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1. CALOGERO-MOSER SPACES

We use notation from the previous lecture, with h := V. In particular, b is a
finite-dimensional C-vector space, and W C GL(b) is a finite subgroup generated
by complex reflections. We have the C[C]-algebra Hy = H/(T'), the generic rational
Cherednik algebra at T = 0. It is naturally Z-graded with degh* = degW = 0,
degh = deg Cs = 1. One has other gradings as well, for example, degh = degW =0
and degh* = 1. For a c € C, we have the associated specialization Hp ., a filtered
C-algebra.

We briefly recall a few results from Yi’s talk.

a) We have the PBW theorem, stating that the natural C[C]-linear multiplication
map

ClC]l® Sh* @ CW ® Sh — Hy
is an isomorphism.

b) Let Z = Z(Hp) denote the center of Hy, and similarly let Z. = Z(Hy,)
denote the center of Hy .. We have the Satake isomorphism, which states that the
maps

Z — eHpe
and
Z. — ey ce
given by z — ze are isomorphisms. The algebra Z. is filtered, as the specialization
of the graded algebra Z, and we have

grZ.=2y=Shan)".
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c) Let 6 = (J[,cg as)” € SH*™ denote a W-invariant power of the discriminant
element, so that h™Y is the associated principal open set. Then we have the lo-
calization lemma, stating that the following diagram of C[C]-algebras commutes,
where the diagonal map is given by the Dunkl operator embedding;:

Hy ——> Hp[07]

ClCl® C[T*h" 9] x CW
All maps here are injective maps of algebras, with the vertical map an isomorphism

c*) Similarly, setting 6* = ([],cq @)’ € Sb", we have the diagram
Hy ——— Hy[6* Y]

CI[Cl® CIT*h* 9] x CW
Let X = Spec(Z). Then there is a natural flat map X — C, and X, := Spec(Z..)

is the fiber above ¢ € C. We call X and X, Calogero-Moser spaces.
Note by PBW we have an embedding Sh" ® Sh*W < Hy. Even better:

Lemma 1. SH"W @ sp*WV c =.

Proof. That Sh*W C Z follows immediately from the Dunkl operator embedding.
The case of Sh" is similar, using the diagram c*) above. O

So, we see Z D C[C] ® Sh*W @ SHWV.
Lemma 2. Z is free graded rank |W| module over C[C] ® Sh*W @ ShW.

Proof. We see that S(h@h*)"W is a direct summand of Sh® Sh* as a Sh" @ Sh*W-
module (in fact, as a S(h @ h*)"-modules) - indeed, a complement is given by
(1 —e)(Sh ® Sh*) where e = ﬁ Y wew w € CW. By the Chevalley theorem,

Sh @ Sh* is a free module over S @ Sh*W'| and hence S(h @ h*)W is a finitely
generated projective, hence free, module over Sh" @ Sh*W. The rank is |W|, as
one can see for example by considering the fiber at a point of (h x h*)"¢9. This gives
the result for the specialization at ¢ = 0. The result then follows from a version of
Nakayama’s lemma and the facts that Z is Z>o-graded with degC = 1 and that Z
is free over C[C]. O

So we see that the natural maps X — C x h/W x b*/W and the specialization
X. = /W x b* /W are finite degree-|WW| maps. In view of ¢) and c*) we see over
Cxhre9 /W xb* /W, X is C x (h7¢9 x h*) /W, and similarly over C x h/W x h*"e9 /W,
X is C x (b x h*e9) /W,

2. POISSON STRUCTURE

We define a C|[C]-linear Poisson bracket on Z as follows. Let ¢ : Z — H be any
C[C]-linear lift of the inclusion Z — H to the algebra H:

H

Sl

Z ——> Hy
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By the PBW theorem, a lift Hy — H exists, giving the existence of a lift . Given
a,b € Z and h € b, that a is central in Hy implies [¢(a), h], [¢(b), h] € TH. It follows
from the Jacobi identity that [[c(a),(b)],h] € T?H. It follows that [i(a),¢(b)] €
Tu(Z) + T?H. We then define

{0,6) = 2lu(a), ()] mod (7)

It is an exercise to see that this is independent of the lift ¢, that {-,-} is Poisson,
and of degree —1. It is easy to see that {-,-} vanishes on Sh" and SH*W.

Definition 3. Let X be an affine Poisson variety. A closed subscheme Yy C X is
called Poisson, if {C[Y],1(Yo)} C I(Yo), where we write I(Yy) for the ideal of Yy.

Definition 4. We say a Poisson variety Y has finitely many leaves if Y has a finite
stratification Y = [, Y; into locally closed subvarieties such that Y; is symplectic
and Y; is Poisson. We call the Y; the symplectic leaves of Y.

Exercise 5. Let V' be a symplectic vector space, I' C Sp(V') a finite subgroup, and
Y = V/T. Then the symplectic leaves of Y are in bijection with the conjugacy
classes of stabilizers T, of T', with the conjugacy class [I'] corresponding to the
image in V/T of {fveV:T, =T"}.

Exercise 6. Y*"9 C Y is Poisson. Also, the nonsymplectic locus in a smooth
Poisson variety is a Poisson subvariety.

Proposition 7. X, has finitely many symplectic leaves.

Proof. The Poisson structure on Zg = S(h@h*)" is the standard Poisson structure
restricted from S(h @ h*). Indeed, the bracket is independent of the lift Zy — Hrp .
The standard Poisson bracket on S(h @ h*)" comes from a lift

1o : 20 — Dr(§)W C Hyo = Dr(h) x CW.

It follows that the zero fiber of the scheme X¢./Cc is generically symplectic, so
X, is generically symplectic. Now let Y C X, be an irreducible Poisson subvariety.
It is enough to show Y is generically symplectic. Indeed, by the previous exercise,
the locus, where Y is not smooth or not symplectic is a proper Poisson subvariety
and we can apply the induction on dimension of Y.

Let I C C[X.] be the ideal of Y. The algebra C[Xc.] is the Rees algebra
Ri(C[X.]) = B, C[X ]<;t". Consider the subscheme Y. C X¢. defined by Ry (I).
Its zero fiber is a Poisson subscheme in X = (h®h*)/W and hence has finitely many
leaves. In particular, it is generically symplectic. So Y, is generically symplectic. [

3. SMOOTHNESS

It is natural to ask whether X. can be smooth, and to characterize the smooth
points.

Let us address the smoothness. In the case W = G(¢,1,n) (this is the group S, x
(Z/0Z)™ acting on C™) all X, are Nakajima quiver varieties, and X, is smooth for
generic ¢. There is exactly one more exceptional complex reflection group (known
as GG4) where a generic Calogero-Moser space is smooth.

Hy e is a finitely generated Z.-module, so we can view it as a coherent sheaf on
X.. Now consider the subvariety

X3Pt = {z € X : dim(H ce), is minimal}.
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This is a nonempty Zariski open subset. Over b9 /W x h* /W, X, is (h™¢9 x h*) /W
There, Hy e is C[T*h"9], which is a free rank-|W| module over C[T*h 9] . So
we see the minimal fiber dimension of Hy e is |WV|.

Theorem 8. Xgph — Xgmooth‘

For z € Xﬁph, we have the associated maximal ideal m, C Z., and one has
Ho,./Ho,.m, = Matjy|(C) by considering the isomorphism Hy . = Endz, (Ho )
from Yi’s talk.

Proof. First we show X ot C X 5P We need to show that all fibers of Hy .e have
dimension |W| on X§™2°t"  and for this it suffices to produce a (local) connection
for Hpo e over this open set. To this end, given a section s of Hp,. and £ some
vector field, we define V¢s as follows. First note that, since we are only interested
in constructing the connection locally, i.e, in a neighborhood of each point, it suffices
to assume ¢ is a Hamiltonian vector field v(f) for some given function f. Indeed,
Xsmooth is symplectic by Proposition 7 so every point has a neighborhood where
one can choose a basis of vector fields consisting of Hamiltonian vector fields and
it is enough to define the connection on the basis elements. Let ¢, : Z. — Hr . be
a lift as in the previous section, and pick a lift 5 of the section s in Hy .e. Then
define

Ves = %[Lc(f)7§] mod (7).

Note that the right hand side is independent of § (but, generally, depends on &).

Now we show the reverse inclusion X3P C X$mooth Recall that an affine variety
Y is smooth if and only if C[Y] has finite homological dimension. Observe also that
we have the following bound on homological dimension

HomDim H; . < 2dimc h < oo

This follows from the fact that grH; . = S(h@h*) x CW has homological dimension
2dim b, and that the homological dimension is does not increase under filtered
deformations. So, for f € Z., Hp .[f '] always has finite homological dimension. If
Xe, 5, the principal open subset associated to f, is contained in X2P" then Hy .[f 1]
is Endz [f-1)(Ho.ce[f']), a vector bundle. But then we see Ho[f~!] is Morita
equivalent to Zg .[f ], so the latter has finite homological dimension and X, ris
smooth, as needed. ([l



