ι
>

H0

/(T )

∨
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By the PBW theorem, a lift H0 → H exists, giving the existence of a lift ι. Given
a, b ∈ Z and h ∈ h, that a is central in H0 implies [ι(a), h], [ι(b), h] ∈ TH. It follows
from the Jacobi identity that [[ι(a), ι(b)], h] ∈ T 2H. It follows that [ι(a), ι(b)] ∈
Tι(Z) + T 2H. We then define

{a, b} :=
1

T
[ι(a), ι(b)] mod (T )

It is an exercise to see that this is independent of the lift ι, that {·, ·} is Poisson,
and of degree −1. It is easy to see that {·, ·} vanishes on ShW and Sh∗W .

Definition 3. Let X be an affine Poisson variety. A closed subscheme Y0 ⊂ X is
called Poisson, if {C[Y ], I(Y0)} ⊂ I(Y0), where we write I(Y0) for the ideal of Y0.

Definition 4. We say a Poisson variety Y has finitely many leaves if Y has a finite
stratification Y =

∐
i Yi into locally closed subvarieties such that Yi is symplectic

and Yi is Poisson. We call the Yi the symplectic leaves of Y .

Exercise 5. Let V be a symplectic vector space, Γ ⊂ Sp(V ) a finite subgroup, and
Y = V/Γ. Then the symplectic leaves of Y are in bijection with the conjugacy
classes of stabilizers Γv of Γ, with the conjugacy class [Γ′] corresponding to the
image in V/Γ of {v ∈ V : Γv = Γ′}.

Exercise 6. Y sing ⊂ Y is Poisson. Also, the nonsymplectic locus in a smooth
Poisson variety is a Poisson subvariety.

Proposition 7. Xc has finitely many symplectic leaves.

Proof. The Poisson structure on Z0 = S(h⊕h∗)W is the standard Poisson structure
restricted from S(h⊕h∗). Indeed, the bracket is independent of the lift Z0 → HT,0.
The standard Poisson bracket on S(h⊕ h∗)W comes from a lift

ι0 : Z0 → DT (h)W ⊂ HT,0 = DT (h) oCW.
It follows that the zero fiber of the scheme XCc/Cc is generically symplectic, so

Xc is generically symplectic. Now let Y ⊂ Xc be an irreducible Poisson subvariety.
It is enough to show Y is generically symplectic. Indeed, by the previous exercise,
the locus, where Y is not smooth or not symplectic is a proper Poisson subvariety
and we can apply the induction on dimension of Y .

Let I ⊂ C[Xc] be the ideal of Y . The algebra C[XCc] is the Rees algebra
Rt(C[Xc]) =

⊕
i≥0 C[Xc]≤it

i. Consider the subscheme YCc ⊂ XCc defined by Rt(I).

Its zero fiber is a Poisson subscheme inX0 = (h⊕h∗)/W and hence has finitely many
leaves. In particular, it is generically symplectic. So Yc is generically symplectic. �

3. Smoothness

It is natural to ask whether Xc can be smooth, and to characterize the smooth
points.

Let us address the smoothness. In the case W = G(`, 1, n) (this is the group Snn
(Z/`Z)n acting on Cn) all Xc are Nakajima quiver varieties, and Xc is smooth for
generic c. There is exactly one more exceptional complex reflection group (known
as G4) where a generic Calogero-Moser space is smooth.

H0,ce is a finitely generated Zc-module, so we can view it as a coherent sheaf on
Xc. Now consider the subvariety

Xsph
c := {x ∈ X : dim(H0,ce)x is minimal}.
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This is a nonempty Zariski open subset. Over hreg/W×h∗/W , Xc is (hreg×h∗)/W .
There, H0,ce is C[T ∗hreg], which is a free rank-|W | module over C[T ∗hreg]W . So
we see the minimal fiber dimension of H0,ce is |W |.

Theorem 8. Xsph
c = Xsmooth

c .

For x ∈ Xsph
c , we have the associated maximal ideal mx ⊂ Zc, and one has

H0,c/H0,cmx = Mat|W |(C) by considering the isomorphism H0,c
∼= EndZc

(H0,ce)
from Yi’s talk.

Proof. First we show Xsmooth
c ⊂ Xsph

c . We need to show that all fibers of H0,ce have
dimension |W | on Xsmooth

c , and for this it suffices to produce a (local) connection
for H0,ce over this open set. To this end, given a section s of H0,e and ξ some
vector field, we define ∇ξs as follows. First note that, since we are only interested
in constructing the connection locally, i.e, in a neighborhood of each point, it suffices
to assume ξ is a Hamiltonian vector field v(f) for some given function f . Indeed,
Xsmooth is symplectic by Proposition 7 so every point has a neighborhood where
one can choose a basis of vector fields consisting of Hamiltonian vector fields and
it is enough to define the connection on the basis elements. Let ιc : Zc → HT,c be
a lift as in the previous section, and pick a lift s̃ of the section s in HT,ce. Then
define

∇ξs :=
1

T
[ιc(f), s̃] mod (T ).

Note that the right hand side is independent of s̃ (but, generally, depends on ι).
Now we show the reverse inclusion Xsph

c ⊂ Xsmooth
c . Recall that an affine variety

Y is smooth if and only if C[Y ] has finite homological dimension. Observe also that
we have the following bound on homological dimension

HomDim Ht,c ≤ 2 dimC h <∞
This follows from the fact that grHt,c = S(h⊕h∗)oCW has homological dimension
2 dim h, and that the homological dimension is does not increase under filtered
deformations. So, for f ∈ Zc, H0,c[f

−1] always has finite homological dimension. If
Xc,f , the principal open subset associated to f , is contained in Xsph

c then H0,c[f
−1]

is EndZc[f−1](H0,ce[f
−1]), a vector bundle. But then we see H0,c[f

−1] is Morita

equivalent to Z0,c[f
−1], so the latter has finite homological dimension and Xc,f is

smooth, as needed. �


